Astro 408
 Set 1: Relativistic Perturbation Theory Wayne Hu

Covariant Perturbation Theory

- Covariant $=$ takes same form in all coordinate systems
- Invariant $=$ takes the same value in all coordinate systems
- Fundamental equations are covariant: Einstein equations, covariant conservation of stress-energy tensor:

$$
\begin{aligned}
G_{\mu \nu} & =8 \pi G T_{\mu \nu} \\
\nabla_{\mu} T^{\mu \nu} & =0
\end{aligned}
$$

- Components such as velocity, curvature etc are not invariant under a coordinate change - furthermore the same coordinates in the background can refer to different spacetime points
- Between any two fully specified coordinates, Jacobian $\partial x^{\mu} / \partial \tilde{x}^{\nu}$ is invertible - so perturbations in given gauge can be written in a covariant manner in terms of perturbations in an arbitrary gauge: called "gauge invariant" variables

Covariant Perturbation Theory

- In evolving perturbations we inevitably break explicit covariance by evolving conditions forward in a given time coordinate
- Retain implicit covariance by allowing the freedom to choose an arbitrary time slicing and spatial coordinates threading constant time slices
- Exploit covariance by choosing the specific slicing and threading (or "gauge") according to what best matches problem
- Preserve general covariance by keeping all free variables: 10 for each symmetric 4×4 tensor but blocked into $3+1$ "ADM" form

ADM 3+1 Split

- Since Einstein equations dynamically evolve the spacetime, to solve the initial value problem choose a slicing for the foliation and evolve the spatial metric forward: $3+1$ ADM split
- Define most general line element: lapse N, shift N^{i}, 3-metric $h_{i j}$

$$
d s^{2}=-N^{2} d \phi^{2}+h_{i j}\left(d x^{i}+N^{i} d \phi\right)\left(d x^{j}+N^{j} d \phi\right)
$$

or equivalently the metric

$$
g_{00}=-N^{2}+N^{i} N_{i}, \quad g_{0 i}=h_{i j} N^{j} \equiv N_{i}, \quad g_{i j}=h_{i j}
$$

and its inverse $g^{\mu \alpha} g_{\alpha \nu}=\delta^{\mu}{ }_{\nu}$

$$
g^{00}=-1 / N^{2}, \quad g^{0 i}=N^{i} / N^{2}, \quad g^{i j}=h^{i j}-N^{i} N^{j} / N^{2}
$$

- Time coordinate $x^{0}=\phi$ need not be cosmological time t - could be any parameterization, e.g. conformal time, scalar field, ...

ADM 3+1 Split

- Useful to define the unit normal timelike vector $n_{\mu} n^{\mu}=-1$, orthogonal to constant time surfaces $n_{\mu} \propto \partial_{\mu} \phi$

$$
n_{\mu}=(-N, 0,0,0), \quad n^{\mu}=\left(1 / N,-N^{i} / N\right)
$$

where we have used $n^{\mu}=g^{\mu \nu} n_{\nu}$

- Interpretation: lapse of proper time along normal, shift of spatial coordinates with respect to normal
- In GR (and most scalar-tensor EFT extensions), the lapse and shift are non-dynamical and just define the coordinates or gauge
- Dynamics in evolving the spatial metric forwards

ADM 3+1 Split

- Projecting 4D tensors onto the normal direction utilizes $n^{\mu} n_{\nu}$, e.g.

$$
-n^{\mu} n_{\nu} V^{\nu}
$$

- Projecting 4D tensors onto the 3D tensors involves the complement through the induced metric

$$
\begin{aligned}
h_{\mu \nu} & =g_{\mu \nu}+n_{\mu} n_{\nu}, \\
h_{\nu}^{\mu} V^{\nu} & =\left(\delta^{\mu}{ }_{\nu}+n^{\mu} n_{\nu}\right) V^{\nu}=V^{\mu}+n^{\mu} n_{\nu} V^{\nu}
\end{aligned}
$$

e.g. in the preferred slicing

$$
\tilde{V}^{\mu}=h^{\mu}{ }_{\nu} V^{\nu}=\left(\delta^{\mu}{ }_{\nu}+n^{\mu} n_{\nu}\right) V^{\nu}=\left(0, V^{i}+N^{i} V^{0}\right)
$$

whose spatial indices are raised an lowered by $h_{i j}$:
$\tilde{V}_{i}=g_{i \nu} \tilde{V}^{\nu}=h_{i j} \tilde{V}^{j}$

ADM 3+1 Split

- 3-surface embedded in 4D, so there is both an intrinsic curvature associated with $h_{i j}$ and an extrinsic curvature which is the spatial projection of the
 gradient of n^{μ}

$$
K_{\mu \nu}=h_{\mu}{ }^{\alpha} h_{\nu}{ }^{\beta} n_{\alpha ; \beta}
$$

- $K_{\mu \nu}$ symmetric since the antisymmetric projection (or vorticity) vanishes by construction since $n_{\mu}=-N \phi_{; \mu}$

ADM 3+1 Split

- Likewise split the spacetime curvature ${ }^{(4)} R$ into intrinsic and extrinsic pieces via Gauss-Codazzi relation

$$
{ }^{(4)} R=K_{\mu \nu} K^{\mu \nu}-\left(K_{\mu}{ }^{\mu}\right)^{2}+{ }^{(3)} R+2\left(K_{\nu}{ }^{\nu} n^{\mu}-n^{\alpha} n^{\mu}{ }_{; \alpha}\right)_{; \mu}
$$

Last piece is total derivative so Einstein Hilbert action is equivalent to keeping first three pieces

- No explicit dependence on slicing and threading N, N^{i} - any preferred slicing is picked out by the matter distribution not by general relativity
- Beyond GR we can embed a preferred slicing by making the Lagrangian an explicit function of N - will return to this in the effective field theory of inflation, dark energy

ADM 3+1 Split

- Trace $K_{\mu}{ }^{\mu}=n^{\mu}{ }_{; \mu} \equiv \theta$ is expansion
- Avoid confusion with FRW notation for intrinsic curvature:
${ }^{(3)} R=6 K / a^{2}$
- The anisotropic part is known as the shear

$$
\sigma_{\mu \nu}=K_{\mu \nu}-\frac{\theta}{3} h_{\mu \nu}
$$

- For the FRW background the shear vanishes and the expansion $\theta=3 H$

ADM 3+1 Split

- Fully decompose the 4 -tensor $n_{\mu ; \nu}$ by adding normal components

$$
\begin{aligned}
n_{\mu ; \nu} & =K_{\mu \nu}-n_{\mu} n^{\alpha} h_{\nu}{ }^{\beta} n_{\alpha ; \beta}-h_{\mu}{ }^{\alpha} n_{\nu} n^{\beta} n_{\alpha ; \beta}+n_{\mu} n^{\alpha} n_{\nu} n^{\beta} n_{\alpha ; \beta} \\
& =K_{\mu \nu}-h_{\mu}{ }^{\alpha} n_{\nu} n^{\beta} n_{\alpha ; \beta}=K_{\mu \nu}-n_{\nu} n^{\beta} n_{\mu ; \beta}-n_{\mu} n^{\alpha} n_{\nu} n^{\beta} n_{\alpha ; \beta} \\
& =K_{\mu \nu}-n_{\nu} n^{\beta} n_{\mu ; \beta}=K_{\mu \nu}-a_{\mu} n_{\nu}
\end{aligned}
$$

where we have used $\left[\left(n_{\mu} n^{\mu}\right)_{; \nu}=0 \rightarrow n^{\mu} n_{\mu ; \nu}=0\right]$

