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FRW Cosmology

e The Friedmann-Robertson-Walker (FRW sometimes Lemaitre,
FLRW) cosmology has two elements

e The FRW geometry or metric

e The FRW dynamics or Einstein/Friedmann equation(s)

e Same as the two pieces of General Relativity (GR)
e A metric theory: geometry tells matter how to move
e Field equations: matter tells geometry how to curve
e Useful to separate out these two pieces both conceptually and for
understanding alternate cosmologies, e.g.
e Modifying gravity while remaining a metric theory

e Breaking the homogeneity or isotropy assumption under GR



FRW Geometry

e FRW geometry = homogeneous and 1sotropic on large scales

e Universe observed to be nearly 1sotropic (e.g. CMB, radio point
sources, galaxy surveys)

e Copernican principle: we’re not special, must be 1sotropic to all
observers (all locations)
Implies homogeneity
Verified through galaxy redshift surveys
e FRW cosmology (homogeneity, isotropy & field equations)

generically implies the expansion of the universe, except for
special unstable cases



Isotropy & Homogeneity

o Isotropy: CMB isotropic to 1073, 102 if dipole subtracted

e Redshift surveys show return to homogeneity on the >100Mpc
scale
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FRW Geometry

e Spatial geometry
1s that of a

constant curvature
K =1/R?
e Positive: sphere

Negative: saddle
Flat: plane

e Metric tells
us how to
measure distances

on this surface
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FRW Geometry

e Closed geometry of a sphere of radius R

e Suppress 1 dimension « represents total angular separation (6, ¢)




FRW Geometry

e Two types of distances:

e Radial distance on the arc D
Distance (for e.g. photon) traveling along the arc

e Angular diameter distance D 4

Distance inferred by the angular separation da for a known
transverse separation (on a constant latitude) D 4da

Relationship D4 = Rsin(D/R)
e As if background geometry (gravitationally) lenses 1image

e Positively curved geometry D4 < D and objects are further than
they appear

e Negatively curved universe R 1s imaginary and
Rsin(D/R) =i|R|sin(D/i|R|) = |R|sinh(D/|R|)
and D, > D objects are closer than they appear



Angular Diameter Distance

e 3D distances restore usual spherical polar angles

d¥? = dD? + D% do”
= dD* + D7 (d#” + sin” §d¢?)
e GR allows arbitrary choice of coordinates, alternate notation 1s to
use D 4 as radial coordinate
e [, useful for describing observables (flux, angular positions)

e [ useful for theoretical constructs (causality, relationship to
temporal evolution)



Angular Diameter Distance

e The line element 1s often also written using D 4 as the coordinate

distance
,  (dDs\?
dD? = (d—D) dD
dD A\’ , s )
(d—D> =cos’(D/R)=1—sin“(D/R) =1— (D4/R)
dD* = — Dli i dD?

and defining the curvature K = 1/R? the line element becomes

1

d>? =
1 - DK

dD? + D% (d9* + sin® 0d¢?)

where K < 0 for a negatively curved space



Volume Element

e Metric also defines the volume element

dV = (dD)(DAdQ)(DA sin qub)
= D%dDdf

where d{) = sin 6dfd¢ is solid angle

e Most of classical cosmology boils down to these three quantities,
(comoving) radial distance, (comoving) angular diameter distance,
and volume element

e For example, distance to a high redshift supernova, angular size of
the horizon at last scattering and BAO feature, number density of
clusters...



Comoving Coordinates

e Remaining degree of freedom (preserving homogeneity and
1sotropy) 1s the temporal evolution of overall scale factor

e Relates the geometry (fixed by the radius of curvature R) to
physical coordinates — a function of time only

do® = a*(t)d%?
our conventions are that the scale factor today a(ty) = 1
e Similarly physical distances are given by d(t) = a(t)D,
da(t) = a(t)Da.
e Distances 1n upper case are comoving; lower, physical
Do not change with time

Simplest coordinates to work out geometrical effects



Time and Conformal Time

e Proper time (with c = 1)
dr* = dt* — do*
= dt* — a*(t)dX?

e Taking out the scale factor in the time coordinate

dr* = a*(t) (dn* — dX?)

dn = dt/a defines conformal time — useful in that photons
travelling radially from observer then obey

