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Horizon Problem
• The horizon in a decelerating universe scales as η ∝ a(1+3w)/2,
w > −1/3. For example in a matter dominated universe

η ∝ a1/2

• CMB decoupled at a∗ = 10−3 so subtends an angle on the sky

η∗
η0

= a1/2
∗ ≈ 0.03 ≈ 2◦

• So why is the CMB sky isotropic to 10−5 in temperature if it is
composed of ∼ 104 causally disconnected regions

• If smooth by fiat, why are there 10−5 fluctuations correlated on
superhorizon scales



Flatness & Relic Problems
• Flatness problem: why is the radius of curvature larger than the

observable universe |ΩK | � Ωm (so in inflationary calculations
below we set K = 0 for simplicity).

• Also phrased as a coincidence problem: since ρK ∝ a−2 and
ρm ∝ a−3, why would they be comparable today – modern version
is dark energy coincidence ρΛ = const.

• Relic problem – why don’t relics like monopoles dominate the
energy density

• Inflation is a theory that solves all three problems at once and also
supplies a source for density perturbations



Accelerating Expansion
• In a matter or radiation dominated universe, the horizon grows as a

power law in a so that there is no way to establish causal contact
on a scale longer than the inverse Hubble length (1/aH , comoving
coordinates) at any given time: general for a decelerating universe

η =

∫
d ln a

1

aH(a)

• H2 ∝ ρ ∝ a−3(1+w), aH ∝ a−(1+3w)/2, critical value of w = −1/3,
the division between acceleration and deceleration

• In an accelerating universe, the Hubble length shrinks in comoving
coordinates and so the horizon gets its contribution at the earliest
times, e.g. in a cosmological constant universe, the horizon
saturates to a constant value



Causal Contact
• Note change in nomenclature: the true horizon always grows

meaning that one always sees more and more of the universe. The
comoving Hubble length decreases: distance light propagates in an
efolding of a decreases. Regions that were in causal contact, leave
causal contact.

• During inflation, the Hubble length describes the distance that a
photon can travel from the given epoch to the end of inflation

• Horizon problem solved if the universe was in an acceleration
phase up to ηi and the conformal time since then is shorter than the
total conformal age

η0 � η0 − ηi
total distance� distance traveled since inflation

apparent horizon



Flatness & Relic
• Comoving radius of curvature is constant and can even be small

compared to the full horizon R� η0 yet still η0 � R� η0 − ηi
• In physical coordinates, the rapid expansion of the universe makes

the current observable universe much smaller than the curvature
scale

• Likewise, the number density of relics formed before the
accelerating (or inflationary) epoch is diluted to make them rare in
the current observable volume

• Common to reference time to the end of inflation η̃ ≡ η − ηi. Here
conformal time is negative during inflation and its value (as a
difference in conformal time) reflects the comoving Hubble length
- defines leaving the horizon as k|η̃| = 1



Exponential Expansion
• If the accelerating component has equation of state w = −1, ρ =

const., H = Hi const. so that a ∝ exp(Ht)

η̃ = −
∫ ai

a

d ln a
1

aH
=

1

aHi

∣∣∣ai
a

≈ − 1

aHi

(ai � a)

• In particular, the current horizon scale H0η̃0 ≈ 1 exited the horizon
during inflation at

η̃0 ≈ H−1
0 =

1

aHHi

aH =
H0

Hi



Sufficient Inflation
• Current horizon scale must have exited the horizon during inflation

so that the start of inflation could not be after aH . How long before
the end of inflation must it have began?

aH
ai

=
H0

Hiai
H0

Hi

=

√
ρc
ρi
, ai =

TCMB

Ti

• ρ1/4
c = 3× 10−12 GeV, TCMB = 3× 10−13 GeV

aH
ai

= 3× 10−29

(
ρ

1/4
i

1014GeV

)−2(
Ti

1010GeV

)

ln
ai
aH

= 65 + 2 ln

(
ρ

1/4
i

1014GeV

)
− ln

(
Ti

1010GeV

)



Canonical Scalar Fields
• A canonical scalar field can drive inflation by supplying potential

energy that doesn’t change at a fixed field value as the universe
expands

Sφ =

∫
d4x
√
−g[−1

2
gµν∂µφ∂νφ− V (φ)]

• Varying the action with respect to the metric

Tµν =
2√
−g

δ

δgµν
√
−gLφ

gives the stress-energy tensor of a scalar field

T µν = ∇µφ∇νφ−
1

2
(∇αφ∇αφ+ 2V )δµν .