- Here the directional derivative of the normal along the normal or "acceleration" is

$$
a_{\mu}=\left(n_{\mu ; \beta}\right) n^{\beta}
$$

ADM 3+1 Split

- Since

$$
K_{i j}=n_{i ; j}=-\Gamma_{i j}^{\mu} n_{\mu}=\Gamma_{i j}^{0} N
$$

in terms of the ADM variables

$$
K_{i j}=\frac{1}{2 N}\left(\partial_{t} h_{i j}-N_{j \mid i}-N_{i \mid j}\right)
$$

where \mid denotes the covariant derivative constructed from the 3-metric $h_{i j}$

- Extrinsic curvature acts like a "velocity" term for $h_{i j}$ moving the metric from one slice to another with the coordinate freedom of the lapse and shift
- Initial value problem in GR: define $h_{i j}$ and $\dot{h}_{i j}$ on the spacelike surface and integrate forwards, with lapse and shift defining the temporal and spatial coordinates

ADM 3+1 Split

- Beyond GR we can extend this logic by constructing a general theory with some scalar whose constant surfaces define the normal and the time coordinate - build the most general action that retains spatial diffeomorphism invariance out of the ADM geometric objects
\rightarrow EFT of inflation and dark energy: return to this in inflation discussion
- For linear perturbation theory in GR, ADM looks simpler since we can linearize metric fluctuations and take out the global scale factor in the spatial tensors for convenience $h_{i j}=a^{2} \gamma_{i j}$
- ADM language useful in defining the geometric meaning of gauge choices in defining the time slicing and spatial threading

Metric Perturbations

- ADM on the conformal metric $\tilde{g}_{\mu \nu}$ with $g_{\mu \nu}=a^{2} \tilde{g}_{\mu \nu}$, recall FRW background

$$
\begin{aligned}
d \tilde{s}^{2} & =\tilde{g}_{\mu \nu} d x^{\mu} d x^{\nu}=-d \eta^{2}+\gamma_{i j} d x^{i} d x^{j} \\
& =-d \eta^{2}+d D^{2}+D_{A}^{2}\left(d \theta^{2}+\sin ^{2} \theta d \phi^{2}\right)
\end{aligned}
$$

- Background lapse $\bar{N}=1$, and shift $\bar{N}^{i}=0$ so define perturbations $N=(1+A), \operatorname{shift} N^{i}=-B^{i}$

$$
\begin{aligned}
& \tilde{g}_{00}=-(1+2 A), \\
& \tilde{g}_{0 i}=-\gamma_{i j} B^{j} \equiv-B_{i}
\end{aligned}
$$

where to linear order indices on 3-tensors raised and lowered by $\gamma_{i j}$

- This absorbs $1+3=4$ free variables in the metric

Metric Perturbations

- Remaining 6 is in the spatial surfaces which we parameterize as

$$
\tilde{g}_{i j}=\gamma_{i j}+2 H_{L} \gamma_{i j}+2 H_{T i j}
$$

here (1) H_{L} a perturbation to the scale factor; (5) $H_{T}^{i j}$ a trace-free distortion to spatial metric

- Curvature perturbation on the 3D slice, hereafter ∇^{2} is the 3-Laplacian using covariant derivatives of 3-metric $\gamma_{i j}$

$$
{ }^{(3)} R=\frac{6 K}{a^{2}}-\frac{4}{a^{2}}\left(\nabla^{2}+3 K\right) H_{L}+\frac{2}{a^{2}} \nabla_{i} \nabla_{j} H_{T}^{i j}
$$

where recall that K characterizes the background intrinsic curvature

- Curvature perturbation is a 3-scalar in the ADM split and a Scalar in the SVT decomposition

Matter Tensor

- Likewise expand the matter stress energy tensor around a homogeneous density ρ and pressure p :

$$
\begin{aligned}
T_{0}^{0} & =-\rho-\delta \rho \\
T_{i}^{0} & =(\rho+p)\left(v_{i}-B_{i}\right) \\
T_{0}^{i} & =-(\rho+p) v^{i} \\
T_{j}^{i} & =(p+\delta p) \delta_{j}^{i}+p \Pi_{j}^{i},
\end{aligned}
$$

- (1) $\delta \rho$ a density perturbation; (3) v_{i} a vector velocity, (1) δp a pressure perturbation; (5) $\Pi_{i j}$ an anisotropic stress perturbation
- So far this is fully general and applies to any type of matter or coordinate choice including non-linearities in the matter, e.g. scalar fields, cosmological defects, exotic dark energy.

Counting Variables

20 Variables (10 metric; 10 matter)
-10 Einstein equations
-4 Conservation equations
$+4 \quad$ Bianchi identities
-4 Gauge (coordinate choice 1 time, 3 space)
$6 \quad$ Free Variables

- Without loss of generality these can be taken to be the 6 components of the matter stress tensor
- For the background, specify $p(a)$ or equivalently $w(a) \equiv p(a) / \rho(a)$ the equation of state parameter.

Homogeneous Einstein Equations

- Einstein (Friedmann) equations:

$$
\begin{aligned}
\left(\frac{1}{a} \frac{d a}{d t}\right)^{2} & =-\frac{K}{a^{2}}+\frac{8 \pi G}{3} \rho \quad\left[=\left(\frac{1}{a} \frac{\dot{a}}{a}\right)^{2}=H^{2}\right] \\
\frac{1}{a} \frac{d^{2} a}{d t^{2}} & =-\frac{4 \pi G}{3}(\rho+3 p) \quad\left[=\frac{1}{a^{2}} \frac{d}{d \eta} \frac{\dot{a}}{a}=\frac{1}{a^{2}} \frac{d}{d \eta}(a H)\right]
\end{aligned}
$$

so that $w \equiv p / \rho<-1 / 3$ for acceleration

- Conservation equation $\nabla^{\mu} T_{\mu \nu}=0$ implies

$$
\frac{\dot{\rho}}{\rho}=-3(1+w) \frac{\dot{a}}{a}
$$

overdots are conformal time but equally true with coordinate time

Homogeneous Einstein Equations

- Counting exercise:

> | 20 | Variables (10 metric; 10 matter) |
| ---: | :--- |
| -17 | Homogeneity and Isotropy |
| -2 | Einstein equations |
| -1 | Conservation equations |
| +1 | Bianchi identities |
| 1 | Free Variables |

without loss of generality choose ratio of homogeneous \& isotropic component of the stress tensor to the density $w(a)=p(a) / \rho(a)$.

