Astro 4PT

Lecture Notes Set 3
 Wayne Hu

References

- General References

Basics: Kolb \& Turner, Early Universe
Radiation: Dodelson, Modern Cosmology
Matter: Binney \& Tremaine, Galactic Dynamics

Boltzmann Equation

- Particle distribution is generally described by the phase space distribution function for each polarization (spin) state $f_{a}(\mathbf{x}, \mathbf{q}, \eta)$, where \mathbf{x} is the comoving position and \mathbf{q} is the particle momentum
- Spatial number density is the integral over all momentum states ($\hbar=1$)

$$
n_{a}=\int \frac{d^{3} q}{(2 \pi)^{3}} f_{a}
$$

- Boltzmann equation describes the evolution of the distribution function under gravity and collisions
- Zeroth, first moments of the Boltzmann equation are simply the covariant conservation equations
- Higher moments provide the closure condition to the conservation law (specification of stress tensor)

Boltzmann Equation

- Second moment: anisotropic stress tensor

Radiation - the quadrupole anisotropy of the distribution Matter - the kinetic energy tensor (shear, velocity dispersion tensor)

- For radiation higher moments mainly describe the simple geometry of source projection
- For matter higher moments (including second) small due to low thermal and bulk velocities - same behavior as perfect fluid
- Differences with perfect fluid appear in the second moment since collisionless particles can have multiple streams in the same spatial position

Liouville Equation

- In absence of scattering, the phase space distribution of photons is conserved along the propagation path
- Rewrite variables in terms of the particle propagation direction $\mathbf{q}=q \hat{\mathbf{n}}$, so $f_{a}(\mathbf{x}, \hat{\mathbf{n}}, q, \eta)$ and

$$
\frac{d}{d \eta} f_{a}(\mathbf{x}, \hat{\mathbf{n}}, q, \eta)=0
$$

$$
=\left(\frac{\partial}{\partial \eta}+\frac{d \mathbf{x}}{d \eta} \cdot \frac{\partial}{\partial \mathbf{x}}+\frac{d \hat{\mathbf{n}}}{d \eta} \cdot \frac{\partial}{\partial \hat{\mathbf{n}}}+\frac{d q}{d \eta} \cdot \frac{\partial}{\partial q}\right) f_{a}
$$

- For simplicity, assume spatially flat universe $K=0$ then $d \hat{\mathbf{n}} / d \eta=0$ and $d \mathbf{x}=\hat{\mathbf{n}} d \eta$

$$
\dot{f}_{a}+\hat{\mathbf{n}} \cdot \nabla f_{a}+\dot{q} \frac{\partial}{\partial q} f_{a}=0
$$

Correspondence to Einstein Eqn.

- Geodesic equation gives the redshifting term

$$
\frac{\dot{q}}{q}=-\frac{\dot{a}}{a}-\frac{1}{2} n^{i} n^{j} \dot{H}_{T i j}-\dot{H}_{L}+n^{i} \dot{B}_{i}-\hat{\mathbf{n}} \cdot \nabla A
$$

which is incorporated in the conservation and gauge transformation equations

- Stress energy tensor involves integrals over the distribution function summed over polarization (spin) states

$$
T^{\mu \nu}=\sum_{a} \int \frac{d^{3} q}{(2 \pi)^{3}} \frac{q^{\mu} q^{\nu}}{E} f_{a}
$$

- Components are simply the low order angular moments of the distribution function

Perfect Fluid

- Compare with the stress tensor of a perfect fluid

$$
T_{\nu}^{\mu}=(\rho+p) U^{\mu} U_{\nu}+p \delta_{\nu}^{\mu}
$$

- Anisotropic stress tensor of perfect fluid also related to the tensor constructed out of the 4-momentum
- However now there is no phase space distribution that allows multiple streams at a given point in space - only a single bulk velocity
- Differences in the density evolution will appear as soon as particle trajectories cross - fluid shocks and collisonless particles pass through each other