• Equations of motion∇µTµν = 0 with closure relations for
p(φ, ∂µφ), Π(φ, ∂µφ) or field equation∇µ∇µφ = V ′ (vary with
respect to φ)



Scalar Fields
• For the background 〈φ〉 ≡ φ(η) (a−2 from conformal time)

ρφ =
1

2
a−2φ̇2 + V, pφ =

1

2
a−2φ̇2 − V

• So for kinetic dominated wφ = pφ/ρφ → 1

• And potential dominated wφ = pφ/ρφ → −1

• Can use general equations of motion of dictated by stress energy
conservation

ρ̇φ = −3(ρφ + pφ)
ȧ

a
,

to obtain the equation of motion of the background field φ

φ̈+ 2
ȧ

a
φ̇+ a2V ′ = 0 ,

d2φ

dt2
+ 3H

dφ

dt
+ V ′ = 0



Slow Roll Parameters
• Rewrite equations of motion in terms of slow roll parameters but

do not require them to be small or constant.

• Deviation from de Sitter expansion

εH ≡ −
d lnH

d ln a
=

3

2
(1 + wφ) =

3
2
(dφ/dt)2/V

1 + 1
2
(dφ/dt)2/V

must be small, of order the inverse of 60 efolds remaining - εH > 1

or wφ > −1/3 is a decelerating expansion

• Fractional evolution of εH

ηH = −δ1 = εH −
1

2

d ln εH
d ln a

not necessarily small instantaneously but determines doubling rate
of εH – so for featureless inflation should also be small



Slow Roll Hierarchy
• Can continue this hierarchy

δp+1 =
dδp
dN

+ δp(δ1 − pεH)

• Each term in the series is suppressed by an additional power of the
base slow roll parameters δ1, εH

• Phenomenologically describes running of the tilt, running of the
running etc, forming essentially a Taylor expansion in the N ∼ 60

efolds to end of inflation

• Specific form is motivated by association with derivatives of φ for
canonical inflation (next slide) but is used as a definition beyond



Slow Roll Parameters
• The slow roll parameter δ1 also relates the field acceleration to

Hubble friction (for canonical field)

• Rewrite the Friedman equations as

H2 = 4πG

(
dφ

dt

)2

ε−1
H

1

a

d2a

dt2
= −4πG

3
(ρφ + 3pφ) = −H

2

2
(1 + 3wφ)

= H2(1− εH) =
dH

dt
+H2

or dH/dt = −εHH2. So take derivative of first equation

−2HεH = 2
d2φ/dt2

dφ/dt
− d ln εH

dt



Slow Roll Parameters
• Finally using the relation for δ we obtain

δ1 =
d2φ/dt2

Hdφ/dt

• More generally

δp =
1

Hpdφ/dt

(
d

dt

)p+1

φ

• Therefore if δ1 � 1, the scalar field equation of motion is Hubble
friction dominated

3H
dφ

dt
+ V ′ = 0

• The background roll is an attractor: given a field position on the
potential the field velocity is also determined, independent of its
initial value



Field Perturbations
• Perturbations of the field φ = φ+ δφ evolve under the continuity

and Euler equations

δρφ = a−2(φ̇ ˙δφ− φ̇2A) + V ′δφ ,

δpφ = a−2(φ̇ ˙δφ− φ̇2A)− V ′δφ ,

(ρφ + pφ)(vφ −B) = a−2kφ̇δφ ,

pφπφ = 0 ,

• For comoving slicing where vφ = B

δφ = 0

and the field is spatially unperturbed - so all the dynamics are in
the metric (unitary gauge ADM)



Sound Speed
• In this slicing the perturbation to the energy density and pressure

due to a change in field position on the potential is absent, so they
reflect the kinetic piece while the background is dominated by the
potential piece

δpφ = δρφ

so the sound speed is δpφ/δρφ = 1.

• More generally the sound speed of the inflation is defined as the
speed at which field fluctuations propagate - i.e. the kinetic piece
to the energy density rather than the V ′δφ potential piece - much
like in the background the +1 and −1 pieces of w.

• Non canonical kinetic terms EFT– k-essence, DBI inflation,
Horndeski – can generate cs 6= 1 as do terms in the effective theory
of inflation



Equation of Motion
• Scalar field fluctuations are stable inside the horizon and are a

good candidate for the smooth dark energy

• Equivalently, conservation equations imply

δ̈φ = −2
ȧ

a
˙δφ− (k2 + a2V ′′)δφ+ (Ȧ− 3ḢL − kB)φ̇− 2Aa2V ′ .

