Astro 4PT

Lecture Notes Set 1
 Wayne Hu

References

- Relativistic Cosmological Perturbation Theory

Inflation
Dark Energy
Modified Gravity
Cosmic Microwave Background
Large Scale Structure

- Bardeen (1980), PRD 221882
- Kodama \& Sasaki (1984), Prog. Th. Phys. Supp., 78, 1
- Mukhanov, Feldman, Brandenberger (1992), Phys. Reports, 215, 203
- Malik \& Wands (2009), Phys. Reports, 475, 1

Covariant Perturbation Theory

- Covariant $=$ takes same form in all coordinate systems
- Invariant = takes the same value in all coordinate systems
- Fundamental equations: Einstein equations, covariant conservation of stress-energy tensor:

$$
\begin{aligned}
G_{\mu \nu} & =8 \pi G T_{\mu \nu} \\
\nabla_{\mu} T^{\mu \nu} & =0
\end{aligned}
$$

- Preserve general covariance by keeping all free variables: 10 for each symmetric 4×4 tensor

1	2	3	4
	5	6	7
		8	9
			10

Metric Tensor

- Useful to think in a $3+1$ language since there are preferred spatial surfaces where the stress tensor is nearly homogeneous
- In general this is an Arnowitt-Deser-Misner (ADM) split
- Specialize to the case of a nearly FRW metric

$$
g_{00}=-a^{2}, \quad g_{i j}=a^{2} \gamma_{i j}
$$

where the " 0 " component is conformal time $\eta=d t / a$ and $\gamma_{i j}$ is a spatial metric of constant curvature $K=H_{0}^{2}\left(\Omega_{\mathrm{tot}}-1\right)$.

$$
{ }^{(3)} R=\frac{6 K}{a^{2}}
$$

Metric Tensor

- First define the slicing (lapse function A, shift function B^{i})

$$
\begin{aligned}
g^{00} & =-a^{-2}(1-2 A), \\
g^{0 i} & =-a^{-2} B^{i}
\end{aligned}
$$

A defines the lapse of proper time between 3-surfaces whereas B^{i} defines the threading or relationship between the 3-coordinates of the surfaces

- This absorbs $1+3=4$ free variables in the metric, remaining 6 is in the spatial surfaces which we parameterize as

$$
g^{i j}=a^{-2}\left(\gamma^{i j}-2 H_{L} \gamma^{i j}-2 H_{T}^{i j}\right)
$$

here (1) H_{L} a perturbation to the spatial curvature; (5) $H_{T}^{i j}$ a trace-free distortion to spatial metric (which also can perturb the curvature)

Curvature Perturbation

- Curvature perturbation on the 3D slice

$$
\delta\left[{ }^{(3)} R\right]=-\frac{4}{a^{2}}\left(\nabla^{2}+3 K\right) H_{L}+\frac{2}{a^{2}} \nabla_{i} \nabla_{j} H_{T}^{i j}
$$

- Note that we will often loosely refer to H_{L} as the "curvature perturbation"
- We will see that many representations have $H_{T}=0$
- It is easier to work with a dimensionless quantity
- First example of a 3-scalar - SVT decomposition

Matter Tensor

- Likewise expand the matter stress energy tensor around a homogeneous density ρ and pressure p :

$$
\begin{aligned}
T_{0}^{0} & =-\rho-\delta \rho \\
T_{i}^{0} & =(\rho+p)\left(v_{i}-B_{i}\right) \\
T_{0}^{i} & =-(\rho+p) v^{i} \\
T_{j}^{i} & =(p+\delta p) \delta_{j}^{i}+p \Pi_{j}^{i},
\end{aligned}
$$

- (1) $\delta \rho$ a density perturbation; (3) v_{i} a vector velocity, (1) δp a pressure perturbation; (5) $\Pi_{i j}$ an anisotropic stress perturbation
- So far this is fully general and applies to any type of matter or coordinate choice including non-linearities in the matter, e.g. scalar fields, cosmological defects, exotic dark energy.