Acceleration Implies Negative Pressure

- Role of stresses in the background cosmology
- Homogeneous Einstein equations $G_{\mu \nu}=8 \pi G T_{\mu \nu}$ imply the two Friedmann equations (flat universe, or associating curvature $\left.\rho_{K}=-3 K / 8 \pi G a^{2}\right)$

$$
\begin{aligned}
\left(\frac{1}{a} \frac{d a}{d t}\right)^{2} & =\frac{8 \pi G}{3} \rho \\
\frac{1}{a} \frac{d^{2} a}{d t^{2}} & =-\frac{4 \pi G}{3}(\rho+3 p)
\end{aligned}
$$

so that the total equation of state $w \equiv p / \rho<-1 / 3$ for acceleration

- Conservation equation $\nabla^{\mu} T_{\mu \nu}=0$ implies

$$
\frac{\dot{\rho}}{\rho}=-3(1+w) \frac{\dot{a}}{a}
$$

so that ρ must scale more slowly than a^{-2}

Scalar, Vector, Tensor

- In linear perturbation theory, perturbations may be separated by their transformation properties under 3D rotation and translation.
- The eigenfunctions of the Laplacian operator form a complete set

$$
\begin{array}{rlr}
\nabla^{2} Q^{(0)} & =-k^{2} Q^{(0)} & \mathrm{S} \\
\nabla^{2} Q_{i}^{(\pm 1)} & =-k^{2} Q_{i}^{(\pm 1)} & \mathrm{V}, \\
\nabla^{2} Q_{i j}^{(\pm 2)} & =-k^{2} Q_{i j}^{(\pm 2)} & \mathrm{T},
\end{array}
$$

- Vector and tensor modes satisfy divergence-free and transverse-traceless conditions

$$
\begin{aligned}
\nabla^{i} Q_{i}^{(\pm 1)} & =0 \\
\nabla^{i} Q_{i j}^{(\pm 2)} & =0 \\
\gamma^{i j} Q_{i j}^{(\pm 2)} & =0
\end{aligned}
$$

Vector and Tensor Quantities

- A scalar mode carries with it associated vector (curl-free) and tensor (longitudinal) quantities
- A vector mode carries and associated tensor (trace and divergence free) quantities
- A tensor mode has only a tensor (trace and divergence free)
- These are built from the mode basis out of covariant derivatives and the metric

$$
\begin{aligned}
Q_{i}^{(0)} & =-k^{-1} \nabla_{i} Q^{(0)} \\
Q_{i j}^{(0)} & =\left(k^{-2} \nabla_{i} \nabla_{j}+\frac{1}{3} \gamma_{i j}\right) Q^{(0)} \\
Q_{i j}^{(\pm 1)} & =-\frac{1}{2 k}\left[\nabla_{i} Q_{j}^{(\pm 1)}+\nabla_{j} Q_{i}^{(\pm 1)}\right],
\end{aligned}
$$

Perturbation k-Modes

- For the k th eigenmode, the scalar components become

$$
\begin{aligned}
A(\mathbf{x}) & =A(k) Q^{(0)}, & H_{L}(\mathbf{x}) & =H_{L}(k) Q^{(0)} \\
\delta \rho(\mathbf{x}) & =\delta \rho(k) Q^{(0)}, & \delta p(\mathbf{x}) & =\delta p(k) Q^{(0)}
\end{aligned}
$$

the vectors components become

$$
B_{i}(\mathbf{x})=\sum_{m=-1}^{1} B^{(m)}(k) Q_{i}^{(m)}, \quad v_{i}(\mathbf{x})=\sum_{m=-1}^{1} v^{(m)}(k) Q_{i}^{(m)}
$$

and the tensors components

$$
H_{T i j}(\mathbf{x})=\sum_{m=-2}^{2} H_{T}^{(m)}(k) Q_{i j}^{(m)}, \quad \Pi_{i j}(\mathbf{x})=\sum_{m=-2}^{2} \Pi^{(m)}(k) Q_{i j}^{(m)}
$$

- Note that the curvature perturbation only involves scalars

$$
\delta\left[{ }^{(3)} R\right]=\frac{4}{a^{2}}\left(k^{2}-3 K\right)\left(H_{L}^{(0)}+\frac{1}{3} H_{T}^{(0)}\right) Q^{(0)}
$$

Spatially Flat Case

- For a spatially flat background metric, harmonics are related to plane waves:

$$
\begin{aligned}
Q^{(0)} & =\exp (i \mathbf{k} \cdot \mathbf{x}) \\
Q_{i}^{(\pm 1)} & =\frac{-i}{\sqrt{2}}\left(\hat{\mathbf{e}}_{1} \pm i \hat{\mathbf{e}}_{2}\right)_{i} \exp (i \mathbf{k} \cdot \mathbf{x}) \\
Q_{i j}^{(\pm 2)} & =-\sqrt{\frac{3}{8}}\left(\hat{\mathbf{e}}_{1} \pm i \hat{\mathbf{e}}_{2}\right)_{i}\left(\hat{\mathbf{e}}_{1} \pm i \hat{\mathbf{e}}_{2}\right)_{j} \exp (i \mathbf{k} \cdot \mathbf{x})
\end{aligned}
$$

where $\hat{\mathbf{e}}_{3} \| \mathbf{k}$. Chosen as spin states, cf. polarization.

- For vectors, the harmonic points in a direction orthogonal to k suitable for the vortical component of a vector

Spatially Flat Case

- Tensor harmonics are the transverse traceless gauge representation
- Tensor amplitude related to the more traditional

$$
h_{+}\left[\left(\mathbf{e}_{1}\right)_{i}\left(\mathbf{e}_{1}\right)_{j}-\left(\mathbf{e}_{2}\right)_{i}\left(\mathbf{e}_{2}\right)_{j}\right], \quad h_{\times}\left[\left(\mathbf{e}_{1}\right)_{i}\left(\mathbf{e}_{2}\right)_{j}+\left(\mathbf{e}_{2}\right)_{i}\left(\mathbf{e}_{1}\right)_{j}\right]
$$

as

$$
h_{+} \pm i h_{\times}=-\sqrt{6} H_{T}^{(\mp 2)}
$$

- $H_{T}^{(\pm 2)}$ proportional to the right and left circularly polarized amplitudes of gravitational waves with a normalization that is convenient to match the scalar and vector definitions

Covariant Scalar Equations

- DOF counting exercise

8 Variables (4 metric; 4 matter)
-4 Einstein equations
-2 Conservation equations
+2 Bianchi identities
-2 Gauge (coordinate choice 1 time, 1 space)

2 Free Variables
without loss of generality choose scalar components of the stress tensor $\delta p, \Pi$.

Covariant Scalar Equations

- Einstein equations (suppressing 0) superscripts

$$
\begin{aligned}
& \left(k^{2}-3 K\right)\left[H_{L}+\frac{1}{3} H_{T}\right]-3\left(\frac{\dot{a}}{a}\right)^{2} A+3 \frac{\dot{a}}{a} \dot{H}_{L}+\frac{\dot{a}}{a} k B= \\
& =4 \pi G a^{2} \delta \rho, \quad 00 \text { Poisson Equation } \\
& \frac{\dot{a}}{a} A-\dot{H}_{L}-\frac{1}{3} \dot{H}_{T}-\frac{K}{k^{2}}\left(k B-\dot{H}_{T}\right) \\
& =4 \pi G a^{2}(\rho+p)(v-B) / k, \quad 0 i \text { Momentum Equation } \\
& {\left[2 \frac{\ddot{a}}{a}-2\left(\frac{\dot{a}}{a}\right)^{2}+\frac{\dot{a}}{a} \frac{d}{d \eta}-\frac{k^{2}}{3}\right] A-\left[\frac{d}{d \eta}+\frac{\dot{a}}{a}\right]\left(\dot{H}_{L}+\frac{1}{3} k B\right)} \\
& =4 \pi G a^{2}\left(\delta p+\frac{1}{3} \delta \rho\right), \quad \text { ii Acceleration Equation } \\
& k^{2}\left(A+H_{L}+\frac{1}{3} H_{T}\right)+\left(\frac{d}{d \eta}+2 \frac{\dot{a}}{a}\right)\left(k B-\dot{H}_{T}\right) \\
& =-8 \pi G a^{2} p \Pi, \quad i j \text { Anisotropy Equation }
\end{aligned}
$$