Scalar Field

- Scalar field (with arbitrary kinetic term) can be recast as a perfect fluid
- Given a Lagrangian \mathcal{L} with a kinetic term

$$
X=-\frac{1}{2} \nabla_{\mu} \phi \nabla^{\mu} \phi
$$

the stress tensor is

$$
T^{\mu}{ }_{\nu}=\frac{\partial \mathcal{L}}{\partial X} \nabla^{\mu} \phi \nabla_{\nu} \phi+\mathcal{L} \delta^{\mu}{ }_{\nu}
$$

and we can associate a pressure $p=\mathcal{L}$ and a fluid velocity

$$
U_{\mu}=\frac{\nabla_{\mu} Q}{(2 X)^{1 / 2}}
$$

Scalar Field

- Canonical scalar field cannot work as dark matter given its large sound speed (in comoving slicing) $\delta p / \delta \rho=1$. Here

$$
\mathcal{L}=X-V
$$

- Attempts to unify dark matter and dark energy through a single scalar field must overcome the fact that such matter behaves as a perfect fluid, e.g.

$$
\mathcal{L}=C\left(X-X_{\min }\right)^{2}
$$

- Exception: the axion where ϕ varies as $e^{i m t}$ and multiple stream info can be stored in the phase

$$
\mathcal{L}=X-m^{2} \phi-V_{0}
$$

Radiation Angular Moments

- Define the angularly dependent temperature perturbation

$$
\Theta(\mathbf{x}, \hat{\mathbf{n}}, \eta)=\frac{1}{4 \rho_{\gamma}} \int \frac{q^{3} d q}{2 \pi^{2}}\left(f_{a}+f_{b}\right)-1
$$

and likewise for the linear polarization states Q and U

- Decompose into normal modes: plane waves for spatial part and spherical harmonics for angular part

$$
\begin{aligned}
G_{\ell}^{m}(\mathbf{k}, \mathbf{x}, \hat{\mathbf{n}}) & \equiv(-i)^{\ell} \sqrt{\frac{4 \pi}{2 \ell+1}} Y_{\ell}^{m}(\hat{\mathbf{n}}) \exp (i \mathbf{k} \cdot \mathbf{x}) \\
{ }_{ \pm 2} G_{\ell}^{m}(\mathbf{k}, \mathbf{x}, \hat{\mathbf{n}}) & \equiv(-i)^{\ell} \sqrt{\frac{4 \pi}{2 \ell+1}} \pm 2 Y_{\ell}^{m}(\hat{\mathbf{n}}) \exp (i \mathbf{k} \cdot \mathbf{x})
\end{aligned}
$$

- In a spatially curved universe generalize the plane wave part

Normal Modes

- Temperature and polarization fields

$$
\begin{aligned}
\Theta(\mathbf{x}, \hat{\mathbf{n}}, \eta) & =\int \frac{d^{3} k}{(2 \pi)^{3}} \sum_{\ell m} \Theta_{\ell}^{(m)} G_{\ell}^{m} \\
{[Q \pm i U](\mathbf{x}, \hat{\mathbf{n}}, \eta) } & =\int \frac{d^{3} k}{(2 \pi)^{3}} \sum_{\ell m}\left[E_{\ell}^{(m)} \pm i B_{\ell}^{(m)}\right]_{ \pm 2} G_{\ell}^{m}
\end{aligned}
$$

- For each \mathbf{k} mode, work in coordinates where $\mathbf{k} \| \mathbf{z}$ and so $m=0$ represents scalar modes, $m= \pm 1$ vector modes, $m= \pm 2$ tensor modes, $|m|>2$ vanishes. Since modes add incoherently and $Q \pm i U$ is invariant up to a phase, rotation back to a fixed coordinate system is trivial.

Scalar, Vector, Tensor

- Normalization of modes is chosen so that the lowest angular mode for scalars, vectors and tensors are normalized in the same way as the mode function

$$
\begin{aligned}
G_{0}^{0} & =Q^{(0)} \quad G_{1}^{0}=n^{i} Q_{i}^{(0)} \quad G_{2}^{0} \propto n^{i} n^{j} Q_{i j}^{(0)} \\
G_{1}^{ \pm 1} & =n^{i} Q_{i}^{(\pm 1)} \quad G_{2}^{ \pm 1} \propto n^{i} n^{j} Q_{i j}^{(\pm 1)} \\
G_{2}^{ \pm 2} & =n^{i} n^{j} Q_{i j}^{(\pm 2)}
\end{aligned}
$$