Counting Variables

20 Variables (10 metric; 10 matter)
-10 Einstein equations
-4 Conservation equations
$+4 \quad$ Bianchi identities
-4 Gauge (coordinate choice 1 time, 3 space)
$6 \quad$ Free Variables

- Without loss of generality these can be taken to be the 6 components of the matter stress tensor
- For the background, specify $p(a)$ or equivalently $w(a) \equiv p(a) / \rho(a)$ the equation of state parameter.

Homogeneous Einstein Equations

- Einstein (Friedmann) equations:

$$
\begin{aligned}
\left(\frac{1}{a} \frac{d a}{d t}\right)^{2} & =-\frac{K}{a^{2}}+\frac{8 \pi G}{3} \rho \quad\left[=\left(\frac{1}{a} \frac{\dot{a}}{a}\right)^{2}\right] \\
\frac{1}{a} \frac{d^{2} a}{d t^{2}} & =-\frac{4 \pi G}{3}(\rho+3 p) \quad\left[=\frac{1}{a^{2}} \frac{d}{d \eta} \frac{\dot{a}}{a}\right]
\end{aligned}
$$

so that $w \equiv p / \rho<-1 / 3$ for acceleration

- Conservation equation $\nabla^{\mu} T_{\mu \nu}=0$ implies

$$
\frac{\dot{\rho}}{\rho}=-3(1+w) \frac{\dot{a}}{a}
$$

overdots are conformal time but equally true with coordinate time

Homogeneous Einstein Equations

- Counting exercise:

> | 20 | Variables (10 metric; 10 matter) |
| ---: | :--- |
| -17 | Homogeneity and Isotropy |
| -2 | Einstein equations |
| -1 | Conservation equations |
| +1 | Bianchi identities |
| 1 | Free Variables |

without loss of generality choose ratio of homogeneous \& isotropic component of the stress tensor to the density $w(a)=p(a) / \rho(a)$.

Acceleration Implies Negative Pressure

- Role of stresses in the background cosmology
- Homogeneous Einstein equations $G_{\mu \nu}=8 \pi G T_{\mu \nu}$ imply the two Friedmann equations (flat universe, or associating curvature $\left.\rho_{K}=-3 K / 8 \pi G a^{2}\right)$

$$
\begin{aligned}
\left(\frac{1}{a} \frac{d a}{d t}\right)^{2} & =\frac{8 \pi G}{3} \rho \\
\frac{1}{a} \frac{d^{2} a}{d t^{2}} & =-\frac{4 \pi G}{3}(\rho+3 p)
\end{aligned}
$$

so that the total equation of state $w \equiv p / \rho<-1 / 3$ for acceleration

- Conservation equation $\nabla^{\mu} T_{\mu \nu}=0$ implies

$$
\frac{\dot{\rho}}{\rho}=-3(1+w) \frac{\dot{a}}{a}
$$

so that ρ must scale more slowly than a^{-2}

Scalar, Vector, Tensor

- In linear perturbation theory, perturbations may be separated by their transformation properties under 3D rotation and translation.
- The eigenfunctions of the Laplacian operator form a complete set

$$
\begin{array}{rlr}
\nabla^{2} Q^{(0)} & =-k^{2} Q^{(0)} & \mathrm{S} \\
\nabla^{2} Q_{i}^{(\pm 1)} & =-k^{2} Q_{i}^{(\pm 1)} & \mathrm{V}, \\
\nabla^{2} Q_{i j}^{(\pm 2)} & =-k^{2} Q_{i j}^{(\pm 2)} & \mathrm{T},
\end{array}
$$

- Vector and tensor modes satisfy divergence-free and transverse-traceless conditions

$$
\begin{aligned}
\nabla^{i} Q_{i}^{(\pm 1)} & =0 \\
\nabla^{i} Q_{i j}^{(\pm 2)} & =0 \\
\gamma^{i j} Q_{i j}^{(\pm 2)} & =0
\end{aligned}
$$

