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e General References
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Radiation: Dodelson, Modern Cosmology

Matter: Binney & Tremaine, Galactic Dynamics



Boltzmann Equation

e Particle distribution 1s generally described by the phase space
distribution function for each polarization (spin) state f,(x,q,n),
where x 1s the comoving position and q 1s the particle momentum

e Spatial number density is the integral over all momentum states
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e Boltzmann equation describes the evolution of the distribution

function under gravity and collisions

e Zeroth, first moments of the Boltzmann equation are simply the
covariant conservation equations

e Higher moments provide the closure condition to the conservation
law (specification of stress tensor)



Boltzmann Equation

e Second moment: anisotropic stress tensor
Radiation - the quadrupole anisotropy of the distribution
Matter - the kinetic energy tensor (shear, velocity dispersion

tensor)

e For radiation higher moments mainly describe the simple
geometry of source projection

e For matter higher moments (including second) small due to low
thermal and bulk velocities - same behavior as perfect fluid

e Differences with perfect fluid appear in the second moment since
collisionless particles can have multiple streams 1n the same spatial
position



Liouville Equation

e In absence of scattering, the phase space distribution of photons 1s
conserved along the propagation path

e Rewrite variables in terms of the particle propagation direction
q = ¢n, 50 fo(x,1,¢,7) and
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e For simplicity, assume spatially flat universe K = 0 then
dn/dn = 0 and dx = ndn
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Correspondence to Einstein Eqn.

e Geodesic equation gives the redshifting term
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which 1s incorporated in the conservation and gauge
transformation equations

e Stress energy tensor involves integrals over the distribution
function summed over polarization (spin) states
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e Components are simply the low order angular moments of the

distribution function



Perfect Fluid

e Compare with the stress tensor of a perfect fluid
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e Anisotropic stress tensor of perfect fluid also related to the tensor
constructed out of the 4-momentum

e However now there 1s no phase space distribution that allows
multiple streams at a given point in space - only a single bulk
velocity

e Differences in the density evolution will appear as soon as particle
trajectories cross - fluid shocks and collisonless particles pass
through each other



Scalar Field

e Scalar field (with arbitrary kinetic term) can be recast as a perfect
fluid

e Given a Lagrangian £ with a kinetic term
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the stress tensor 1s
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and we can associate a pressure p = L and a fluid velocity
V

(2X)1/2



Scalar Field

e Canonical scalar field cannot work as dark matter given its large
sound speed (in comoving slicing) dp/dp = 1. Here

L=X-V

e Attempts to unify dark matter and dark energy through a single
scalar field must overcome the fact that such matter behaves as a
perfect fluid, e.g.

L — C(X — Xmin)Q

o Exception: the axion where ¢ varies as ¢ and multiple stream
info can be stored in the phase

L=X—md—V,



Radiation Angular Moments

e Define the angularly dependent temperature perturbation

1 3d
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and likewise for the linear polarization states () and U

e Decompose into normal modes: plane waves for spatial part and
spherical harmonics for angular part
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e In a spatially curved universe generalize the plane wave part



Normal Modes

e Temperature and polarization fields
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e For each k mode, work in coordinates where k || z and so m = 0
represents scalar modes, m = +1 vector modes, m = +2 tensor
modes, |m| > 2 vanishes. Since modes add incoherently and
() £ U 1is invariant up to a phase, rotation back to a fixed
coordinate system is trivial.



Scalar, Vector, Tensor

e Normalization of modes 1s chosen so that the lowest angular mode
for scalars, vectors and tensors are normalized 1in the same way as
the mode function
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where recall

QY = exp(ik-x)
Qgil) = _—Z(él + zég)zexp(zk . X)

V2
3. . . . .
QS-EQ) —\/g(el + 1€5);(€1 £ i€2),exp(ik - x)



Geometrical Projection

e Main content of Liouville equation 1s purely geometrical and
describes the projection of inhomogeneities into anisotropies

e Spatial gradient term hits plane wave:
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e Dipole term adds to angular dependence through the addition of
angular momentum

4 K" K"
—YOYm: 14 Y’riL + (+1 Ym
V3t T Jeirnei-n Y Jeir @iy

where k7' = /(2 — m? is given by Clebsch-Gordon coefficients.




Temperature Hierarchy

e Absorb recoupling of angular momentum into evolution equation
for normal modes
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where Sém) are the gravitational (and later scattering sources;
added scattering suppression of anisotropy)

e An originally isotropic £ = 0 temperature perturbation will
eventually become a high order anisotropy by “free streaming” or
simple projection

e Original CMB codes solved the full hierarchy equations out to the
¢ of interest.