Covariant Scalar Equations

- Poisson and acceleration equations are the perturbed generalization of the Friedmann equations
- Momentum and anisotropy equations are new to the perturbed metric
- Poisson and momentum equations in the ADM language take the form of constraints on the shift and lapse respectively - leaving the spatial metric components as dynamical
- Like the Friedmann equations, the 4 equation are redundant given the 2 energy-momentum conservation equations
- Choose a gauge and set of equations to simplify the given problem

Covariant Scalar Equations

- Conservation equations: continuity and Navier Stokes

$$
\begin{aligned}
{\left[\frac{d}{d \eta}+3 \frac{\dot{a}}{a}\right] \delta \rho+3 \frac{\dot{a}}{a} \delta p } & =-(\rho+p)\left(k v+3 \dot{H}_{L}\right), \\
{\left[\frac{d}{d \eta}+4 \frac{\dot{a}}{a}\right]\left[(\rho+p) \frac{(v-B)}{k}\right] } & =\delta p-\frac{2}{3}\left(1-3 \frac{K}{k^{2}}\right) p \Pi+(\rho+p) A,
\end{aligned}
$$

- Equations are not independent since $\nabla_{\mu} G^{\mu \nu}=0$ via the Bianchi identities.
- Related to the ability to choose a coordinate system or "gauge" to represent the perturbations.

Covariant Vector Equations

- Einstein equations

$$
\begin{gathered}
\left(1-2 K / k^{2}\right)\left(k B^{(\pm 1)}-\dot{H}_{T}^{(\pm 1)}\right) \\
=16 \pi G a^{2}(\rho+p)\left(v^{(\pm 1)}-B^{(\pm 1)}\right) / k \\
{\left[\frac{d}{d \eta}+2 \frac{\dot{a}}{a}\right]\left(k B^{(\pm 1)}-\dot{H}_{T}^{(\pm 1)}\right)} \\
=-8 \pi G a^{2} p \Pi^{(\pm 1)}
\end{gathered}
$$

- Conservation Equations

$$
\begin{gathered}
{\left[\frac{d}{d \eta}+4 \frac{\dot{a}}{a}\right]\left[(\rho+p)\left(v^{(\pm 1)}-B^{(\pm 1)}\right) / k\right]} \\
=-\frac{1}{2}\left(1-2 K / k^{2}\right) p \Pi^{(\pm 1)}
\end{gathered}
$$

- Gravity provides no source to vorticity \rightarrow decay

Covariant Vector Equations

- DOF counting exercise

8 Variables (4 metric; 4 matter)
-4 Einstein equations
-2 Conservation equations
+2 Bianchi identities
-2 Gauge (coordinate choice 1 time, 1 space)

2 Free Variables
without loss of generality choose vector components of the stress tensor $\Pi^{(\pm 1)}$.

Covariant Tensor Equation

- Einstein equation

$$
\left[\frac{d^{2}}{d \eta^{2}}+2 \frac{\dot{a}}{a} \frac{d}{d \eta}+\left(k^{2}+2 K\right)\right] H_{T}^{(\pm 2)}=8 \pi G a^{2} p \Pi^{(\pm 2)} .
$$

- DOF counting exercise

4 Variables (2 metric; 2 matter)
-2 Einstein equations
-0 Conservation equations
$+0 \quad$ Bianchi identities
$-0 \quad$ Gauge (coordinate choice 1 time, 1 space)

2 Free Variables
wlog choose tensor components of the stress tensor $\Pi^{(\pm 2)}$.

Arbitrary Dark Components

- Total stress energy tensor can be broken up into individual pieces
- Dark components interact only through gravity and so satisfy separate conservation equations
- Einstein equation source remains the sum of components.
- To specify an arbitrary dark component, give the behavior of the stress tensor: 6 components: $\delta p, \Pi^{(i)}$, where $i=-2, \ldots, 2$.
- Many types of dark components (dark matter, scalar fields, massive neutrinos,..) have simple forms for their stress tensor in terms of the energy density, i.e. described by equations of state.
- An equation of state for the background $w=p / \rho$ is not sufficient to determine the behavior of the perturbations.

Geometry of Gauge Choice

- Geometry of the gauge or time slicing and spatial threading
- For perturbations larger than the horizon, a local observer should just see a different (separate) FRW universe
- Scalar equations should be equivalent to an appropriately remapped Friedmann equation
- ADM recap: unit normal vector n^{μ} to constant time hypersurfaces $n_{\mu} d x^{\mu}=n_{0} d \eta, n^{\mu} n_{\mu}=-1$, to linear order in metric

$$
\begin{array}{ll}
n_{0}=-a(1+A Q), & n_{i}=0 \\
n^{0}=a^{-1}(1-A Q), & n^{i}=-B Q^{i}
\end{array}
$$

- Intrinsic 3-geometry of $\delta g_{i j}$, changes in the normal vector $n_{\mu ; \nu}$ that define the extrinsic curvature

Geometric Quantities

- Expansion of spatial volume per proper time is given by 4-divergence

$$
n_{; \mu}^{\mu} \equiv \theta=3 H(1-A Q)+\frac{k}{a} B Q+\frac{3}{a} \dot{H}_{L} Q
$$

- Other pieces of $n_{\mu ; \nu}$ give the vorticity, shear and acceleration

$$
\begin{aligned}
n_{\mu ; \nu} & \equiv \omega_{\mu \nu}+\sigma_{\mu \nu}+\frac{\theta}{3} h_{\mu \nu}-a_{\mu} n_{\nu} \\
h_{\mu \nu} & =g_{\mu \nu}+n_{\mu} n_{\nu} \\
\omega_{\mu \nu} & =h_{\mu}{ }^{\alpha} h_{\nu}{ }^{\beta}\left(n_{\alpha ; \beta}-n_{\beta ; \alpha}\right)=0 \\
\sigma_{\mu \nu} & =\frac{1}{2} h_{\mu}{ }^{\alpha} h_{\nu}{ }^{\beta}\left(n_{\alpha ; \beta}+n_{\beta ; \alpha}\right)-\frac{1}{3} \theta h_{\mu \nu} \\
a_{\mu} & =n_{\mu ; \alpha} n^{\alpha}
\end{aligned}
$$

- Recall n_{μ} is a special timelike vector normal to the constant time surfaces, the vorticity vanishes by construction

Geometric Quantities

- Remaining perturbed quantities are the spatial shear and acceleration (0 components vanish)

$$
\begin{aligned}
\sigma_{i j} & =a\left(\dot{H}_{T}-k B\right) Q_{i j} \\
a_{i} & =-k A Q_{i}
\end{aligned}
$$

- Recall that the extrinsic curvature $K_{i j}=\sigma_{i j}+\theta h_{\mu \nu} / 3$
- Intrinsic curvature of the 3 -surface determined by 3 -metric $h_{i j}$

$$
\delta\left[{ }^{(3)} R\right]=\frac{4}{a^{2}}\left(k^{2}-3 K\right)\left(H_{L}+\frac{H_{T}}{3}\right)
$$