Vector and Tensor Quantities

- A scalar mode carries with it associated vector (curl-free) and tensor (longitudinal) quantities
- A vector mode carries and associated tensor (trace and divergence free) quantities
- A tensor mode has only a tensor (trace and divergence free)
- These are built from the mode basis out of covariant derivatives and the metric

$$
\begin{aligned}
Q_{i}^{(0)} & =-k^{-1} \nabla_{i} Q^{(0)} \\
Q_{i j}^{(0)} & =\left(k^{-2} \nabla_{i} \nabla_{j}+\frac{1}{3} \gamma_{i j}\right) Q^{(0)} \\
Q_{i j}^{(\pm 1)} & =-\frac{1}{2 k}\left[\nabla_{i} Q_{j}^{(\pm 1)}+\nabla_{j} Q_{i}^{(\pm 1)}\right],
\end{aligned}
$$

Perturbation k-Modes

- For the k th eigenmode, the scalar components become

$$
\begin{aligned}
A(\mathbf{x}) & =A(k) Q^{(0)}, & H_{L}(\mathbf{x}) & =H_{L}(k) Q^{(0)} \\
\delta \rho(\mathbf{x}) & =\delta \rho(k) Q^{(0)}, & \delta p(\mathbf{x}) & =\delta p(k) Q^{(0)}
\end{aligned}
$$

the vectors components become

$$
B_{i}(\mathbf{x})=\sum_{m=-1}^{1} B^{(m)}(k) Q_{i}^{(m)}, \quad v_{i}(\mathbf{x})=\sum_{m=-1}^{1} v^{(m)}(k) Q_{i}^{(m)}
$$

and the tensors components

$$
H_{T i j}(\mathbf{x})=\sum_{m=-2}^{2} H_{T}^{(m)}(k) Q_{i j}^{(m)}, \quad \Pi_{i j}(\mathbf{x})=\sum_{m=-2}^{2} \Pi^{(m)}(k) Q_{i j}^{(m)}
$$

- Note that the curvature perturbation only involves scalars

$$
\delta\left[{ }^{(3)} R\right]=\frac{4}{a^{2}}\left(k^{2}-3 K\right)\left(H_{L}^{(0)}+\frac{1}{3} H_{T}^{(0)}\right) Q^{(0)}
$$

Spatially Flat Case

- For a spatially flat background metric, harmonics are related to plane waves:

$$
\begin{aligned}
Q^{(0)} & =\exp (i \mathbf{k} \cdot \mathbf{x}) \\
Q_{i}^{(\pm 1)} & =\frac{-i}{\sqrt{2}}\left(\hat{\mathbf{e}}_{1} \pm i \hat{\mathbf{e}}_{2}\right)_{i} \exp (i \mathbf{k} \cdot \mathbf{x}) \\
Q_{i j}^{(\pm 2)} & =-\sqrt{\frac{3}{8}}\left(\hat{\mathbf{e}}_{1} \pm i \hat{\mathbf{e}}_{2}\right)_{i}\left(\hat{\mathbf{e}}_{1} \pm i \hat{\mathbf{e}}_{2}\right)_{j} \exp (i \mathbf{k} \cdot \mathbf{x})
\end{aligned}
$$

where $\hat{\mathbf{e}}_{3} \| \mathbf{k}$. Chosen as spin states, c.f. polarization.

- For vectors, the harmonic points in a direction orthogonal to \mathbf{k} suitable for the vortical component of a vector

Spatially Flat Case

- Tensor harmonics are the transverse traceless gauge representation
- Tensor amplitude related to the more traditional

$$
h_{+}\left[\left(\mathbf{e}_{1}\right)_{i}\left(\mathbf{e}_{1}\right)_{j}-\left(\mathbf{e}_{2}\right)_{i}\left(\mathbf{e}_{2}\right)_{j}\right], \quad h_{\times}\left[\left(\mathbf{e}_{1}\right)_{i}\left(\mathbf{e}_{2}\right)_{j}+\left(\mathbf{e}_{2}\right)_{i}\left(\mathbf{e}_{1}\right)_{j}\right]
$$

as

$$
h_{+} \pm i h_{\times}=-\sqrt{6} H_{T}^{(\mp 2)}
$$

- $H_{T}^{(\pm 2)}$ proportional to the right and left circularly polarized amplitudes of gravitational waves with a normalization that is convenient to match the scalar and vector definitions