Integral Solution

e Hierarchy equation simply represents geometric projection,
exactly as we have seen before in the projection of temperature
perturbations on the last scattering surface

e In general, the solution describes the decomposition of the source
Sém) with its local angular dependence as seen at a distance
x = Dn.

e Proceed by decomposing the angular dependence of the plane
wave
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e Recouple to the local angular dependence of G
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Integral Solution

e Projection kernels:

e Power spectrum:
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e Solving for C; reduces to solving for the behavior of a handful of

SOUrces



Polarization Hiearchy

e In the same way, the coupling of a gradient or dipole angular
momentum to the spin harmonics leads to the polarization
hiearchy:
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where ok7" = /(02 — m?2)(¢2 — 4)/¢2 is given by the
Clebsch-Gordon coefficients and &£, BB are the sources (scattering
only).

e Note that for vectors and tensors |m| > 0 and B modes may be
generated from £ modes by projection. Cosmologically Bém) = 0



Polarization Integral Solution

e Again, we can recouple the plane wave angular momentum of the
source inhomogeneity to its local angular dependence directly
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e The only source to the polarization i1s from the quadrupole
anisotropy so we only need ¢, = 2, e.g. for scalars
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Truncated Hierarchy

e CMBFast uses the integral solution and relies on a fast j, generator

e However sources are not external to system and are defined
through the Boltzmann hierarchy itself

e Solution: recall that we used this technique in the tight coupling
regime by applying a closure condition from tight coupling

e CMBPFast extends this 1dea by solving a truncated hierarchy of
equations, e.g. out to £ = 25 with non-reflecting boundary
conditions



Thomson Collision Term

e Full Boltzmann equation

d%fa,b _ Ol fi

e Collision term describes the scattering out of and into a phase
space element

e Thomson collision based on differential cross section

do 3 A, =

— = —|E' - E|*or,
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where E’ and E denote the incoming and outgoing directions of
the electric field or polarization vector.



Scattering Calculation

e Start in the electron rest frame and in a coordinate system fixed by
the scattering plane, spanned by incoming and outgoing directional
vectors —n’ - n = cos 3, where (3 is the scattering angle

e O|: in-plane polarization state; © | : 1 -plane polarization state

e Transfer probability (constant set by 7)

O o cos’ 8O, O, xO

e and with the 45° axes as
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Stokes Parameters

e Define the temperature in this basis
0, x |[E; - E,|?0) + |E; - E,|*6),
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e Define O, (), U in the scattering coordinates
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Scattering Matrix

e Transfer of Stokes states, e.g.

1 1 1
O = 5(@“ +0,) x Z(coszﬁ +1)0" + Z(C0825 - 1)@’

e Transfer matrix of Stokes state T = (O, () + U, ) —:U)

T < S(8)T"
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S(8) = % —% sin? o] %(COSB + 1)2 %(COSB _ 1)2
\ —% Sin2 %(0085 — 1)2 %(COSﬂ e 1)2 )

normalization factor of 3 1s set by photon conservation in scattering



Scattering Matrix

e Transform to a fixed basis, by a rotation of the incoming and
outgoing states T = R(v)T where
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giving the scattering matrix
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Addition Theorem for Spin Harmonics

e Spin harmonics are related to rotation matrices as

20 1
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Note: for explicit evaluation sign convention differs from usual
(e.g. Jackson) by (—1)™

e Multiplication of rotations
ZD m’’ 042752772) mlaa, B1,71) = Dfnm/(@,@ﬁ)

e Implies
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Sky Basis

e Scattering into the state (rest frame)

dn’

T =
Cin|T] =17 y

—R(—7)S(B)R(a)T (1),

/d (©,0,0) + —T/d ZP"”)ﬁﬁ T(n') .

m=—2

where the quadrupole coupling term is P™) (fi, h’) =
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expression uses angle addition relation above. We call this term
Co.
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Scattering Matrix

e Full scattering matrix involves difference of scattering into and out
of state

e In the electron rest frame

CIT) =+ [ T5(0/,0,0) ~ T+ Col1]

which describes 1sotropization in the rest frame. All moments have
e~ suppression except for isotropic temperature ©y.
Transformation into the background frame simply induces a dipole
term

C[T] = + (n vb+/—@’ 0 0) — 7T + Cg[T]



Source Terms

e Temperature source terms Sl(m) (rows +|m/|; flat assumption
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e Polarization source term

Eg(m) = —7V6P™ 5,
B =0