- E-foldings of the local expansion $\ln a_{L}$ are given

$$
\ln a_{L}=\int d \tau \frac{1}{3} \theta=\int d \eta\left(\frac{\dot{a}}{a}+\dot{H}_{L} Q+\frac{1}{3} k B Q\right)
$$

where we have used $d \tau=(1+A Q) a d \eta$

Separate Universe

- Notice that

$$
\frac{d}{d \eta} \delta \ln a_{L}=\dot{H}_{L}+\frac{\dot{H}_{T}}{3}-\frac{1}{3}\left(\dot{H}_{T}-k B\right)
$$

so that if the shear is negligible the change in efolds tracks the change in curvature

- Shear vanishes in the FRW background; uniform efolding gives constant curvature
- Underlying principle: local observer should find long wavelength perturbations are indistingishable from a change in the background FRW quantities
- Perturbation equations take the form of Friedmann equations once rescaled

Time Slicing

- Constant time surfaces can be defined according to what geometry is helpful for the problem at hand
- Common choices:

Uniform efolding: $\dot{H}_{L}+k B / 3=0$
Shear free: $\dot{H}_{T}-k B=0$
Zero lapse pert or acceleration, $A=0$
Uniform expansion: $-3 H A+\left(3 \dot{H}_{L}+k B\right)=0$
Comoving: $v=B$

- For the background all of these conditions hold.
- For perturbations each define a choice of slicing
- Can define the validity of the separate universe principle as the coexistence of comoving and zero lapse slicing

Time Slicing

- Comoving slicing is more formally called velocity orthogonal slicing since constant time surfaces are orthogonal to the matter 4-velocity V^{μ} :

$$
\begin{gathered}
h_{\nu}^{\mu} V^{\nu}=\left(\delta_{\nu}^{\mu}+n^{\mu} n_{\nu}\right) V^{\nu}=\left(0, V^{i}+N^{i} V^{0}\right)=0 \\
\rightarrow V^{i}=v Q^{i}=B^{i}=B Q^{i}
\end{gathered}
$$

- Should not be confused with comoving (threading) where the 3 -velocity $v=0$ unless the shift B also vanishes

Gauge

- Metric and matter fluctuations take on different values in different coordinate system
- No such thing as a "gauge invariant" density perturbation!
- General coordinate transformation:

$$
\begin{aligned}
\tilde{\eta} & =\eta+T \\
\tilde{x}^{i} & =x^{i}+L^{i}
\end{aligned}
$$

free to choose $\left(T, L^{i}\right)$ to simplify equations or physics corresponds to a choice of slicing and threading in ADM.

- Decompose these into scalar $T, L^{(0)}$ and vector harmonics $L^{(\pm 1)}$.

Gauge

- $g_{\mu \nu}$ and $T_{\mu \nu}$ transform as tensors, so components in different frames can be related

$$
\begin{aligned}
\tilde{g}_{\mu \nu}\left(\tilde{\eta}, \tilde{x}^{i}\right) & =\frac{\partial x^{\alpha}}{\partial \tilde{x}^{\mu}} \frac{\partial x^{\beta}}{\partial \tilde{x}^{\nu}} g_{\alpha \beta}\left(\eta, x^{i}\right) \\
& =\frac{\partial x^{\alpha}}{\partial \tilde{x}^{\mu}} \frac{\partial x^{\beta}}{\partial \tilde{x}^{\nu}} g_{\alpha \beta}\left(\tilde{\eta}-T Q, \tilde{x}^{i}-L Q^{i}\right)
\end{aligned}
$$

- Fluctuations are compared at the same coordinate positions (not same space time positions) between the two gauges
- For example with a $T Q$ perturbation, an event labeled with $\tilde{\eta}=$ const. and $\tilde{x}=$ const. represents a different time with respect to the underlying homogeneous and isotropic background

Gauge Transformation

- Scalar Metric:

$$
\begin{aligned}
\tilde{A} & =A-\dot{T}-\frac{\dot{a}}{a} T, \\
\tilde{B} & =B+\dot{L}+k T, \\
\tilde{H}_{L} & =H_{L}-\frac{k}{3} L-\frac{\dot{a}}{a} T, \\
\tilde{H}_{T} & =H_{T}+k L, \quad \tilde{H}_{L}+\frac{1}{3} \tilde{H}_{T}=H_{L}+\frac{1}{3} H_{T}-\frac{\dot{a}}{a} T
\end{aligned}
$$

curvature perturbation depends on slicing not threading

- Scalar Matter (Jth component):

$$
\begin{aligned}
\delta \tilde{\rho}_{J} & =\delta \rho_{J}-\dot{\rho}_{J} T, \\
\delta \tilde{p}_{J} & =\delta p_{J}-\dot{p}_{J} T, \\
\tilde{v}_{J} & =v_{J}+\dot{L},
\end{aligned}
$$

density and pressure likewise depend on slicing only

Gauge Transformation

- Vector:

$$
\begin{aligned}
\tilde{B}^{(\pm 1)} & =B^{(\pm 1)}+\dot{L}^{(\pm 1)} \\
\tilde{H}_{T}^{(\pm 1)} & =H_{T}^{(\pm 1)}+k L^{(\pm 1)} \\
\tilde{v}_{J}^{(\pm 1)} & =v_{J}^{(\pm 1)}+\dot{L}^{(\pm 1)},
\end{aligned}
$$

- Spatial vector has no background component hence no dependence on slicing at first order

Tensor: no dependence on slicing or threading at first order

- Gauge transformations and covariant representation can be extended to higher orders
- A coordinate system is fully specified if there is an explicit prescription for $\left(T, L^{i}\right)$ or for scalars (T, L)

Slicing

Common choices for slicing T : set something geometric to zero

- Proper time slicing $A=0$: proper time between slices corresponds to coordinate time $-T$ allows c / a freedom
- Comoving (velocity orthogonal) slicing: $v-B=0$, slicing is orthogonal to matter 4 velocity - T fixed
- Newtonian (shear free) slicing: $\dot{H}_{T}-k B=0$, expansion rate is isotropic, shear free, T fixed
- Uniform expansion slicing: $-(\dot{a} / a) A+\dot{H}_{L}+k B / 3=0$, perturbation to the volume expansion rate θ vanishes, T fixed
- Flat (constant curvature) slicing, $\delta^{(3)} R=0,\left(H_{L}+H_{T} / 3=0\right)$, T fixed
- Constant density slicing, $\delta \rho_{I}=0, T$ fixed

Threading

- Threading specifies the relationship between constant spatial coordinates between slices and is determined by L

Typically involves a condition on v, B, H_{T}

- Orthogonal threading $B=0$, constant spatial coordinates orthogonal to slicing (zero shift), allows $\delta L=c$ translational freedom
- Comoving threading $v=0$, allows $\delta L=c$ translational freedom.
- Isotropic threading $H_{T}=0$, fully fixes L

Newtonian (Longitudinal) Gauge

- Newtonian (shear free slicing, isotropic threading):

$$
\begin{aligned}
\tilde{B} & =\tilde{H}_{T}=0 \\
\Psi & \equiv \tilde{A} \quad \text { (Newtonian potential) } \\
\Phi & \equiv \tilde{H}_{L} \quad \text { (Newtonian curvature) } \\
L & =-H_{T} / k \\
T & =-B / k+\dot{H}_{T} / k^{2}
\end{aligned}
$$