• Alternately this follows from perturbing the Klein Gordon
equation∇µ∇µφ = V ′



Inflationary Perturbations
• Classical equations of motion for scalar field inflaton determine

the evolution of scalar field fluctuations generated by quantum
fluctuations

• Since the curvatureR on comoving slicing is conserved in the
absence of stress fluctuations (i.e. outside the apparent horizon,
calculate this and we’re done no matter what happens in between
inflation and the late universe (reheating etc.)

• But in the comoving slicing δφ = 0! no scalar-field perturbation

• Solution: solve the scalar field equation in the dual gauge where
the curvature HL +HT/3 = 0 (“spatially flat” slicing) and
transform the result to comoving slicing



Transformation to Comoving Slicing
• Scalar field transforms as scalar field

δ̃φ = δφ− φ̇T

• To get to comoving slicing δ̃φ = 0, T = δφ/φ̇, and
H̃T = HT + kL so

R = HL +
HT

3
− ȧ

a

δφ

φ̇

• Transformation particularly simple from a spatially flat slicing
where HL +HT/3 = 0, i.e. spatially unperturbed metric

R = − ȧ
a

δφ

φ̇

∣∣∣
flat

= − δφ

dφ/d ln a

∣∣∣
flat

= −δ ln a

i.e. a perturbation to the scale factor at fixed scalar field



Spatially Flat Gauge
• Spatially Flat (flat slicing, isotropic threading):

H̃L + H̃T /3 = H̃T = 0

Af = Ã , Bf = B̃

T =

(
ȧ

a

)−1(
HL +

1

3
HT

)
L = −HT /k

• Einstein Poisson and Momentum

−3(
ȧ

a
)2Af +

ȧ

a
kBf = 4πGa2δρφ ,

ȧ

a
Af −

K

k2
(kBf ) = 4πGa2(ρφ + pφ)(vφ −Bf )/k ,

• Conservation

δ̈φ = −2
ȧ

a
˙δφ− (k2 + a2V ′′)δφ+ (Ȧf − kBf )φ̇− 2Afa

2V ′ .



Spatially Flat Gauge
• Lapse and shift are nondynamical and can be eliminated by the

Poisson (Hamiltonian) and momentum constraints

• For modes where |k2/K| � 1 we obtain

ȧ

a
Af = 4πGφ̇δφ ,

ȧ

a
kBf = 4πG[φ̇ ˙δφ− φ̇2Af + a2V ′δφ+ 3

ȧ

a
φ̇δφ]

so combining Ȧf − kBf eliminates the ˙δφ term

• The metric source to the scalar field equation can be reexpressed in
terms of the field perturbation and background quantities

(Ȧf − kBf )φ̇− 2Afa
2V ′ − a2V ′′δφ = f(η)δφ

• Single closed form 2nd order ODE for δφ



Mukhanov Equation
• Equation resembles a damped oscillator equation with a particular

dispersion relation

δ̈φ+ 2
ȧ

a
˙δφ+ [k2 + f(η)]δφ

• f(η) involves terms with φ̇, V ′, V ′′ implying that for a sufficiently
flat potential f(η) represents a small correction

• Transform out the background expansion u ≡ aδφ

u̇ = ȧδφ+ a ˙δφ

ü = äδφ+ 2ȧ ˙δφ+ aδ̈φ

ü+ [k2 − ä

a
+ f(η)]u = 0

• Note Friedmann equations say if p = −ρ, ä/a = 2(ȧ/a)2



Mukhanov Equation
• Using the background Einstein and scalar field equations, this

source term can be expressed in a surprisingly compact form

ü+ [k2 − z̈

z
]u = 0

• and

z ≡ aφ̇

ȧ/a

• This equation is sometimes called the “Mukhanov Equation” and
is both exact (in linear theory) and compact

• For large k (subhorizon), this looks like a free oscillator equation
which can be quantized

• Let’s examine the relationship between z and the slow roll
parameters



Slow Roll parameters
• Returning to the Mukhanov equation

ü+ [k2 + g(η)]u = 0

where

g(η) ≡ f(η) + εH − 2

= −
(
ȧ

a

)2

[2 + 3δ1 + 2εH + (δ1 + εH)(δ1 + 2εH)]− ȧ

a
δ̇1

= − z̈
z

and recall

z ≡ a

(
ȧ

a

)−1

φ̇



Slow Roll Limit
• Slow roll εH � 1, δ1 � 1, δ̇1 � ȧ

a

ü+ [k2 − 2

(
ȧ

a

)2

]u = 0

or for conformal time measured from the end of inflation

η̃ = η − ηend

η̃ =

∫ a

aend

da

Ha2
≈ − 1

aH

• Compact, slow-roll equation:

ü+ [k2 − 2

η̃2
]u = 0



Quantum Fluctuations
• Simple harmonic oscillator� Hubble length

ü+ k2u = 0

• Quantize the simple harmonic oscillator

û = u(k, η̃)â+ u∗(k, η̃)â†

where u(k, η̃) satisfies classical equation of motion and the
creation and annihilation operators satisfy

[a, a†] = 1, a|0〉 = 0

• Normalize wavefunction [û, dû/dη̃] = i

u(k, η) =
1√
2k
e−ikη̃



Quantum Fluctuations
• Zero point fluctuations of ground state

〈u2〉 = 〈0|u†u|0〉

= 〈0|(u∗â† + uâ)(uâ+ u∗â†)|0〉

= 〈0|ââ†|0〉|u(k, η̃)|2

= 〈0|[â, â†] + â†â|0〉|u(k, η̃)|2

= |u(k, η̃)|2 =
1

2k

• Classical equation of motion take this quantum fluctuation outside
horizon where it freezes in.



Slow Roll Limit
• Classical equation of motion then has the exact solution

u =
1√
2k

(
1− i

kη̃

)
e−ikη̃

• For |kη̃| � 1 (late times,� Hubble length) fluctuation freezes in

lim
|kη̃|→0

u = − 1√
2k

i

kη̃
≈ iHa√

2k3

δφ =
iH√
2k3

• Power spectrum of field fluctuations

∆2
δφ =

k3|δφ|2

2π2
=

H2

(2π)2



Slow Roll Limit
• RecallR = −(ȧ/a)δφ/φ̇ and slow roll says(

ȧ

a

)2
1

φ̇2
=

8πGa2V

3

3

2a2V εH
=

4πG

εH

Thus the curvature power spectrum

∆2
R =

8πG

2

H2

(2π)2εH

• Curvature power spectrum is scale invariant to the extent that H is
constant

• Scalar spectral index

d ln ∆2
R

d ln k
≡ nS − 1

= 2
d lnH

d ln k
− d ln εH

d ln k



Tilt
• Evaluate at horizon crossing where fluctuation freezes k = aH

d lnH

d ln k

∣∣
k=aH

≈ d lnH

d ln a
= −εH

• Evolution of εH

d ln εH
d ln k

∣∣
k=aH

≈ d ln εH
d ln a

= 2(δ1 + εH)

• Tilt in the slow-roll approximation

nS = 1− 4εH − 2δ1



Relationship to Potential
• Exact relations

1

8πG
(
V ′

V
)2 = 2εH

(1 + δ1/3)2

(1− εH/3)2

1

8πG

V ′′

V
=
εH − δ1 − [δ2

1 − εHδ1 − (a/ȧ)δ̇1]/3

1− εH/3

agree in the limit εH , |δ1| � 1 and |(a/ȧ)δ̇1| � εH , |δ1|

• Like the Mukhanov to slow roll simplification, identification with
potential requires a constancy of δ1 assumption



Gravitational Waves
• Gravitational wave amplitude satisfies Klein-Gordon equation

(K = 0), same as scalar field

ḧ+,× + 2
ȧ

a
ḣ+,× + k2h+,× = 0 .

• Acquires quantum fluctuations in same manner as φ.
Einstein-Hilbert action sets the canonical normalization: ADM
(4)R = (ḣij/2)2/16πG+ . . .) and hij = h+e+ij + h×e×ij so

∆2
+,× = 16πG∆2

δφ = 16πG
H2

(2π)2



Gravitational Waves
• Gravitational wave power ∝ H2 ∝ V ∝ E4

i where Ei is the energy
scale of inflation

• Tensor-scalar ratio - various definitions - WMAP standard is

r ≡ 4
∆2

+

∆2
R

= 16εH

• Tensor tilt:

d ln ∆2
H

d ln k
≡ nT = 2

d lnH

d ln k
= −2εH



Gravitational Waves
• Consistency relation between tensor-scalar ratio and tensor tilt

r = 16εH = −8nT

• Measurement of scalar tilt and gravitational wave amplitude
constrains inflationary potential

• Comparision of tensor-scalar ratio and tensor tilt tests the idea of
canonical single field slow roll inflation itself



Gravitational Wave Phenomenology
• Equation of motion

Ḧ
(±2)
T + 2

ȧ

a
Ḣ

(±2)
T + k2H

(±2)
T = 0 .