where recall

$$
\begin{aligned}
Q^{(0)} & =\exp (i \mathbf{k} \cdot \mathbf{x}) \\
Q_{i}^{(\pm 1)} & =\frac{-i}{\sqrt{2}}\left(\hat{\mathbf{e}}_{1} \pm i \hat{\mathbf{e}}_{2}\right)_{i} \exp (i \mathbf{k} \cdot \mathbf{x}) \\
Q_{i j}^{(\pm 2)} & =-\sqrt{\frac{3}{8}}\left(\hat{\mathbf{e}}_{1} \pm i \hat{\mathbf{e}}_{2}\right)_{i}\left(\hat{\mathbf{e}}_{1} \pm i \hat{\mathbf{e}}_{2}\right)_{j} \exp (i \mathbf{k} \cdot \mathbf{x})
\end{aligned}
$$

Geometrical Projection

- Main content of Liouville equation is purely geometrical and describes the projection of inhomogeneities into anisotropies
- Spatial gradient term hits plane wave:

$$
\hat{\mathbf{n}} \cdot \nabla e^{i \mathbf{k} \cdot \mathbf{x}}=i \hat{\mathbf{n}} \cdot \mathbf{k} e^{i \mathbf{k} \cdot \mathbf{x}}=i \sqrt{\frac{4 \pi}{3}} k Y_{1}^{0}(\hat{\mathbf{n}}) e^{i \mathbf{k} \cdot \mathbf{x}}
$$

- Dipole term adds to angular dependence through the addition of angular momentum
$\sqrt{\frac{4 \pi}{3}} Y_{1}^{0} Y_{\ell}^{m}=\frac{\kappa_{\ell}^{m}}{\sqrt{(2 \ell+1)(2 \ell-1)}} Y_{\ell-1}^{m}+\frac{\kappa_{\ell+1}^{m}}{\sqrt{(2 \ell+1)(2 \ell+3)}} Y_{\ell+1}^{m}$
where $\kappa_{\ell}^{m}=\sqrt{\ell^{2}-m^{2}}$ is given by Clebsch-Gordon coefficients.

Temperature Hierarchy

- Absorb recoupling of angular momentum into evolution equation for normal modes

$$
\dot{\Theta}_{\ell}^{(m)}=k\left[\frac{\kappa_{\ell}^{m}}{2 \ell+1} \Theta_{\ell-1}^{(m)}-\frac{\kappa_{\ell+1}^{m}}{2 \ell+3} \Theta_{\ell+1}^{(m)}\right]-\dot{\tau} \Theta_{\ell}^{(m)}+S_{\ell}^{(m)}
$$

where $S_{\ell}^{(m)}$ are the gravitational (and later scattering sources; added scattering suppression of anisotropy)

- An originally isotropic $\ell=0$ temperature perturbation will eventually become a high order anisotropy by "free streaming" or simple projection
- Original CMB codes solved the full hierarchy equations out to the ℓ of interest.

Integral Solution

- Hierarchy equation simply represents geometric projection, exactly as we have seen before in the projection of temperature perturbations on the last scattering surface
- In general, the solution describes the decomposition of the source $S_{\ell}^{(m)}$ with its local angular dependence as seen at a distance $\mathrm{x}=D \hat{\mathbf{n}}$.
- Proceed by decomposing the angular dependence of the plane wave

$$
e^{i \mathbf{k} \cdot \mathbf{x}}=\sum_{\ell}(-i)^{\ell} \sqrt{4 \pi(2 \ell+1)} j_{\ell}(k D) Y_{\ell}^{0}(\hat{\mathbf{n}})
$$

- Recouple to the local angular dependence of G_{ℓ}^{m}

$$
G_{\ell_{s}}^{m}=\sum_{\ell}(-i)^{\ell} \sqrt{4 \pi(2 \ell+1)} \alpha_{\ell_{s} \ell}^{(m)}(k D) Y_{\ell}^{m}(\hat{\mathbf{n}})
$$

Integral Solution

- Projection kernels:

$$
\begin{array}{lll}
\ell_{s}=0, & m=0 & \alpha_{0 \ell}^{(0)} \equiv j_{\ell} \\
\ell_{s}=1, & m=0 & \alpha_{1 \ell}^{(0)} \equiv j_{\ell}^{\prime}
\end{array}
$$