AD = An = dt

a

so that time and distance may be interchanged



FRW Metric

e Relationship between coordinate differentials and space-time
separation defines the metric g,,,,

e Mostly plus convention ds* = —d7?

ds* = g, drtdz” = a*(n)(—dn® + dX°)
Einstein summation - repeated lower-upper pairs summed

e Usually we will use comoving coordinates and conformal time as
the x* unless otherwise specified — metric for other choices are
related by a()



Horizon

e Distance travelled by a photon in the whole lifetime of the universe
defines the horizon

e Since d7 = 0, the horizon 1s simply the elapsed conformal time

t 740
dt
Dhorizon(t) — - — 77(75)
0 @
e Horizon always grows with time
e Always a point in time before which two observers separated by a

distance ) could not have been 1n causal contact



Horizon

e Horizon problem: why 1s the universe homogeneous and isotropic
on large scales especially for objects seen at early times, e.g.
CMB, when horizon small

e Intuition: in each doubling (or efolding) of the scale factor,
photons travel larger and larger distances
Consequence: horizon 1s approximately the distance travelled 1n

the last efolding

e To avoid the horizon problem, we want the distance to get smaller
and smaller with each efolding

e Quantify by transforming time to efolds through the Hubble
parameter



Hubble Parameter

e Useful to define the expansion rate or Hubble parameter

lda dlna
H(t) = -—— =
(t) a dt dt

fractional change in the scale factor per unit time - Ina = N is also

known as the e-folds of the expansion

e Cosmic time becomes

t—/dt /dlna

e Conformal time becomes

dt dlna
n =




Horizon Problem Redux

e Does aH increase or decrease with a?

e If a H decreases then for each successive A In a, a photon travels a
larger A D, total distance dominated by last efold

e If a H increases then for each successive A In a, a photon travels a
smaller A D, total distance dominated by first efold

e Critical point 1s when the acceleration of the expansion switches

sign

d(aH) d’a
dt  dt?




Redshift

e Wavelength of light “stretches”
with the scale factor

e The physical wavelength A.i¢ Recession

% Expansion
Velocity Redshift

associated with an observed
wavelength today A\gps(a = 1)

(or comoving=physical units today) 1s

)\emit — (t))\obs
so that the redshift of spectral lines measures the scale factor of the
universe att, 1 + z = 1/a.

e Interpreting the redshift as a Doppler shift, objects recede 1n an
expanding universe

e More generally the de Broglie wavelength of any particle redshifts
in this way



Distance-Redshift Relation

e Given atomically known rest wavelength \...;;, redshift can be
precisely measured from spectra

e Combined with a measure of distance, distance-redshift
D(z) = D(z(a)) can be inferred - given that photons travel
D = An this tells us how the scale factor of the universe evolves
with time.

e Related to the expansion history as

/dD / dlna

[dIna’ = —dIn( 1+z) —a'dz]

0 ds *dy
PO== ] a@ = ), 7@

z



Hubble Law

e Note limiting case 1s the Hubble law

lim D(z) = z/H(2 =0) = z/H,

z—0

independently of the geometry and expansion dynamics

e Hubble constant usually quoted as as dimensionless A

Hy = 100hkms *Mpc™!

e Observationally h ~ 0.7 (see below)



Scale of the Universe

In natural units of h = ¢ = 1 used here, H sets an length, time,
energy, mass scale

Hy' =9.7778 (h~! Gyr)
e-folding time scale of the expansion (Hubble time), age of
(decelerating) universe

Hy' =2997.9 (h~! Mpc)
Observable length scale (Hubble scale), horizon scale of
(decelerating) universe

Hy = 2.1332h x 107%%eV = mge
Mass scale of explanations of dark energy

Hy=10"°h x (2.9979kpc)~! = (GM/r) x r*
Acceleration/MOND scale - order of magnitude at which dark
matter in galaxies flatten rotation curve (~ 10~ %ms™2)



Scale of the Universe

e Since GM /r is dimensionless and r has inverse M dimensions,
gravity sets a natural mass scale 1n the reduced Planck mass

Mp) = 1/v/87G = 1.22 x 101 GeV
M* = p. = 3H7 /387G
= (3.000 x 107 *GeV)*h* = 8.098 x 10~ *"h*Gev*