Covariant Scalar Equations

- DOF counting exercise

8 Variables (4 metric; 4 matter)
-4 Einstein equations
-2 Conservation equations
+2 Bianchi identities
-2 Gauge (coordinate choice 1 time, 1 space)

2 Free Variables
without loss of generality choose scalar components of the stress tensor $\delta p, \Pi$.

Covariant Scalar Equations

- Einstein equations (suppressing 0) superscripts

$$
\begin{aligned}
& \left(k^{2}-3 K\right)\left[H_{L}+\frac{1}{3} H_{T}\right]-3\left(\frac{\dot{a}}{a}\right)^{2} A+3 \frac{\dot{a}}{a} \dot{H}_{L}+\frac{\dot{a}}{a} k B= \\
& =4 \pi G a^{2} \delta \rho, \quad 00 \text { Poisson Equation } \\
& k^{2}\left(A+H_{L}+\frac{1}{3} H_{T}\right)+\left(\frac{d}{d \eta}+2 \frac{\dot{a}}{a}\right)\left(k B-\dot{H}_{T}\right) \\
& =-8 \pi G a^{2} p \Pi, \quad i j \text { Anisotropy Equation } \\
& \frac{\dot{a}}{a} A-\dot{H}_{L}-\frac{1}{3} \dot{H}_{T}-\frac{K}{k^{2}}\left(k B-\dot{H}_{T}\right) \\
& =4 \pi G a^{2}(\rho+p)(v-B) / k, \quad 0 i \text { Momentum Equation } \\
& {\left[2 \frac{\ddot{a}}{a}-2\left(\frac{\dot{a}}{a}\right)^{2}+\frac{\dot{a}}{a} \frac{d}{d \eta}-\frac{k^{2}}{3}\right] A-\left[\frac{d}{d \eta}+\frac{\dot{a}}{a}\right]\left(\dot{H}_{L}+\frac{1}{3} k B\right)} \\
& =4 \pi G a^{2}\left(\delta p+\frac{1}{3} \delta \rho\right), \quad \text { ii Acceleration Equation }
\end{aligned}
$$

Covariant Scalar Equations

- Conservation equations: continuity and Navier Stokes

$$
\begin{aligned}
{\left[\frac{d}{d \eta}+3 \frac{\dot{a}}{a}\right] \delta \rho+3 \frac{\dot{a}}{a} \delta p } & =-(\rho+p)\left(k v+3 \dot{H}_{L}\right), \\
{\left[\frac{d}{d \eta}+4 \frac{\dot{a}}{a}\right]\left[(\rho+p) \frac{(v-B)}{k}\right] } & =\delta p-\frac{2}{3}\left(1-3 \frac{K}{k^{2}}\right) p \Pi+(\rho+p) A,
\end{aligned}
$$

- Equations are not independent since $\nabla_{\mu} G^{\mu \nu}=0$ via the Bianchi identities.
- Related to the ability to choose a coordinate system or "gauge" to represent the perturbations.