- Integral solution:

$$
\frac{\Theta_{\ell}^{(m)}\left(k, \eta_{0}\right)}{2 \ell+1}=\int_{0}^{\eta_{0}} d \eta e^{-\tau} \sum_{\ell_{s}} S_{\ell_{s}}^{(m)} \alpha_{\ell_{s} \ell}^{(m)}\left(k\left(\eta_{0}-\eta\right)\right)
$$

- Power spectrum:

$$
C_{\ell}=\frac{2}{\pi} \int \frac{d k}{k} \sum_{m} \frac{k^{3}\left\langle\Theta_{\ell}^{(m) *} \Theta_{\ell}^{(m)}\right\rangle}{(2 \ell+1)^{2}}
$$

- Solving for C_{ℓ} reduces to solving for the behavior of a handful of sources

Polarization Hiearchy

- In the same way, the coupling of a gradient or dipole angular momentum to the spin harmonics leads to the polarization hiearchy:
$\dot{E}_{\ell}^{(m)}=k\left[\frac{{ }_{2} \kappa_{\ell}^{m}}{2 \ell-1} E_{\ell-1}^{(m)}-\frac{2 m}{\ell(\ell+1)} B_{\ell}^{(m)}-\frac{{ }_{2} \kappa_{\ell+1}^{m}}{2 \ell+3}\right]-\dot{\tau} E_{\ell}^{(m)}+\mathcal{E}_{\ell}^{(m)}$
$\dot{B}_{\ell}^{(m)}=k\left[\frac{{ }_{2} \kappa_{\ell}^{m}}{2 \ell-1} B_{\ell-1}^{(m)}+\frac{2 m}{\ell(\ell+1)} B_{\ell}^{(m)}-\frac{2 \kappa_{\ell+1}^{m}}{2 \ell+3}\right]-\dot{\tau} E_{\ell}^{(m)}+\mathcal{B}_{\ell}^{(m)}$
where ${ }_{2} \kappa_{\ell}^{m}=\sqrt{\left(\ell^{2}-m^{2}\right)\left(\ell^{2}-4\right) / \ell^{2}}$ is given by the
Clebsch-Gordon coefficients and \mathcal{E}, \mathcal{B} are the sources (scattering only).
- Note that for vectors and tensors $|m|>0$ and B modes may be generated from E modes by projection. Cosmologically $\mathcal{B}_{\ell}^{(m)}=0$

Polarization Integral Solution

- Again, we can recouple the plane wave angular momentum of the source inhomogeneity to its local angular dependence directly

$$
\begin{aligned}
\frac{E_{\ell}^{(m)}\left(k, \eta_{0}\right)}{2 \ell+1} & =\int_{0}^{\eta_{0}} d \eta e^{-\tau} \mathcal{E}_{\ell_{s}}^{(m)} \epsilon_{\ell_{s} \ell}^{(m)}\left(k\left(\eta_{0}-\eta\right)\right) \\
\frac{B_{\ell}^{(m)}\left(k, \eta_{0}\right)}{2 \ell+1} & =\int_{0}^{\eta_{0}} d \eta e^{-\tau} \mathcal{E}_{\ell_{s}}^{(m)} \beta_{\ell_{s} \ell}^{(m)}\left(k\left(\eta_{0}-\eta\right)\right)
\end{aligned}
$$

- The only source to the polarization is from the quadrupole anisotropy so we only need $\ell_{s}=2$, e.g. for scalars

$$
\epsilon_{2 \ell}^{(0)}(x)=\sqrt{\frac{3}{8} \frac{(\ell+2)!}{(\ell-2)!} \frac{j_{\ell}(x)}{x^{2}}} \quad \beta_{2 \ell}^{(0)}=0
$$

Truncated Hierarchy

- CMBFast uses the integral solution and relies on a fast j_{ℓ} generator
- However sources are not external to system and are defined through the Boltzmann hierarchy itself
- Solution: recall that we used this technique in the tight coupling regime by applying a closure condition from tight coupling
- CMBFast extends this idea by solving a truncated hierarchy of equations, e.g. out to $\ell=25$ with non-reflecting boundary conditions

Thomson Collision Term

- Full Boltzmann equation

$$
\frac{d}{d \eta} f_{a, b}=C\left[f_{a}, f_{b}\right]
$$

- Collision term describes the scattering out of and into a phase space element
- Thomson collision based on differential cross section

$$
\frac{d \sigma}{d \Omega}=\frac{3}{8 \pi}\left|\hat{\mathbf{E}}^{\prime} \cdot \hat{\mathbf{E}}\right|^{2} \sigma_{T},
$$

where $\hat{\mathbf{E}}^{\prime}$ and $\hat{\mathbf{E}}$ denote the incoming and outgoing directions of the electric field or polarization vector.