Good: intuitive Newtonian like gravity; matter and metric algebraically related; commonly chosen for analytic CMB and lensing work
Bad: numerically unstable

Newtonian (Longitudinal) Gauge

- Newtonian (shear free) slicing, isotropic threading $B=H_{T}=0$:

$$
\begin{aligned}
\left(k^{2}-3 K\right) \Phi & =4 \pi G a^{2}\left[\delta \rho+3 \frac{\dot{a}}{a}(\rho+p) v / k\right] \quad \text { Poisson }+ \text { Momentum } \\
k^{2}(\Psi+\Phi) & =-8 \pi G a^{2} p \Pi \quad \text { Anisotropy }
\end{aligned}
$$

so $\Psi=-\Phi$ if anisotropic stress $\Pi=0$ and

$$
\begin{aligned}
{\left[\frac{d}{d \eta}+3 \frac{\dot{a}}{a}\right] \delta \rho+3 \frac{\dot{a}}{a} \delta p } & =-(\rho+p)(k v+3 \dot{\Phi}), \\
{\left[\frac{d}{d \eta}+4 \frac{\dot{a}}{a}\right](\rho+p) v } & =k \delta p-\frac{2}{3}\left(1-3 \frac{K}{k^{2}}\right) p k \Pi+(\rho+p) k \Psi,
\end{aligned}
$$

- Newtonian competition between stress (pressure and viscosity) and potential gradients
- Note: Poisson source is the density perturbation on comoving slicing

Comoving Gauge

- Comoving gauge (comoving slicing, isotropic threading)

$$
\begin{aligned}
\tilde{B} & =\tilde{v} \quad\left(T_{i}^{0}=0\right) \\
H_{T} & =0 \\
\xi & =\tilde{A} \\
\mathcal{R} & =\tilde{H}_{L} \quad \text { (comoving curvature) } \\
\Delta & =\tilde{\delta} \quad \text { (total density pert) } \\
T & =(v-B) / k \\
L & =-H_{T} / k
\end{aligned}
$$

Good: Algebraic relations between matter and metric; comoving curvature perturbation obeys conservation law

Bad: Non-intuitive threading involving v

Comoving Gauge

- Euler equation becomes an algebraic relation between stress and potential

$$
(\rho+p) \xi=-\delta p+\frac{2}{3}\left(1-\frac{3 K}{k^{2}}\right) p \Pi
$$

- Einstein equation lacks momentum density source

$$
\frac{\dot{a}}{a} \xi-\dot{\mathcal{R}}-\frac{K}{k^{2}} k v=0
$$

Combine: \mathcal{R} is conserved if stress fluctuations negligible, e.g. above the horizon if $|K| \ll H^{2}$

$$
\dot{\mathcal{R}}+K v / k=\frac{\dot{a}}{a}\left[-\frac{\delta p}{\rho+p}+\frac{2}{3}\left(1-\frac{3 K}{k^{2}}\right) \frac{p}{\rho+p} \Pi\right] \rightarrow 0
$$

"Gauge Invariant" Approach

- Gauge transformation rules allow variables which take on a geometric meaning in one choice of slicing and threading to be accessed from variables on another choice
- Functional form of the relationship between the variables is gauge invariant (not the variable values themselves! - i.e. equation is covariant)
- E.g. comoving curvature and density perturbations

$$
\begin{aligned}
\mathcal{R} & =H_{L}+\frac{1}{3} H_{T}-\frac{\dot{a}}{a}(v-B) / k \\
\Delta \rho & =\delta \rho+3(\rho+p) \frac{\dot{a}}{a}(v-B) / k
\end{aligned}
$$

Newtonian-Comoving Hybrid

- With the gauge in(or co)variant approach, express variables of one gauge in terms of those in another - allows a mixture in the equations of motion
- Example: Newtonian curvature and comoving density

$$
\left(k^{2}-3 K\right) \Phi=4 \pi G a^{2} \rho \Delta
$$

ordinary Poisson equation then implies Φ approximately constant if stresses negligible.

- Example: Exact Newtonian curvature above the horizon derived through comoving curvature conservation
Gauge transformation

$$
\Phi=\mathcal{R}+\frac{\dot{a}}{a} \frac{v}{k}
$$

Hybrid "Gauge Invariant" Approach

Einstein equation to eliminate velocity

$$
\frac{\dot{a}}{a} \Psi-\dot{\Phi}=4 \pi G a^{2}(\rho+p) v / k
$$

Friedmann equation with no spatial curvature

$$
\left(\frac{\dot{a}}{a}\right)^{2}=\frac{8 \pi G}{3} a^{2} \rho
$$

With $\dot{\Phi}=0$ and $\Psi \approx-\Phi$

$$
\frac{\dot{a}}{a} \frac{v}{k}=-\frac{2}{3(1+w)} \Phi
$$

Newtonian-Comoving Hybrid

Combining gauge transformation with velocity relation

$$
\Phi=\frac{3+3 w}{5+3 w} \mathcal{R}
$$

Usage: calculate \mathcal{R} from inflation determines Φ for any choice of matter content or causal evolution.

- Example: Scalar field ("quintessence" dark energy) equations in comoving gauge imply a sound speed $\delta p / \delta \rho=1$ independent of potential $V(\phi)$. Solve in synchronous gauge.
- More generally, components can often be modeled as an imperfect fluid with non-adiabatic stress and viscosity...

Arbitrary Dark Component Redux

- To close the conservation equations for the J th component we isotropic stress $\delta p_{J}\left(\delta \rho_{J}, v_{J}, \ldots\right)$ and anisotropic stress π_{J}
- Go to time slicing that is comoving with respect to J and call that the fluid rest gauge $v_{J}^{r}=B^{r}$
- Model as an imperfect fluid: anisotropic stress π_{J} if there is shear viscosity: isotropic stress with a sound speed, bulk viscosity $c_{b v}^{2}$

$$
\begin{equation*}
\delta p_{J}^{r}=c_{s}^{2} \delta \rho_{J}^{r}+c_{b v}^{2}\left(\rho_{J}+p_{J}\right) \frac{k v-\dot{H}_{T}}{a H} \tag{1}
\end{equation*}
$$

viscous term is gauge invariant (same value in all gauges)

- Arbitrary gauge: isotropic stress δp is modeled covariantly as

$$
\begin{equation*}
\delta p=c_{s}^{2} \delta \rho+3\left(c_{s}^{2}-c_{a}^{2}\right)(1+w) \rho \frac{\dot{a}}{a} \frac{v-B}{k}+c_{b v}^{2}(\rho+p) \frac{k v-\dot{H}_{T}}{a H} \tag{2}
\end{equation*}
$$

where $c_{a}^{2}=\dot{p} / \dot{\rho}$ is the adiabatic sound speed - nonadiabatic stress if $c_{s}^{2} \neq c_{a}^{2}$ or $c_{b v}^{2} \neq 0$