Covariant Vector Equations

- Einstein equations

$$
\begin{gathered}
\left(1-2 K / k^{2}\right)\left(k B^{(\pm 1)}-\dot{H}_{T}^{(\pm 1)}\right) \\
=16 \pi G a^{2}(\rho+p)\left(v^{(\pm 1)}-B^{(\pm 1)}\right) / k \\
{\left[\frac{d}{d \eta}+2 \frac{\dot{a}}{a}\right]\left(k B^{(\pm 1)}-\dot{H}_{T}^{(\pm 1)}\right)} \\
=-8 \pi G a^{2} p \Pi^{(\pm 1)}
\end{gathered}
$$

- Conservation Equations

$$
\begin{gathered}
{\left[\frac{d}{d \eta}+4 \frac{\dot{a}}{a}\right]\left[(\rho+p)\left(v^{(\pm 1)}-B^{(\pm 1)}\right) / k\right]} \\
=-\frac{1}{2}\left(1-2 K / k^{2}\right) p \Pi^{(\pm 1)}
\end{gathered}
$$

- Gravity provides no source to vorticity \rightarrow decay

Covariant Vector Equations

- DOF counting exercise

8 Variables (4 metric; 4 matter)
-4 Einstein equations
-2 Conservation equations
+2 Bianchi identities
-2 Gauge (coordinate choice 1 time, 1 space)

2 Free Variables
without loss of generality choose vector components of the stress tensor $\Pi^{(\pm 1)}$.

Covariant Tensor Equation

- Einstein equation

$$
\left[\frac{d^{2}}{d \eta^{2}}+2 \frac{\dot{a}}{a} \frac{d}{d \eta}+\left(k^{2}+2 K\right)\right] H_{T}^{(\pm 2)}=8 \pi G a^{2} p \Pi^{(\pm 2)} .
$$

- DOF counting exercise

4 Variables (2 metric; 2 matter)
-2 Einstein equations
-0 Conservation equations
$+0 \quad$ Bianchi identities
$-0 \quad$ Gauge (coordinate choice 1 time, 1 space)

2 Free Variables
wlog choose tensor components of the stress tensor $\Pi^{(\pm 2)}$.

Arbitrary Dark Components

- Total stress energy tensor can be broken up into individual pieces
- Dark components interact only through gravity and so satisfy separate conservation equations
- Einstein equation source remains the sum of components.
- To specify an arbitrary dark component, give the behavior of the stress tensor: 6 components: $\delta p, \Pi^{(i)}$, where $i=-2, \ldots, 2$.
- Many types of dark components (dark matter, scalar fields, massive neutrinos,..) have simple forms for their stress tensor in terms of the energy density, i.e. described by equations of state.
- An equation of state for the background $w=p / \rho$ is not sufficient to determine the behavior of the perturbations.

Separate Universes

- Geometry of the gauge or time slicing and spatial threading
- For perturbations larger than the horizon, a local observer should just see a different (separate) FRW universe
- Scalar equations should be equivalent to an appropriately remapped Friedmann equation
- Unit normal vector N^{μ} to constant time hypersurfaces $N_{\mu} d x^{\mu}=N_{0} d \eta, N^{\mu} N_{\mu}=-1$, to linear order in metric

$$
\begin{array}{ll}
N_{0}=-a(1+A Q), & N_{i}=0 \\
N^{0}=a^{-1}(1-A Q), & N^{i}=-B Q^{i}
\end{array}
$$

- Expansion of spatial volume per proper time is given by 4-divergence

$$
\nabla_{\mu} N^{\mu} \equiv \theta=3 H(1-A Q)+\frac{k}{a} B Q+\frac{3}{a} \dot{H}_{L} Q
$$

Shear and Acceleration

- Other pieces of $\nabla_{\nu} N_{\mu}$ give the vorticity, shear and acceleration

$$
\nabla_{\nu} N_{\mu} \equiv \omega_{\mu \nu}+\sigma_{\mu \nu}+\frac{1}{3} \theta P_{\mu \nu}-a_{\mu} N_{\nu}
$$

with

$$
\begin{aligned}
P_{\mu \nu} & =g_{\mu \nu}+N_{\mu} N_{\nu} \\
\omega_{\mu \nu} & =P_{\mu}{ }^{\alpha} P_{\nu}{ }^{\beta}\left(\nabla_{\beta} N_{\alpha}-\nabla_{\alpha} N_{\beta}\right) \\
\sigma_{\mu \nu} & =\frac{1}{2} P_{\mu}{ }^{\alpha} P_{\nu}{ }^{\beta}\left(\nabla_{\beta} N_{\alpha}+\nabla_{\alpha} N_{\beta}\right)-\frac{1}{3} \theta P_{\mu \nu} \\
a_{\mu} & =\left(\nabla_{\alpha} N_{\mu}\right) N^{\alpha}
\end{aligned}
$$

projection $P_{\mu \nu} N^{\nu}=0$, trace free antisymmetric vorticity, symmetric shear and acceleration