• has solutions

H
(±2)
T = C1H1(kη) + C2H2(kη)

H1 ∝ x−mjm(x)

H2 ∝ x−mnm(x)

where m = (1− 3w)/(1 + 3w)

• If w > −1/3 then gravity wave is constant above horizon x� 1

and then oscillates and damps

• If w < −1/3 then gravity wave oscillates and freezes into some
value, just like scalar field



Gravitational Wave Phenomenology
• A gravitational wave makes a quadrupolar (transverse-traceless)

distortion to metric

• Just like the scale factor or spatial curvature, a temporal variation
in its amplitude leaves a residual temperature variation in CMB
photons – here anisotropic

• Before recombination, anisotropic variation is eliminated by
scattering

• Gravitational wave temperature effect drops sharply at the horizon
scale at recombination



Gravitational Wave Phenomenology
• Source to polarization goes as τ̇ /ḢT and peaks at the horizon not

damping scale

• More distinct signature in the polarization since symmetry of plane
wave is broken by the transverse nature of gravity wave
polarization

• B modes formed as photons propagate – the spatial variation in the
plane waves modulate the signal: described by Boltzmann eqn.

∆Bpeak ≈ 0.024

(
Ei

1016GeV

)2

µK



Large Field Models
• For detectable gravitational waves, εH cannot be too small

• A large εH means that the field rolls a substantial distance over the
efolds of inlfation

dφ

dN
=

dφ

d ln a
=
dφ

dt

1

H
• The larger εH is the more the field rolls in an e-fold

εH =
r

16
=

3

2V

(
H
dφ

dN

)2

=
8πG

2

(
dφ

dN

)2

• Observable scales span ∆N ∼ 5 so

∆φ ≈ 5
dφ

dN
= 5(r/8)1/2Mpl ≈ 0.6(r/0.1)1/2Mpl

• Difficult to keep the potential flat out to the Planck scale, or more
generally out to the cutoff of an effective field theory Lyth (1997)



Large Field Models
• Large field models include monomial potentials V (φ) = Aφn

εH =
r

16
≈ n2

16πGφ2

δ1 ≈ εH −
n(n− 1)

8πGφ2

ns − 1 = −n(n+ 2)

8πGφ2
= −2 + n

8n
r

• Thus εH ∼ |δ1| and a observed finite tilt ns − 1 ∼ −0.04 indicates
finite εH and observable gravitational waves

• Inflation rolls on specific trajectories of ns − 1, r plane depending
on index n

• CMB-large scale structure efolds ∼ 50− 60 efolds select portions
of these curves, which are tested by upper limits on r



Small Field Models
• If the field is near an maximum of the potential

V (φ) = V0 −
1

2
µ2φ2

• Inflation occurs if the V0 term dominates

εH ≈
1

16πG

µ4φ2

V 2
0

δ1 ≈ εH +
1

8πG

µ2

V0

→ δ1

εH
=

V0

µ2φ2
� 1

• Tilt reflects δ1: nS ≈ 1− 2δ1 and εH is much smaller

• The field does not roll significantly during inflation and
gravitational waves are negligible



Non-Gaussianity
• In single field slow roll inflation, the inflaton is nearly free field -

modes don’t interact - fluctuations are Gaussian to a high degree.

• Non-gaussianities are at best second order effects and with 10−5

fluctuations, this is a 10−10 effect!

• Local form follows from considering a generic second order effect
that is where potential gains a piece that is quadratic in the linear
Gaussian fluctuation

Φ(x) = Φ(1)(x) + fNL[(Φ(1)(x))2 − 〈Φ(1)(x)〉2]

called a local non-Gaussianity - generic prediction is fNL = O(1)



Non-Gaussianity
• Decompose in harmonics (assume k2 � |K|, nearly flat)

Φ(k) =

∫
d3xe−ik·xΦ(x)

= Φ(1)(k) + fNL

∫
d3xe−ik·x

∫
d3k1

(2π)3
eik1·xΦ(1)(k1)

∫
d3k2

(2π)3
eik2·xΦ(1)(k2)

with
∫
d3xei(k−k

′)·x = (2π)3δ(k− k′) yields

Φ(k) = Φ(1)(k) + fNL

∫
d3k1

(2π)3
Φ(1)(k1)Φ(1)(k− k1)

• Given that the first order term is a Gaussian field represented by
the power spectrum