Sachs-Wolfe Effect

- On superhorizon scales $k \eta \ll 1, \Delta \rho / \rho \ll \mathcal{R}$ and $\xi \ll \mathcal{R}$ in comoving gauge for adiabatic perturbations $p(\rho)$
- Both \mathcal{R} and Ψ, Φ are constant when $w=$ const.
- Derive the observed CMB temperature fluctuation for superhorizon fluctuations at recombination: Sachs-Wolfe effect
- Time shift from Newtonian lapse Ψ to comoving lapse

$$
\xi=\Psi-\dot{T}-\frac{\dot{a}}{a} T
$$

- For $k \eta \ll 1, \Delta \ll \mathcal{R}=O(\Psi)$ and $\Delta p /(\rho+p)=O(\Delta)$ so $\xi \ll \mathcal{R} \sim|\Psi|$

$$
\dot{T}+\frac{\dot{a}}{a} T \approx \Psi \rightarrow T \approx a^{-1} \int a \Psi d \eta \approx a^{-1} \Psi t
$$

Sachs-Wolfe Effect

- Time shift induces a density perturbation $\delta t=a \delta \eta=a T$ so $\delta t / t=\Psi$, and $t=\int d \ln a / H \propto a^{3(1+w) / 2}$

$$
\frac{\delta t}{t}=\frac{3}{2}(1+w) \frac{\delta a}{a}=\Psi
$$

- $T_{\mathrm{CMB}} \propto a^{-1}$ so

$$
\left.\frac{\delta T_{\mathrm{CMB}}}{T_{\mathrm{CMB}}}\right|_{\text {local }}=-\frac{\delta a}{a}=-\frac{2}{3(1+w)} \Psi
$$

- Correct for gravitational redshift from climbing out of Ψ

$$
\left.\frac{\delta T_{\mathrm{CMB}}}{T_{\mathrm{CMB}}}\right|_{\mathrm{obs}}=\left.\frac{\delta T_{\mathrm{CMB}}}{T_{\mathrm{CMB}}}\right|_{\mathrm{local}}+\Psi=\frac{1+3 w}{3(1+w) \Psi}
$$

- So in matter domination $\Psi / 3=\mathcal{R} / 5$ and in radiation domination $\Psi / 2=\mathcal{R} / 3$

Sachs-Wolfe Effect

- So measurement of $\delta T_{\mathrm{CMB}} / T_{\mathrm{CMB}} \approx 10^{-5}$ at largest angles implies the initial comoving curvature $\mathcal{R} \approx 5 \times 10^{-5}$ or

$$
|\mathcal{R}|^{2}=A_{s} \approx 2.5 \times 10^{-9}
$$

- Small red tilt of the spectrum and modern normalization point of $k_{0}=0.05 \mathrm{Mpc}^{-1}$ gives a reduction in the Planck measured value of A_{s}

$$
\frac{k^{3} P_{\mathcal{R}}}{2 \pi^{2}}=A_{s}\left(\frac{k}{k_{0}}\right)^{n_{s}-1}
$$

- Reversing the argument: measured large scale anisotropy implies a curvature fluctuation above the horizon - since curvature is conserved outside the horizon this comes from a period of acceleration in the early universe where fluctuations were inside the horizon

Synchronous Gauge

- Synchronous: (proper time slicing, orthogonal threading)

$$
\begin{aligned}
\tilde{A} & =\tilde{B}=0 \\
\eta_{T} & \equiv-\tilde{H}_{L}-\frac{1}{3} \tilde{H}_{T} \\
h_{L} & \equiv 6 H_{L} \\
T & =a^{-1} \int d \eta a A+c_{1} a^{-1} \\
L & =-\int d \eta(B+k T)+c_{2}
\end{aligned}
$$

Good: stable, the choice of numerical codes and separate universe constructs
Bad: residual gauge freedom in constants c_{1}, c_{2} must be specified as an initial condition, intrinsically relativistic, threading conditions breaks down beyond linear regime if c_{1} is fixed to CDM comoving.

Synchronous Gauge

- Residual gauge freedom in time slicing: multiple synchronous gauges related by

$$
T=\frac{c_{1}}{a}
$$

- Notice that momentum transforms with

$$
\tilde{v}-\tilde{B}=v-B-k T \rightarrow \tilde{v}=v-\frac{k c_{1}}{a}
$$

- An initial velocity in the absence of gravitational and pressure decays with expansion as $v \propto 1 / a$
- Time slicing freedom is associated with the initial velocity of synchronous observers - set this to zero - via CDM as observers
- Spatial residual freedom c_{2} associated with the spatial grid of synchronous observers - usually set this to be uniform in comoving coordinates - via CDM as observers

Synchronous Gauge

- The Einstein equations give

$$
\begin{aligned}
\dot{\eta}_{T}-\frac{K}{2 k^{2}}\left(\dot{h}_{L}+6 \dot{\eta}_{T}\right) & =4 \pi G a^{2}(\rho+p) \frac{v}{k}, \\
\ddot{h}_{L}+\frac{\dot{a}}{a} \dot{h}_{L} & =-8 \pi G a^{2}(\delta \rho+3 \delta p), \\
-\left(k^{2}-3 K\right) \eta_{T}+\frac{1}{2} \frac{\dot{a}}{a} \dot{h}_{L} & =4 \pi G a^{2} \delta \rho
\end{aligned}
$$

[choose (1\&2) or (1 \& 3)] while the conservation equations give

$$
\begin{aligned}
& {\left[\frac{d}{d \eta}+3 \frac{\dot{a}}{a}\right] \delta \rho_{J}+3 \frac{\dot{a}}{a} \delta p_{J}=-\left(\rho_{J}+p_{J}\right)\left(k v_{J}+\frac{1}{2} \dot{h}_{L}\right),} \\
& {\left[\frac{d}{d \eta}+4 \frac{\dot{a}}{a}\right]\left(\rho_{J}+p_{J}\right) \frac{v_{J}}{k}=\delta p_{J}-\frac{2}{3}\left(1-3 \frac{K}{k^{2}}\right) p_{J} \Pi_{J} .}
\end{aligned}
$$

Synchronous Gauge

- Lack of a lapse A implies no gravitational forces in Navier-Stokes equation. Hence for stress free matter like cold dark matter, zero velocity initially implies zero velocity always.
- Choosing the momentum and acceleration Einstein equations is good since for CDM domination, curvature η_{T} is conserved and \dot{h}_{L} is simple to solve for.
- Choosing the momentum and Poisson equations is good when the equation of state of the matter is complicated since δp is not involved. This is the choice of CAMB.

Caution: since the curvature η_{T} appears and it has zero CDM source, subtle effects like dark energy perturbations are important everywhere

Spatially Flat Gauge

- Spatially Flat (flat slicing, isotropic threading):

$$
\begin{aligned}
\tilde{H}_{L} & =\tilde{H}_{T}=0 \\
L & =-H_{T} / k \\
\tilde{A}, \tilde{B} & =\text { metric perturbations } \\
T & =\left(\frac{\dot{a}}{a}\right)^{-1}\left(H_{L}+\frac{1}{3} H_{T}\right)
\end{aligned}
$$

Good: eliminates spatial metric evolution in ADM and perturbation equations ; useful in inflationary calculations
(Mukhanov et al)
Bad: non-intuitive slicing (no curvature!) and threading

- Caution: perturbation evolution is governed by the behavior of stress fluctuations and an isotropic stress fluctuation δp is gauge dependent.