Shear and Acceleration

- Vorticity $\omega_{\mu \nu}=0, \sigma_{00}=\sigma_{0 i}=0=a_{0}$
- Remaining perturbed quantities are the spatial shear and acceleration

$$
\begin{aligned}
\sigma_{i j} & =a\left(\dot{H}_{T}-k B\right) Q_{i j} \\
a_{i} & =-k A Q_{i}
\end{aligned}
$$

- A convenient choice of coordinates might be shear free $\dot{H}_{T}-k B=0$
- A alone is related to the perturbed acceleration

Separate Universes

- So the e-foldings of the expansion are given by $d \tau=(1+A Q) a d \eta$

$$
\begin{aligned}
N & =\int d \tau \frac{1}{3} \theta \\
& =\int d \eta\left(\frac{\dot{a}}{a}+\dot{H}_{L} Q+\frac{1}{3} k B Q\right)
\end{aligned}
$$

Thus if $k B$ can be ignored as $k \rightarrow 0$ then H_{L} plays the role of a local change in the scale factor, more generally B plays the role of Eulerian \rightarrow Lagrangian coordinates.

- Change in H_{L} between separate universes related to change in number of e-folds: so called δN approach, simplifying equations by using N as time variable to absorb local scale factor effects
- We shall see that for adiabatic perturbations $p(\rho)$ that $\dot{H}_{L}=0$ outside horizon for an appropriate choice of slicing - plays an important role in simplifying calculations

Separate Universes

- Choosing coordinates where $\dot{H}_{L}+k B / 3=0$ (defines the slicing), the e-folding remains unperturbed, we get that the 00 Einstein equations at $k \rightarrow 0$ are

$$
-\left(\frac{\dot{a}}{a}\right)^{2} A+\frac{1}{3} \frac{k^{2}-3 K}{a^{2}}\left(H_{L}+H_{T} / 3\right)=\frac{4 \pi G}{3} a^{2} \delta \rho
$$

which is to be compared to the Friedmann equation

$$
H^{2}+\frac{K}{a^{2}}=\frac{8 \pi G}{3} \rho
$$

Noting that $H=\bar{H}(1-A Q)$ and using the perturbation to ${ }^{(3)} \mathcal{R}$

$$
\begin{aligned}
2 \delta H \bar{H}+\frac{\delta K}{a^{2}} & =\frac{8 \pi G}{3} \delta \rho Q \\
-2 A Q \bar{H}^{2}+\frac{2}{3} \frac{k^{2}-3 K}{a^{2}}\left(H_{L}+H_{T} / 3\right) Q & =\frac{8 \pi G}{3} \delta \rho Q \\
-\left(\frac{\dot{a}}{a}\right)^{2} A+\frac{1}{3} \frac{k^{2}-3 K}{a^{2}}\left(H_{L}+H_{T} / 3\right) & =\frac{4 \pi G}{3} \delta \rho
\end{aligned}
$$

Separate Universes

- And the space-space piece

$$
\left[2 \frac{\ddot{a}}{a}-2\left(\frac{\dot{a}}{a}\right)^{2}+\frac{\dot{a}}{a} \frac{d}{d \eta}\right] A=\frac{4 \pi G}{3} a^{2}(\delta \rho+3 \delta p)
$$

which is to be compared with the acceleration equation

$$
\frac{d}{d \eta}(a H)=-\frac{4 \pi G}{3} a^{2}(\rho+3 p)
$$

again expanding $H=\bar{H}(1-A Q)$ and also $d \eta=(1+A Q) d \bar{\eta}$

$$
\begin{aligned}
\frac{d}{d \eta}(a H) & =(1-A Q) \frac{d}{d \bar{\eta}}(a \bar{H})[1-A Q] \\
& \approx \frac{d}{d \bar{\eta}}(a \bar{H})-2 A Q \frac{d}{d \bar{\eta}} \frac{\dot{a}}{a}+\frac{\dot{a}}{a} \frac{d}{d \bar{\eta}} A Q
\end{aligned}
$$