〈Φ(1)(k)Φ(1)(k′)〉 = (2π)3δ(k + k′)PΦ(k)

we get a bispectrum contribution



Non-Gaussianity
• The bispectrum is proportional to the product of power spectra

〈Φ(k1)Φ(k2)Φ(k3)〉 = (2π)3δ(k1 + k2 + k3)[2fNLPΦ(k1)PΦ(k2) + perm]

• Bispectrum contains most of the information on local
non-Gaussianity

• Higher point correlations also exist and can be measured with
good S/N but their sample variance is high and so don’t help in
constraining fNL



Non-Gaussianity
• For canonical single field slow roll inflation fNL is of order ns − 1,

simply understood from separate universe perspective

• In the squeezed limit where k1 � k2 ∼ k3, the short wavelength
modes see separate universe with perturbed scale factor - i.e. the
local background field is slightly perturbed from global value

• Change in the power spectrum given a change in efolds is given by
ns − 1 - so short wavelength power is correlated with the long
wavelength scale factor perturbation or curvature

fNL = 5(1− ns)/12

• To get a larger non-Gaussianity requires multifield or
non-canonical inflation

• Conversely, observation of primordial non Gaussianity at the
|fNL| > 1 level rules out canonical single field, slow roll inflation



Effective Field Theory
• Beyond canonical scalar fields, we can think of the scalar as

simply a clock which decides when inflation ends

• Choose the unitary gauge as constant field gauge to all orders

φ(x, tu) = φ(tu)

• Given that by assumption the universe is dominated by this scalar
field and it is homogenous in this frame, the only thing that the
action can be built out of is terms that depend on tu

• In the EFT language, write down all possible terms that is
consistent with unbroken spatial diffeomorphism invariance in this
slicing

• EFT is an organizational principle that highlights the generality of
certain relations, e.g. between non-Gaussianity and sound speed



Effective Field Theory
• Recall that in unitary gauge, we can build the Lagrangian from just

the metric or ADM objects in 3+1: lapse N , extrinsic curvature
Kij , intrinsic curvature Rij , and covariant 3-derivatives with
respect to the spatial metric hij

L(N,Ki
j, R

i
j,∇i; t)

where the function is constructed out of spatial scalars.

• This encompasses single field models with one extra DOF and
second order (in time) EOMs except for special degenerate cases

• To make considerations concrete focus on the freedom associated
with GR + L(N ; t)



Effective Field Theory
• This simplest class of EFT operators corresponds to scalar field

Lagrangians of L = P (X,φ) class where the kinetic term

X = gµν∂µφ∂νφ

becomes X = −φ̇2/N2 and φ = φ(t) in the background

• For a canonical kinetic term P (X,φ) = −X/2 + V (φ)

• Unitary gauge and comoving gauge coincide this class since
T 0

i ∝ δφ (but not all Horndeski models)

• To stay close to the inflationary literature, 0 will represent
coordinate rather than conformal time

• Two equivalent ways of proceeding: stay in unitary gauge and
write the action for the metric, Stuckelberg to restore gauge
invariance and work in gauge where the (Stuckelberg field) φ
carries the dynamics



Unitary Gauge Action
• Expand the action

S =

∫
d4x
√
−gL =

∫
d4xN

√
hL

in the ADM metric fluctuations around FRW: N , shift N i and
spatial metric

hij = a2e2R(γij + h+ij + h×ij)

Note that ADM applies beyond linear theory so this completely
defines the scalar and tensor metric in unitary gauge and coincides
with the linear metric fluctuations to leading order

• For simplicity we will assume that the FRW curvature is negligible
during inflation



Unitary Gauge Action
• Varying the action leads to background EOMs for linear action

(lapse and spatial metric a)

L+ L,N + 6H2 = 0

L − 2εHH
2 + 6H2 = 0

where εH = −d lnH/d ln a expresses the deviation from a deSitter
expansion.

• For the EH part of the action LEH = −3H2

• For the additional contributions, L defines a pressure and
−L,N − L defines the energy density so these are just the
Friedmann equations as expected



Curvature Fluctuations
• Similarly the EOMs for the linear fluctuations A,B,R, h+, h×. for

the quadratic action

• Action does not involve time derivatives of the lapse or shift so at
each order their EOMs produce constraints

• For the scalars, this leavesR as the dynamical variable

S2 =

∫
d4x

a3εH
c2
s

(Ṙ2 +
c2
sk

2

a2
R2)

where and the scalar sound speed is

c2
s = − L,N

L,NN + 2L,N



Curvature Fluctuations
• Covariant formulation the lapse dependence comes from P (X,φ)

where X = −φ̇2(t)/N2, so transforming ∂ lnX = −2∂ lnN , we
have

c2
s =

P,X
2XP,XX + P,X

which recovers the well known k-essence result.