Uniform Density Gauge

- Uniform density: (constant density slicing, isotropic threading)

$$
\begin{aligned}
H_{T} & =0, \\
\zeta_{I} & \equiv H_{L} \\
B_{I} & \equiv B \\
A_{I} & \equiv A \\
T & =\frac{\delta \rho_{I}}{\dot{\rho}_{I}} \\
L & =-H_{T} / k
\end{aligned}
$$

Good: Curvature conserved involves only stress energy conservation; simplifies isocurvature treatment

Bad: non intuitive slicing (no density pert! problems beyond linear regime) and threading

Uniform Density Gauge

- Einstein equations simplify if I as the total or dominant species

$$
\begin{aligned}
\left(k^{2}-3 K\right) \zeta_{I}-3\left(\frac{\dot{a}}{a}\right)^{2} A_{I}+3 \frac{\dot{a}}{a} \dot{\zeta}_{I}+\frac{\dot{a}}{a} k B_{I} & =0, \\
\frac{\dot{a}}{a} A_{I}-\dot{\zeta}_{I}-\frac{K}{k} B_{I} & =4 \pi G a^{2}(\rho+p) \frac{v-B_{I}}{k},
\end{aligned}
$$

More generally the Poisson source could involve other species J

- The conservation equations for a general component J (if $J=I$ then $\delta \rho_{J}=0$)

$$
\begin{aligned}
{\left[\frac{d}{d \eta}+3 \frac{\dot{a}}{a}\right] \delta \rho_{J}+3 \frac{\dot{a}}{a} \delta p_{J} } & =-\left(\rho_{J}+p_{J}\right)\left(k v_{J}+3 \dot{\zeta}_{I}\right), \\
{\left[\frac{d}{d \eta}+4 \frac{\dot{a}}{a}\right]\left(\rho_{J}+p_{J}\right) \frac{v_{J}-B_{I}}{k} } & =\delta p_{J}-\frac{2}{3}\left(1-3 \frac{K}{k^{2}}\right) p_{J} \Pi_{J}+\left(\rho_{J}+p_{J}\right) A_{I} .
\end{aligned}
$$

Uniform Density Gauge

- Conservation of curvature related to the stresses and velocity divergence of I

$$
\dot{\zeta}_{I}=-\frac{\dot{a}}{a} \frac{\delta p_{I}}{\rho_{I}+p_{I}}-\frac{1}{3} k v_{I}
$$

- Since $\delta \rho_{I}=0, \delta p_{I}$ is the non-adiabatic stress and curvature is constant as $k \rightarrow 0$ for adiabatic fluctuations $p_{I}\left(\rho_{I}\right)$.
- Note that this conservation law does not involve the Einstein equations at all: just local energy momentum conservation so it is valid for alternate theories of gravity
- Curvature on comoving slices \mathcal{R} and ζ_{I} related by

$$
\zeta_{I}=\mathcal{R}+\left.\frac{1}{3} \frac{\rho_{I} \Delta_{I}}{\left(\rho_{I}+p_{I}\right)}\right|_{\text {comoving }} .
$$

and coincide above the horizon for adiabatic fluctuations

Uniform Density Gauge

- Simple relationship to density fluctuations in the spatially flat gauge

$$
\zeta_{I}=\left.\frac{1}{3} \frac{\delta \tilde{\rho}_{I}}{\left(\rho_{I}+p_{I}\right)}\right|_{\text {flat }} .
$$

- For each particle species $\delta \rho /(\rho+p)=\delta n / n$, the number density fluctuation
- Multiple ζ_{J} carry information about number density fluctuations between species
- ζ_{J} constant component by component outside horizon if each component is adiabatic $p_{J}\left(\rho_{J}\right)$.
- In cases where ζ_{J} is not constant due to internal non-adiabatic stress but the expansion shear is negligible, it can be computed by counting the efolds from a spatially flat hypersurface to a uniform density hypersurface: the δN approach for inflation

Unitary Gauge

- Given a scalar field $\phi\left(x^{i}, \eta\right)$, choose a slicing so that the field is spatially uniform $\phi\left(x^{i}, \eta\right)=\phi(\eta)$ via the transformation

$$
\delta \tilde{\phi}=\delta \phi-\dot{\phi} T \quad \rightarrow \quad T=\frac{\delta \phi}{\dot{\phi}_{0}}
$$

- Specify threading, e.g. isotropic threading $L=-H_{T} / k$

Good: Scalar field carried completely by the metric; EFT of inflation and scalar-tensor theories of gravity. Extensible to nonlinear perturbations as long as $\partial_{\mu} \phi$ remains timelike
Bad: Preferred slicing retains only the spatial diffeomorphism invariance; can make full covariance and DOF counting obscure

- For a canonical scalar field, unitary and comoving gauge coincide

EFT of Dark Energy and Inflation

- Beyond linear theory, unitary gauge and ADM is useful to define most general Lagrangian and interaction terms for a scalar-tensor theory of gravity: so-called Effective Field Theory (EFT)
- Rule: broken temporal diffeomorphisms (preferred slicing) but spatial diffeomorphism invariance means explicit functions of unitary time and ADM spatial scalars allowed
- Typically also want second order in time derivatives to avoid Ostrogradsky ghost, lapse and shift non-dynamical

$$
\mathcal{L}\left(N, K_{j}^{i}, R^{i}{ }_{j}, \nabla^{i} ; t\right)
$$

where the function is constructed out of spatial scalars (3D Riemann tensor can be expressed through 3 Ricci tensor and metric

- Recall that the extrinsic curvature carries a first time derivative of the spatial metric and spatial gradients of the shift

EFT of Dark Energy and Inflation

- This class includes quintesence, k-essence, $f(R)$, Horndeski, "beyond Horndeski", Horava-Liftshiz gravity, ghost condensate
- Does not include theories where derivatives of the lapse N appear but the shift is still nondynamical due to hidden constraints - can be generalized
- GR: time diffeomorphism not broken so the Einstein-Hilbert Lagrangian in EFT language is given by the Gauss-Codazzi relation

$$
{ }^{(4)} R \rightarrow K_{\mu \nu} K^{\mu \nu}-K^{2}+{ }^{(3)} R
$$

EFT of Dark Energy and Inflation

- Now consider the scalar field to pick out a particular foliation
- Simplest example k-essence where $\mathcal{L}(X, \phi)$ where $X=g^{\mu \nu} \partial_{\mu} \phi \partial_{\nu} \phi$ (sometimes $-1 / 2 \times$ to resemble kinetic energy)
- In unitary gauge ϕ is a function of the temporal coordinate only so $X=-\dot{\phi}^{2} / N^{2}$ so that

$$
\mathcal{L}(X, \phi) \rightarrow \mathcal{L}(N, t)
$$

- We will return to this case when considering inflationary non-Gaussianity: note that $g^{00}=-1 / N^{2}$ so the EFT literature sometimes writes $\mathcal{L}\left(g^{00}, \ldots, t\right)$ (Cheung et al 2008)
- Unifying description for "building blocks" of dark energy (Gleyzes, Langois, Vernizzi 2015)

Vector Gauges

- Vector gauge depends only on threading L
- Poisson gauge: orthogonal threading $B^{(\pm 1)}=0$, leaves constant L translational freedom
- Isotropic gauge: isotropic threading $H_{T}^{(\pm 1)}=0$, fixes L
- To first order scalar and vector gauge conditions can be chosen separately
- More care required for second and higher order where scalars and vectors mix