Separate Universes

- Finally the continuity equation (using slicing with $\dot{H}_{L}=-k B / 3$)

$$
\dot{\delta} \rho+3 \frac{\dot{a}}{a}(\delta \rho+\delta p)=-(\rho+p) k(v-B)
$$

is to be compared to

$$
d \rho / d \eta=-3(a H)(\rho+p)
$$

which again with the substitutions becomes

$$
\begin{aligned}
(1-A Q) \frac{d}{d \bar{\eta}}(\bar{\rho}+\delta \rho Q) & =-3(a H)(1-A Q)[\bar{\rho}+\bar{p}]-3(a H)[\delta \rho+\delta p] Q \\
\frac{d}{d \bar{\eta}} \delta \rho & =-3 \frac{\dot{a}}{a}(\delta \rho+\delta p)
\end{aligned}
$$

- $\delta \rho / \rho$ constant in $\dot{H}_{L}+k B / 3=0$ slicing outside horizon where peculiar velocity cannot move matter (cf. Newtonian gauge below).
- Note also that $v-B$ has a special interpretation as well: setting $v=B$ gives a comoving slicing since $N^{i} \propto v^{i}, N_{i} \propto v_{i}-B_{i}=0$

Separate Universes

- There are other possible choices what to hold fixed on constant time slices besides $N=\ln a$. While separate universe statements still hold a must be perturbed and the simplest gauge to see these identifications with the Friedmann equations changes.
- More generally the analysis of the normal to constant time surfaces has identified geometric quantities associated with the metric perturbations
- Uniform efolding: $\dot{H}_{L}+k B / 3=0$
- Shear free: $\dot{H}_{T}-k B=0$
- Zero acceleration, coordinate and proper time coincide: $A=0$
- Uniform expansion: $-3 H A+\left(3 \dot{H}_{L}+k B\right)=0$
- Comoving: $v=B$

Gauge

- Metric and matter fluctuations take on different values in different coordinate system
- No such thing as a "gauge invariant" density perturbation!
- General coordinate transformation:

$$
\begin{aligned}
\tilde{\eta} & =\eta+T \\
\tilde{x}^{i} & =x^{i}+L^{i}
\end{aligned}
$$

free to choose $\left(T, L^{i}\right)$ to simplify equations or physics corresponds to a choice of slicing and threading in ADM.

- Decompose these into scalar $T, L^{(0)}$ and vector harmonics $L^{(\pm 1)}$.

Gauge

- $g_{\mu \nu}$ and $T_{\mu \nu}$ transform as tensors, so components in different frames can be related

$$
\begin{aligned}
\tilde{g}_{\mu \nu}\left(\tilde{\eta}, \tilde{x}^{i}\right) & =\frac{\partial x^{\alpha}}{\partial \tilde{x}^{\mu}} \frac{\partial x^{\beta}}{\partial \tilde{x}^{\nu}} g_{\alpha \beta}\left(\eta, x^{i}\right) \\
& =\frac{\partial x^{\alpha}}{\partial \tilde{x}^{\mu}} \frac{\partial x^{\beta}}{\partial \tilde{x}^{\nu}} g_{\alpha \beta}\left(\tilde{\eta}-T Q, \tilde{x}^{i}-L Q^{i}\right)
\end{aligned}
$$

- Fluctuations are compared at the same coordinate positions (not same space time positions) between the two gauges
- For example with a $T Q$ perturbation, an event labeled with $\tilde{\eta}=$ const. and $\tilde{x}=$ const. represents a different time with respect to the underlying homogeneous and isotropic background