Scattering Calculation

- Start in the electron rest frame and in a coordinate system fixed by the scattering plane, spanned by incoming and outgoing directional vectors $-\hat{\mathbf{n}}^{\prime} \cdot \hat{\mathbf{n}}=\cos \beta$, where β is the scattering angle
- $\Theta_{\|}$: in-plane polarization state; $\Theta_{\perp}: \perp$-plane polarization state
- Transfer probability (constant set by $\dot{\tau}$)

$$
\Theta_{\|} \propto \cos ^{2} \beta \Theta_{\|}^{\prime}, \quad \Theta_{\perp} \propto \Theta_{\perp}^{\prime}
$$

- and with the 45° axes as

$$
\hat{\mathbf{E}}_{1}=\frac{1}{\sqrt{2}}\left(\hat{\mathbf{E}}_{\|}+\hat{\mathbf{E}}_{\perp}\right), \quad \hat{\mathbf{E}}_{2}=\frac{1}{\sqrt{2}}\left(\hat{\mathbf{E}}_{\|}-\hat{\mathbf{E}}_{\perp}\right)
$$

Stokes Parameters

- Define the temperature in this basis

$$
\begin{aligned}
\Theta_{1} & \propto\left|\hat{\mathbf{E}}_{1} \cdot \hat{\mathbf{E}}_{1}\right|^{2} \Theta_{1}^{\prime}+\left|\hat{\mathbf{E}}_{1} \cdot \hat{\mathbf{E}}_{2}\right|^{2} \Theta_{2}^{\prime} \\
& \propto \frac{1}{4}(\cos \beta+1)^{2} \Theta_{1}^{\prime}+\frac{1}{4}(\cos \beta-1)^{2} \Theta_{2}^{\prime} \\
\Theta_{2} & \propto\left|\hat{\mathbf{E}}_{2} \cdot \hat{\mathbf{E}}_{2}\right|^{2} \Theta_{2}^{\prime}+\left|\hat{\mathbf{E}}_{2} \cdot \hat{\mathbf{E}}_{1}\right|^{2} \Theta_{1}^{\prime} \\
& \propto \frac{1}{4}(\cos \beta+1)^{2} \Theta_{2}^{\prime}+\frac{1}{4}(\cos \beta-1)^{2} \Theta_{1}^{\prime}
\end{aligned}
$$

or $\Theta_{1}-\Theta_{2} \propto \cos \beta\left(\Theta_{1}^{\prime}-\Theta_{2}^{\prime}\right)$

- Define Θ, Q, U in the scattering coordinates

$$
\Theta \equiv \frac{1}{2}\left(\Theta_{\|}+\Theta_{\perp}\right), \quad Q \equiv \frac{1}{2}\left(\Theta_{\|}-\Theta_{\perp}\right), \quad U \equiv \frac{1}{2}\left(\Theta_{1}-\Theta_{2}\right)
$$

Scattering Matrix

- Transfer of Stokes states, e.g.

$$
\Theta=\frac{1}{2}\left(\Theta_{\|}+\Theta_{\perp}\right) \propto \frac{1}{4}\left(\cos ^{2} \beta+1\right) \Theta^{\prime}+\frac{1}{4}\left(\cos ^{2} \beta-1\right) Q^{\prime}
$$

- Transfer matrix of Stokes state $\mathbf{T} \equiv(\Theta, Q+i U, Q-i U)$

$$
\begin{gathered}
\mathbf{T} \propto \mathbf{S}(\beta) \mathbf{T}^{\prime} \\
\mathbf{S}(\beta)=\frac{3}{4}\left(\begin{array}{ccc}
\cos ^{2} \beta+1 & -\frac{1}{2} \sin ^{2} \beta & -\frac{1}{2} \sin ^{2} \beta \\
-\frac{1}{2} \sin ^{2} \beta & \frac{1}{2}(\cos \beta+1)^{2} & \frac{1}{2}(\cos \beta-1)^{2} \\
-\frac{1}{2} \sin ^{2} \beta & \frac{1}{2}(\cos \beta-1)^{2} & \frac{1}{2}(\cos \beta+1)^{2}
\end{array}\right)
\end{gathered}
$$