• Canonical scalar has P (X,φ) = −X/2− V (φ) and so c2
s = 1

• We can continue this beyond the quadratic action - leads to
nonlinearity in the EOMs and non-Gaussianity in their solution

• We shall see that non-Gaussianity is enhanced if cs < 1



Tensor Fluctuations
• Likewise for tensors

S2 =

∫
d4x

a3

4

(
ḣ2

+,× +
k2

a2
h2

+,×

)
• Gravitational waves travel at the speed of light if
L = LEH + P (X,φ)

• Tensor speed can change in the general EFT Lagrangian through
non EH dependence on Rij

• Scalars and tensors differ in the appearance of εH in the scalar
action



Stuckelberg Restoration
• P (X,φ) also provides an illustration of how the scalar is

reintroduced by the so called “Stuckelberg” trick as a field that
restores gauge invariance (temporal diffeomorphisms)

• Alternate to unitary gauge is to instead transform to spatially flat
gauge where the ADM metric has no dynamics.

• Clarifies the origin of the εH difference in the scalar action

• EFT of inflation originally formulated in this language and with
g00 = −1/N2 so we will switch notion below.

• This language is also convenient for showing how the cubic action
or non-Gaussianity of inflation



Effective Field Theory
• Now consider that g00 + 1 is a small metric perturbation. A general

function of the lapse may be expanded around this value in a
Taylor series

S =

∫
d4x
√
−g
[1

2
M2

PlR+

∞∑
n=0

1

n!
M4
n(tu)(g00u + 1)n

]
,

• Varying action with respect to gµν we get the Einstein equations

• Constant term gives a cosmological constant whereas the n = 1

term gives the effective stress tensor of the field in the background

H2 = − 1

3M2
Pl

[
M4

0 + 2M4
1

]
Ḣ +H2 = − 1

3M2
Pl

[
M4

0 −M4
1

]
where recall Ḣ = −H2εH



Effective Field Theory
• Friedmann equation can thus eliminate n = 0, 1

M4
0 = −(3− 2εH)H2M2

Pl

M4
1 = −H2εHM

2
Pl

• Now we an restore time slicing invariance or temporal diffs
allowing for a general change in the time coordinate

tu = t+ π(t, xi)

• In particle physics language this is the Stuckelberg trick and π is a
Stuckelberg field.

• Transformation to arbitrary slicing is given by

g00
u =

∂tu
∂xµ

∂tu
∂xν

gµν

• Each M4
n(tu = t+ π) and hence carry extra Taylor expansion

terms



Effective Field Theory
• In general, transformation mixes π and metric fluctuations δgµν

including terms like

π̇δg00, δgπ̇, ∂iπg
0i, ∂iπ∂jπδg

ij

in the canonical linear theory calculation, the first three were the
Ȧ, ḢL, kB terms after integration by parts and the last is cubic
order

• The lapse and shift are non-dynamical for the class of EFT we
consider including P (X,φ), (beyond) Horndeski, so the most
useful transformation to consider is to spatially flat gauge to
eliminate dynamics in the spatial metric

• For this case, the gauge transformation of the curvature fluctuation
tells us π = −R/H
• We thus expect to recover the action forR from the action for π



Effective Field Theory
• In fact on scales below the horizon in most gauges the field

fluctuations reduce to spatially flat gauge since curvature effects
are negligible

• Spatially flat gauge extends the domain of validity extends even
through the horizon if we neglect slow roll corrections

• In this case we can ignore the terms associated with the spatial
pieces of the metric and replace

g00
u = −(1 + π̇)2 +

(∂iπ)2

a2

• Each g00
u + 1 factor carries terms that are linear and quadratic in π

(g00
u + 1)n = (−π̇)n

n∑
i=0

2n−in!

i!(n− i)!
Πi



Effective Field Theory
• So each M4

n term contributes from πn to π2n

Π = π̇

(
1− (∂iπ)2

a2π̇2

)
• For example M2

(g00
u + 1)2 = π̇2

[
4 + 4π̇

(
1− (∂iπ)2

a2π̇2

)
+ π̇2

(
1− (∂iπ)2

a2π̇2

)2
]

= 4(π̇2 + π̇3 − π̇ (∂iπ)2

a2
) + . . .

implies both a cubic and quartic Lagrangian. To cubic order

Sπ =

∫
d4x
√
−g
[
M2

PlεHH
2

(
π̇2 − (∂iπ)2

a2

)
+ 2M4

2 (π̇2 + π̇3 − π̇ (∂iπ)2

a2
) + . . .