Density scale of the expansion, critical energy density (see below)

o M/Mp, = 2.46h'/? x 1073! — seems highly unnatural in natural
units! (famous 120 orders of magnitude in density, see below)

o M = 3% /mg.Mp;, geometric mean

® Mg as far from any standard model particle — what protects such a
hierarchy? (note that M 1s comparable to neutrino masses)



Measuring D(z)
e Standard Ruler: object of known physical size
A =a(t)\

subtending an observed angle a on the sky «

N
- Da(2) " dal(z)
di(2) = aDa(a) = 117 1(,2)

where, by analogy to D 4, d4 is the physical angular diameter
distance

e Since Dy — Dyorizon Whereas (1 + z) unbounded, angular size of
a fixed physical scale at high redshift actually increases with radial
distance



Measuring D(z)
e Standard Candle: object of known luminosity L with a measured
flux F' (energy/time/area)
e Comoving surface area 47 D%
e Frequency/energy redshifts as (1 + z)

e Time-dilation or arrival rate of photons (crests) dt = adn
lowered as (1 + z) vs emission rate:

L 1 L

B dnD% (14 2)2  4Ands

F
e So luminosity distance

dr, = (14+2)Dy = (14 2)%dy4

OASZ%O,dL:dA:DA



Olber’s Paradox

e Surface brightness

F L &

S:E:zmz%v

e In a non-expanding geometry (regardless of curvature), surface
brightness is conserved d4 = dj,

S = const.

e So since each site line in universe full of stars will eventually end
on surface of star, night sky should be as bright as sun (not infinite)

e In an expanding universe

Soc(142)7*



Olber’s Paradox

e Second piece: age finite so even 1f stars exist in the early universe,
not all site lines end on stars

e But even as age goes to infinity and the number of site lines goes
to 100%, surface brightness of distant objects (of fixed physical
s1ze) goes to zero

e Angular size increases

e Redshift of energy and arrival time



Measuring D(z)
e Ratio of fluxes or difference 1n log flux (magnitude) measurable
independent of knowing luminosity

mi —mgy = —2.5log,,(F1/F)

related to dy, by definition by inverse square law

my — mg = 5logyg|dr(21)/dr(22)]
e If absolute magnitude 1s known
m — M = 5logqy|dr(2)/10pc]
absolute distances measured, e.g. at low z = z; Hubble constant
d; ~ Zo/HO — H() = Zo/dL

e Also standard ruler whose length, calibrated in physical units



Measuring D(z)
e [f absolute calibration of standards unknown, then both standard

candles and standard rulers measure relative sizes and fluxes

For standard candle, e.g. compare magnitudes low z to a high 2
object involves

d Hyd
Am =m, — m,, = dlogy, dL(Z) = Hlogy, 0d1(2)
L

(20) <0

Likewise for a standard ruler comparison at the two redshifts

da(2) _ Hoyda(2)

dA(Zo) <0

e Distances are measured in units of 2~ Mpc.

e Change in expansion rate measured as H(z)/H,



Hubble Constant

e Hubble in 1929 used the
Cepheid period luminosity
relation to infer distances to o S
nearby galaxies thereby g
discovering the expansion

of the universe

e Hubble actually inferred too large a Hubble constant of
Hy ~ 500 km/s/Mpc

e Miscalibration of the Cepheid distance scale - absolute
measurement hard, checkered history



Hubble Constant History

e Took 70 years to settle on this value with a factor of 2 discrepancy
persisting until late 1990’s

e Difficult measurement since local galaxies where individual
Cepheids can be measured have peculiar motions and so their
velocity 1s not entirely due to the “Hubble flow”

e A “distance ladder” of cross calibrated measurements

e Primary distance indicators cepheids, novae planetary nebula, tip
of red giant branch, AGN water maser

e GAIA will soon improve geometric calibration of galactic
cepheids with parallax measurements

e More luminous secondary distance indicators into the Hubble
flow: Tully-Fisher, fundamental plane, surface brightness
fluctuations, Type 1A supernova



Modern Distance Ladder

e Geometry — Cepheids — SNIa

e Luminosity distance d;(m — M, z) — H,

e SHOES, Riess et al 2016

Cepheids — Type Ia Supernovae |

Type Ia Supernovae — redshift(z)

w (z.Hy=73.2.9¢.Jo)