normalization factor of 3 is set by photon conservation in scattering

Scattering Matrix

- Transform to a fixed basis, by a rotation of the incoming and outgoing states $\mathbf{T}=\mathbf{R}(\psi) \mathbf{T}$ where

$$
\mathbf{R}(\psi)=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & e^{-2 i \psi} & 0 \\
0 & 0 & e^{2 i \psi}
\end{array}\right)
$$

giving the scattering matrix

$$
\mathbf{R}(-\gamma) \mathbf{S}(\beta) \mathbf{R}(\alpha)=
$$

$$
\frac{1}{2} \sqrt{\frac{4 \pi}{5}}\left(\begin{array}{ccc}
Y_{2}^{0}(\beta, \alpha)+2 \sqrt{5} Y_{0}^{0}(\beta, \alpha) & -\sqrt{\frac{3}{2}} Y_{2}^{-2}(\beta, \alpha) & -\sqrt{\frac{3}{2}} Y_{2}^{2}(\beta, \alpha) \\
-\sqrt{6}{ }_{2} Y_{2}^{0}(\beta, \alpha) e^{2 i \gamma} & 3_{2} Y_{2}^{-2}(\beta, \alpha) e^{2 i \gamma} & 3_{2} Y_{2}^{2}(\beta, \alpha) e^{2 i \gamma} \\
-\sqrt{6}-2 Y_{2}^{0}(\beta, \alpha) e^{-2 i \gamma} & 3_{-2} Y_{2}^{-2}(\beta, \alpha) e^{-2 i \gamma} & 3_{-2} Y_{2}^{2}(\beta, \alpha) e^{-2 i \gamma}
\end{array}\right)
$$

Addition Theorem for Spin Harmonics

- Spin harmonics are related to rotation matrices as

$$
{ }_{s} Y_{\ell}^{m}(\theta, \phi)=\sqrt{\frac{2 \ell+1}{4 \pi}} \mathcal{D}_{-m s}^{\ell}(\phi, \theta, 0)
$$

Note: for explicit evaluation sign convention differs from usual (e.g. Jackson) by $(-1)^{m}$

- Multiplication of rotations

$$
\sum_{m^{\prime \prime}} \mathcal{D}_{m m^{\prime \prime}}^{\ell}\left(\alpha_{2}, \beta_{2}, \gamma_{2}\right) \mathcal{D}_{m^{\prime \prime} m}^{\ell}\left(\alpha_{1}, \beta_{1}, \gamma_{1}\right)=\mathcal{D}_{m m^{\prime}}^{\ell}(\alpha, \beta, \gamma)
$$

- Implies

$$
\sum_{m}{ }_{s_{1}} Y_{\ell}^{m *}\left(\theta^{\prime}, \phi^{\prime}\right){ }_{s_{2}} Y_{\ell}^{m}(\theta, \phi)=(-1)^{s_{1}-s_{2}} \sqrt{\frac{2 \ell+1}{4 \pi}}{ }_{s_{2}} Y_{\ell}^{-s_{1}}(\beta, \alpha) e^{i s_{2} \gamma}
$$

Sky Basis

- Scattering into the state (rest frame)

$$
\begin{aligned}
C_{\text {in }}[\mathbf{T}] & =\dot{\tau} \int \frac{d \hat{\mathbf{n}}^{\prime}}{4 \pi} \mathbf{R}(-\gamma) \mathbf{S}(\beta) \mathbf{R}(\alpha) \mathbf{T}\left(\hat{\mathbf{n}}^{\prime}\right) \\
& =\dot{\tau} \int \frac{d \hat{\mathbf{n}}^{\prime}}{4 \pi}\left(\Theta^{\prime}, 0,0\right)+\frac{1}{10} \dot{\tau} \int d \hat{\mathbf{n}}^{\prime} \sum_{m=-2}^{2} \mathbf{P}^{(m)}\left(\hat{\mathbf{n}}, \hat{\mathbf{n}}^{\prime}\right) \mathbf{T}\left(\hat{\mathbf{n}}^{\prime}\right)
\end{aligned}
$$

where the quadrupole coupling term is $\mathbf{P}^{(m)}\left(\hat{\mathbf{n}}, \hat{\mathbf{n}}^{\prime}\right)=$