Effective Field Theory
• Isolate the quadratic action

Sπ2 =

∫
d4x
√
−g
[
(M2

PlH
2εH + 2M4

2 )π̇2 +M2
PlḢ

(∂iπ)2

a2

]
and identify the sound speed from ω = (k/a)cs

c−2
s = 1 +

2M4
2

M2
PlεHH

2
; Π ∼ π̇

(
1− 1

c2s

)

Sπ2 =

∫
dtd3x(a3εHH

2)M2
Plc
−2
s

[
π̇2 − c2s

(∂iπ)2

a2

]
=

∫
dηd3x

z2H2M2
Pl

2

[(
∂π

∂η

)2

− c2s(∂iπ)2
]

where z2 = 2a2εH/c
2
s is known as the Mukhanov variable



Effective Field Theory
• So a field redefinition canonically normalizes the field

u = zHπMPl

brings the EFT action to canonical form (assuming M4
n =const.)

Su =

∫
dηd3x

[(
∂u

∂η

)2

− c2s(∂iu)2 − 2u
∂u

∂η

d ln z

dη
+ u2

(
d ln z

dη

)2
]

=

∫
dηd3x

[(
∂u

∂η

)2

− c2s(∂iu)2 +
u2

z

d2z

dη

]

which is the generalization of the u field of canonical inflation

• Quantize this field, noting that 1/
√
E normalization factor goes to

1/
√
kcs yielding the modefunction

u =
1√
2kcs

(
1− i

kcsη̃

)
e−ikcsη̃



Effective Field Theory
• Curvature fluctuations then freezeout at kcsη̃ = 1 (sound horizon

crossing) at a value

R = −Hπ =
cs

a
√

2εH

1√
2kcs

i

kcsη̃MPl

≈ −iH
2k3/2

√
εHcsMPl

• So

∆2
R =

k3|R|2

2π2
=

H2

8π2εHcsM2
Pl

• Generalization is that the sound speed enters in two ways: boosts
scalars over tensors by cs and changes the epoch of freezeout
between scalars and tensors



Effective Field Theory
• Returning to the original π action, since M4

2 carries cubic term this
requires a non-Gaussianity

Sπ =

∫
d4x
√
−g
[
−M

2
PlḢ

c2s

(
π̇2 + c2s

(∂iπ)2

a2

)
+M2

PlḢ

(
1− 1

c2s

)(
π̇3 − π̇ (∂iπ)2

a2

)]
+ . . .

• For cs � 1, spatial gradients dominate temporal derivatives

∂0 → ω, ∂i → k, ω = kcs/a

and leading order cubic term is π̇(∂iπ)2

• Estimate the size of the non-Gaussianity by taking the ratio of
cubic to quadratic at cs � 1

π̇(∂iπ)2

a2π̇2
∼ kπrms

csa
where πrms =

(
k3|π|2

2π2

)1/2



Effective Field Theory
• Deep within the horizon u = 1/

√
2kcs and so

kπrms

csa
∼ k

csa

(
k2

2z2H2csM2
Pl

)1/2

∼
(
kcs
aH

)2
H

MPl
√
εHcs

1

c2s

∼
(
kcs
aH

)2
∆R
c2s

< 1

• Since kcs/aH ∼ ω/H is a ratio of an energy scale to Hubble, the
bound determines the strong coupling scale

ωsc
H
∼ cs√

∆R
∼ 102cs

• For cs < 0.01 the strong coupling scale is near the horizon and the
effective theory has broken down before freezeout



Effective Field Theory
• Now consider a less extreme cs

• Here the effective theory becomes valid at least several efolds
before horizon crossing and we can make predictions within the
theory

• Not surprisingly non-Gaussianity is enhanced by these self
interactions and freezeout at kcs ∼ aH

kπrms

csa
∼ k

csa

(
1

εHcsM2
Pl

)1/2

∼ kcs
aH

H√
εHcsMPl

1

c2s

∼ ∆R
c2s

and so bispectrum is enhanced over the naive expectation by c−2
s



Effective Field Theory
• More generally, each M4

n sets its own strong coupling scale

Ln
L2

∼ 1

These coincide if

M4
n

M4
2

∼
(

1

c2
s

)n−2

which would be the natural prediction if the M2 strong coupling
scale indicated the scale of new physics and we take all allowed
operators as order unity at that scale