SN Ia: m-M (mag)

Geometry — Cepheids

L%
(]

sk
Milky Way

Cepheid: m-M (mag)

M31

T
N4258 /B

LMC

104

<
00 €

z:z:*»#ﬁ*F;

1-04

10 15 20 25
Geometry: 5 log D [Mpc] + 25

Cepheid: m-M (_mag) »



Hubble Constant

Hy now measured ] e T
I SHoES ]

as 73.24 = 1.74 km/s/Mpc ot loT [shes P
O 751 SHoES ]
by SHOES 7l E :
calibrating SNIa off cepheids g Y 1 i B Z
< O WMAP3 |
off AGN water maser as well ¢ e | E .
. I A 15+BAQ]
as the local distance ladder. b | b
Lo L l Dlstancle Ladder A ACDM | i

2000 2005 — 2010 — I2015 |

Comparable precision from Publication Year

Carnegie-Chicago Hubble Program

Inverse distance ladder: standard ruler CMB calibration at z ~ 10°
to BAO to SNIa

Assuming the ACDM model the inverse distance ladder gives:
Hy = 67.6 £ 0.5 km/s/Mpc



Hubble Constant

e (Given the history and difficulty of connecting these ladders, this
agreement 1s actually quite impressive — but not within the quoted
€rrors

e Resolution remains to be seen: must ensure that both of these
precise measurements are accurate in the presence of systematics.



Maser-Cephei1d-SN Distance Ladder

e Water maser around
AGN, gas in Keplerian orbit

e Measure proper motion, o} /\/
radial velocity, acceleration N j

Of Orbit - ! inpacwam?lcwr(mas) ? " i W
0 5 S0 §

1500 1400 1300 450 -350 -450

Flux D y (Jy)

e Method 1: radial velocity plus
orbit infer tangential velocity = distance X angular proper motion

vy = da(da/dt)

e Method 2: centripetal acceleration and radial velocity from line
infer physical size

a = v*/R, R =dx0



Supernovae as Standard Candles

e Type 1A supernovae ——5

.
are white dwarfs that reach g ot / 2 Me )
Chandrashekar mass where g% L 54 \‘R .
electron degeneracy pressure E% . ‘:..%'xg‘_; ;
can no longer support the star, %@f - - o
hence a very regular explosion ~ * -

b oy W

e Moreover, the w | £ 1”.-‘-‘.‘
scatter in absolute magnitude % g I ,
is correlated with the 27 | “1.‘._;_1
shape of the light curve - the 38 | +*
rate of decline from peak light, K - - -
empirical “Phillips relation” DAYS

e Higher °° N, brighter SN, higher opacity, longer light curve
duration

60



Beyond Hubble’s Law

e Type 1A are therefore

. Qp Qy
“standardizable” candles T T ‘E ] 025073
. 24 /i/}/; Lo
leading to a very low ; et
scatter 0m ~ 0.15 and visible B
out to high redshift z ~ 1 s ]
L i
. TWO groups in 1999 18’7! Calan/Tololo ]
3 :' & CfA
found that SN more distant at o] ]
a given redshift than expected e o et i
e Cosmic acceleration Fos i | 2o,
% g 0.0 jfif% - EEE%W%L 3:22’%75
éﬂg 0.5 * I, f I, 0
§ 1'0070 0‘2 o‘.4 | 0‘6 0‘8 1.0

redshift Z



Beyond Hubble’s Law

e Using SN as a relative indicator (independent of absolute
magnitude), comparison of low and high z gives

o= [ a3

more distant implies that H(z) not increasing at expect rate, i.e. is
more constant

e Take the limiting case where H(z) is a constant (a.k.a. de Sitter

expansion
1d
H = 4 — const
a dit
dH 1 d%a
= _H*=0
dt a dt?
1 d%a
T —H*>0

a dt?