$$
\left(\begin{array}{ccc}
Y_{2}^{m *}\left(\hat{\mathbf{n}}^{\prime}\right) Y_{2}^{m}(\hat{\mathbf{n}}) & -\sqrt{\frac{3}{2}}{ }_{2} Y_{2}^{m *}\left(\hat{\mathbf{n}}^{\prime}\right) Y_{2}^{m}(\hat{\mathbf{n}}) & -\sqrt{\frac{3}{2}}{ }_{-2} Y_{2}^{m *}\left(\hat{\mathbf{n}}^{\prime}\right) Y_{2}^{m}(\hat{\mathbf{n}}) \\
-\sqrt{6} Y_{2}^{m *}\left(\hat{\mathbf{n}}^{\prime}\right)_{2} Y_{2}^{m}(\hat{\mathbf{n}}) & 3_{2} Y_{2}^{m *}\left(\hat{\mathbf{n}}^{\prime}\right)_{2} Y_{2}^{m}(\hat{\mathbf{n}}) & 3_{-2} Y_{2}^{m *}\left(\hat{\mathbf{n}}^{\prime}\right)_{2} Y_{2}^{m}(\hat{\mathbf{n}}) \\
-\sqrt{6} Y_{2}^{m *}\left(\hat{\mathbf{n}}^{\prime}\right)_{-2} Y_{2}^{m}(\hat{\mathbf{n}}) & 3_{2} Y_{2}^{m *}\left(\hat{\mathbf{n}}^{\prime}\right)_{-2} Y_{2}^{m}(\hat{\mathbf{n}}) & 3_{-2} Y_{2}^{m *}\left(\hat{\mathbf{n}}^{\prime}\right)_{-2} Y_{2}^{m}(\hat{\mathbf{n}})
\end{array}\right)
$$

expression uses angle addition relation above. We call this term C_{Q}.

Scattering Matrix

- Full scattering matrix involves difference of scattering into and out of state

$$
C[\mathbf{T}]=C_{\mathrm{in}}[\mathbf{T}]-C_{\mathrm{out}}[\mathbf{T}]
$$

- In the electron rest frame

$$
C[\mathbf{T}]=\dot{\tau} \int \frac{d \hat{\mathbf{n}}^{\prime}}{4 \pi}\left(\Theta^{\prime}, 0,0\right)-\dot{\tau} \mathbf{T}+C_{Q}[\mathbf{T}]
$$

which describes isotropization in the rest frame. All moments have $e^{-\tau}$ suppression except for isotropic temperature Θ_{0}.
Transformation into the background frame simply induces a dipole term

$$
C[\mathbf{T}]=\dot{\tau}\left(\hat{\mathbf{n}} \cdot \mathbf{v}_{b}+\int \frac{d \hat{\mathbf{n}}^{\prime}}{4 \pi} \Theta^{\prime}, 0,0\right)-\dot{\tau} \mathbf{T}+C_{Q}[\mathbf{T}]
$$

Source Terms

- Temperature source terms $S_{l}^{(m)}$ (rows $\pm|m|$; flat assumption

$$
\left(\begin{array}{lll}
\dot{\tau} \Theta_{0}^{(0)}-\dot{H}_{L}^{(0)} & \dot{\tau} v_{b}^{(0)}+\dot{B}^{(0)} & \dot{\tau} P^{(0)}-\frac{2}{3} \dot{H}_{T}^{(0)} \\
0 & \dot{\tau} v_{b}^{(\pm 1)}+\dot{B}^{(\pm 1)} & \dot{\tau} P^{(\pm 1)}-\frac{\sqrt{3}}{3} \dot{H}_{T}^{(\pm 1)} \\
0 & 0 & \dot{\tau} P^{(\pm 2)}-\dot{H}_{T}^{(\pm 2)}
\end{array}\right)
$$

where

$$
P^{(m)} \equiv \frac{1}{10}\left(\Theta_{2}^{(m)}-\sqrt{6} E_{2}^{(m)}\right)
$$

- Polarization source term

$$
\begin{aligned}
& \mathcal{E}_{\ell}^{(m)}=-\dot{\tau} \sqrt{6} P^{(m)} \delta_{\ell, 2} \\
& \mathcal{B}_{\ell}^{(m)}=0
\end{aligned}
$$