Beyond Hubble’s Law

e Indicates that the expansion of the universe is accelerating

e Intuition tells us (FRW dynamics shows) ordinary matter
decelerates expansion since gravity 1s attractive

e Ordinary expectation 1s that

H(z > 0) > H,

so that the Hubble parameter 1s higher at high redshift

e Or equivalently that expansion rate decreases as it expands



FRW Dynamics

e This 1s as far as we can go on FRW geometry alone - we still need
to know how the scale factor a(t) evolves given matter-energy
content

e General relativity: matter tells geometry how to curve, scale factor
determined by content

e Build the Einstein tensor &, out of the metric and use Einstein
equation (overdots conformal time derivative)

1
G,uu( = RMV — §guyR) = SWGTMV

e Easier to work with mixed upper and lower indices since the
metric g¥, = 0¥,



Einstein Equations
e For the FRW metric

K
0 _ 2
- 0" 2 (i | 2 d2q
1 0 J . 27172 T 7
Cim Gy = _?(5_“]%?’_7@5

where recall the curvature K = 1/R? and overdots are d/dn

e Likewise isotropy demands that the stress-energy tensor take the
form

Ty==p, Ty=pd; — T;=Ty= =p+p/3
where p 1s the energy density and p 1s the pressure

e It 1s not necessary to assume that the content is a perfect fluid -
consequence of FRW symmetry



Friedmann Equations

e Einstein equations given the FRW symmetries become the
Friedmann equations

K &1
H?>+ ==
Jra2 3 P
1 d%a e
2% _ =M 3

e Acceleration source is p + 3p requiring p < —p/3 for positive
acceleration

e Curvature as an effective energy density component

3 K,
- 871G a2 x

Positive curvature gives negative effective energy density

PK =



Critical Density

e Friedmann equation for H then reads

8tGG e
H*(a) = —(p + pr) = ——pe
3 3
defining a critical density today p. in terms of the expansion rate

e In particular, its value today 1s given by the Hubble constant as

3H?
(z=0)= "2
pe(z = 0) e

e Energy density today is given as a fraction of critical

= 1.8788 x 10" *’h*gcm ™

0
()
IOC(Z — O)

e Note that physical energy density oc Q0h? (g cm™?)




Critical Density

e Likewise radius of curvature then given by

1
H2R?

e If () =~ 1, then true density is near critical p ~ p. and

QO =(1-Q) = » R = (HyvQ) —1)7"

i <K pe <> HR < 1
Universe 1s flat across the Hubble distance
e () > 1 positively curved
1

HovQ —1

D4 = Rsin(D/R) = sin(Ho DV — 1)

e () < 1 negatively curved

1

DA — RSIH(D/R) — j7; m
0 _

Siﬂh(H@D‘\/ 1 — Q)




Newtonian Energy Interpretation

e Consider a test particle of mass m as part of expanding spherical
shell of radius r and total mass M.

e Energy conservation Y
1 GM
E = -mv* — T const
2 T
1 /dr\*> GM
— | =] — — const
2 \ dt r
1 /1dr\> GM _ const
2 \rdt r3 2
2 _ 8mGp  const

3 a?



Newtonian Energy Interpretation

d T e T T £ R

Cal B

! j 1 l i/
Q;=05
e
lupen}/
o

e Constant determines whether

the system 1s bound and ar
in the Friedmann equation is |
associated with curvature —not  «

general since neglects pressure

e Nonetheless Friedmann

equation 1s the same with
(An/ty; from present

pressure - but mass-energy
within expanding shell is not constant

e Instead, rely on the fact that gravity in the weak field regime 1s
Newtonian and forces unlike energies are unambiguously defined
locally.



Newtonian Force Interpretation

e An alternate, more general Newtonian derivation, comes about by
realizing that locally around an observer, gravity must look
Newtonian.

e Given Newton’s iron sphere theorem, the gravitational acceleration
due to a spherically symmetric distribution of mass outside some
radius r 1s zero (Birkhoff theorem 1n GR)

e We can determine the acceleration simply from the enclosed mass

VU = 47G(p + 3p)
47TG GMN

VUy = T(P + 3p)r =

where p 4 3p reflects the active gravitational mass provided by

rr2

pressure.



Newtonian Force Interpretation

e Hence the gravitational acceleration

7 47
— = ——V‘IJN = ———(p+3p)
r r 3

e We’ll come back to this way of viewing the effect of the expansion
on spherical collapse including the dark energy.



Conservation Law

e The two Friedmann equation are redundant in that one can be
derived from the other via energy conservation

e (Consequence of Bianchi identities in GR: V#G,, = 0)

dpV + pdV =0

dpa® + pda® = 0

pa’ + 320&3 + SEpaS =0
a a

P = 301+ w)=

P a

e Time evolution depends on “equation of state” w(a) = p/p

e If w = const. then the energy density depends on the scale factor

as p oc g 30+w),



Multicomponent Universe

e Special cases:

3 _
7wm_0

e nonrelativistic matter p,,, = mn,, < a~
e ultrarelativistic radiation p, = En, oc vn, oc ™%, w, = 1/3
e curvature pr o< a %, wx = —1/3

0

e (cosmological) constant energy density pp < a’, wy = —1

e total energy density summed over above

,O(CL) — sz-(a) — pc(a — 1) Z Qia—3(1+wi)

e If constituent w also evolve (e.g. massive neutrinos)

p(a) = pola = 1) 3" Qe Samasm)



Multicomponent Universe
e Friedmann equation gives Hubble parameter evolution in a
HQ(CL) _ Hg Z Qie—fdlnaS(l-l—wi)
e In fact we can always define a critical equation of state
_ Pe _ 2 wipi — Pr/3
Pe >_iPi t pK

e Critical energy density obeys energy conservation

We

/OC(a/) o pc(a — 1)6—fdlna3(1—|—wc(a))

e And the Hubble parameter evolves as

HQ(a) _ ng—fdlnaS(l—l—wc(a))



Acceleration Equation

e Time derivative of (first) Friedmann equation

dH? 8nG dp,
dt 3 dt
1 d%a 81G
2H |-— — H*| = —H[-3(1 4+ w,)p.
o~ 1P| = TS v
1d*a _4rG | AnG
—— — 2— c|l — 3(1 c)Fc
[adtz | =~ B+ wp.
1 d%a ArG
e Ve | .
28— T+ o
ArG
:—T(P+PK+3P+3PK)
e
:—%(14—321}),0

e Acceleration equation says that universe decelerates if w > —1/3



Expansion Required

e Friedmann equations “predict” the expansion of the universe.
Non-expanding conditions da/dt = 0 and d*a/dt* = 0 require

p=—Px  p=—3p

1.e. a positive curvature and a total equation of state
w=p/p=-1/3

e Since matter 1s known to exist, one can in principle achieve this by
adding a balancing cosmological constant

P = Pm+ PA = —pPK = —3p = 3paA
1 2
PA = —§PK, Pm = —§,0K
Einstein introduced p, for exactly this reason — “biggest blunder”;
but note that this balance 1s unstable: p,,, can be perturbed but p,, a

true constant cannot



Cosmic Microwave Radiation

e Existence of a ~ 10K radiation background predicted by Gamow
and Alpher in 1948 based on the formation of light elements in a
hot big bang (BBN)

e Peebles, Dicke, Wilkinson & Roll 1in 1965 independently predicted
this background and proceeded to build instrument to detect it

e Penzias & Wilson 1965 found unexplained excess isotropic noise
in a communications antennae and learning of the Peebles et al
calculation announced the discovery of the blackbody radiation

e Thermal radiation proves that the universe began in a hot dense
state when matter and radiation was in equilibrium - ruling out a
competing steady state theory



Cosmic Microwave Radiation

e Modern measurement from COBE satellite of blackbody spectrum.
T = 2.725K, p, = (w?/15)T* giving Q0 h* = 2.471 x 107°

GHz

200 400 600
v I v v v I v v v I

error X 50

5 10 15
frequency (cm1)




Cosmic Microwave Radiation

e Radiation is isotropic to 10™° in temperature — horizon problem




Total Radiation

e Adding in neutrinos to the radiation gives the total radiation (next
lecture set) content as 2,.h° = 4.15 x 107°

e Since radiation redshifts faster than matter by one factor of 1 + 2
even this small radiation content will dominate the total energy
density at sufficiently high redshift

e Matter-radiation equality

Q,,h?
1+ 2zeq = e
Q,,h?
I + 2zeq = 3130

0.13



Dark Matter

e Since Zwicky in the 1930’s non-luminous or dark matter has been
known to dominate over luminous matter in stars (and hot gas)

e Arguments based on internal motion holding system up against
gravitational force
e Equilibrium requires a balance pressure of internal motions
rotation velocity of spiral galaxies
velocity dispersion of galaxies in clusters
gas pressure or thermal motion in clusters

radiation pressure in CMB acoustic oscillations



Classical Argument

e Classical argument for measuring total amount of dark matter

e Assuming that the object 1s somehow typical in its non-luminous
to luminous density: “mass-to-light ratio”

e Convert to dark matter density as M /L x luminosity density

e From galaxy surveys the luminosity density in solar units is

o, =2+0.7 x 108h Lo Mpc ™3
(Ws: L oc Fd?® so pr, o< L/d?> o< d™" and d in h~! Mpc
e Critical density 1n solar units is
pe = 2.7754 x 10*h? M Mpc ™

so that the critical mass-to-light ratio in solar units 1s

M/L ~ 1400h



Dark Matter: Rotation Curves

e Flat rotation curves:

GM/r* ~v?/r
M ~v*r/G
so M o r out to tens of kpc

e Implies M /L > 30h
and perhaps more —
closure if flat out to ~ 1 Mpc.

e Mass required to keep rotation

curves flat much larger than implied by stars and gas.

e Hence “dark” matter
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Dark Matter: Clusters

e Similar argument holds 1n clusters of galaxies

e Velocity dispersion replaces circular velocity

e Centripetal force is replaced by a “pressure gradient” T'/m = o*

and p = pT/m = po?
e Zwicky got M /L = 300h.

e Generalization to the gas distribution also gives evidence for dark
matter



Dark Matter: Bullet Cluster

e Merging clusters: gas (visible matter) collides and shocks (X-rays),
dark matter measured by gravitational lensing passes through




Hydrostatic Equilibrium

e Evidence for dark matter in X -ray clusters also comes from direct
hydrostatic equilibrium inference from the gas: balance radial
pressure gradient with gravitational potential gradient

e Infinitesimal volume of area d A and thickness dr at radius r and
interior mass M (r): pressure difference supports the gas

GmM  GpysM

py(r) — py(r +dr)|dA = > - dV
dpy _ _ d®
dr Py dr

with p, = p,T,/m becomes

GM _ 1y (dlnp, N dInT,
dinr dinr

e p, from X-ray luminosity; 7, sometimes taken as 1sothermal

T m



CMB Hydrostatic Equilibrium

e Same argument in the CMB with radiation pressure in the gas
balancing the gravitational potential gradients of linear fluctuations

e Best measurement of the dark matter density to date (Planck
2015): Q.h* = 0.1188 4 0.0010, A% = (2.23 +0.014) x 1072

e Unlike other techniques, measures the physical density of the dark
matter rather than contribution to critical since the CMB
temperature sets the physical density and pressure of the photons



Gravitational Lensing

e Mass can be directly measured in the gravitational lensing of
sources behind the cluster

e Strong lensing (giant arcs) probes central region of clusters

e Weak lensing (1-10%) elliptical distortion to galaxy image probes
outer regions of cluster and total mass



Giant Arcs

e (Giant arcs 1in galaxy clusters: galaxies, source; cluster, lens

Galaxy Cluster Abell 2218
Hubble Space Telescope e WFPC2

NASA, A. Fruchter and the ERO Team (STScl) * STScl-PRC00-08




Cosmic Shear

e On even larger scales, the large-scale structure weakly shears

ing

weak lens
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Dark Energy

e Distance redshift relation depends on energy density components

Hy
H{a)

e SN dimmer, distance further than in a matter dominated epoch

e Hence H (a) must be smaller than expected in a matter only

w, = 0 universe where it increases as (1 + 2)3/2

H()D(Z) :/dzefdlnag(l—i—wc(a))

e Distant supernova Ia as standard candles imply that w. < —1/3 so
that the expansion is accelerating

e Consistent with a cosmological constant that is 2, =~ 0.70

e Coincidence problem: different components of matter scale
differently with a. Why are two components comparable today?



Cosmic Census

e With h = 0.68 and CMB ., h? = 0.14, ,, = 0.30 - consistent
with other, less precise, dark matter measures

e CMB provides a test of D4 # D through the standard rulers of the
acoustic peaks and shows that the universe is close to flat {2 ~ 1

e Consistency has lead to the standard model for the cosmological
matter budget:
e 70% dark energy
e 30% non-relativistic matter (with 84% of that in dark matter)

e 0% spatial curvature