Gauge Transformation

- Scalar Metric:

$$
\begin{aligned}
\tilde{A} & =A-\dot{T}-\frac{\dot{a}}{a} T, \\
\tilde{B} & =B+\dot{L}+k T, \\
\tilde{H}_{L} & =H_{L}-\frac{k}{3} L-\frac{\dot{a}}{a} T, \\
\tilde{H}_{T} & =H_{T}+k L, \quad \tilde{H}_{L}+\frac{1}{3} \tilde{H}_{T}=H_{L}+\frac{1}{3} H_{T}-\frac{\dot{a}}{a} T
\end{aligned}
$$

curvature perturbation depends on slicing not threading

- Scalar Matter (Jth component):

$$
\begin{aligned}
\delta \tilde{\rho}_{J} & =\delta \rho_{J}-\dot{\rho}_{J} T, \\
\delta \tilde{p}_{J} & =\delta p_{J}-\dot{p}_{J} T, \\
\tilde{v}_{J} & =v_{J}+\dot{L},
\end{aligned}
$$

density and pressure likewise depend on slicing only

Gauge Transformation

- Vector:

$$
\begin{aligned}
\tilde{B}^{(\pm 1)} & =B^{(\pm 1)}+\dot{L}^{(\pm 1)} \\
\tilde{H}_{T}^{(\pm 1)} & =H_{T}^{(\pm 1)}+k L^{(\pm 1)} \\
\tilde{v}_{J}^{(\pm 1)} & =v_{J}^{(\pm 1)}+\dot{L}^{(\pm 1)},
\end{aligned}
$$

- Spatial vector has no background component hence no dependence on slicing at first order

Tensor: no dependence on slicing or threading at first order

- Gauge transformations and covariant representation can be extended to higher orders
- A coordinate system is fully specified if there is an explicit prescription for $\left(T, L^{i}\right)$ or for scalars (T, L)

Slicing

Common choices for slicing T : set something geometric to zero

- Proper time slicing $A=0$: proper time between slices corresponds to coordinate time $-T$ allows c / a freedom
- Comoving (velocity orthogonal) slicing: $v-B=0$, matter 4 velocity is related to N^{ν} and orthogonal to slicing - T fixed
- Newtonian (shear free) slicing: $\dot{H}_{T}-k B=0$, expansion rate is isotropic, shear free, T fixed
- Uniform expansion slicing: $-(\dot{a} / a) A+\dot{H}_{L}+k B / 3=0$, perturbation to the volume expansion rate θ vanishes, T fixed
- Flat (constant curvature) slicing, $\delta^{(3)} R=0,\left(H_{L}+H_{T} / 3=0\right)$, T fixed
- Constant density slicing, $\delta \rho_{I}=0, T$ fixed

Threading

- Threading specifies the relationship between constant spatial coordinates between slices and is determined by L

Typically involves a condition on v, B, H_{T}

- Orthogonal threading $B=0$, constant spatial coordinates orthogonal to slicing (zero shift), allows $\delta L=c$ translational freedom
- Comoving threading $v=0$, allows $\delta L=c$ translational freedom.
- Isotropic threading $H_{T}=0$, fully fixes L

Newtonian (Longitudinal) Gauge

- Newtonian (shear free slicing, isotropic threading):

$$
\begin{aligned}
\tilde{B} & =\tilde{H}_{T}=0 \\
\Psi & \equiv \tilde{A} \quad \text { (Newtonian potential) } \\
\Phi & \equiv \tilde{H}_{L} \quad \text { (Newtonian curvature) } \\
L & =-H_{T} / k \\
T & =-B / k+\dot{H}_{T} / k^{2}
\end{aligned}
$$

Good: intuitive Newtonian like gravity; matter and metric algebraically related; commonly chosen for analytic CMB and lensing work
Bad: numerically unstable

Newtonian (Longitudinal) Gauge

- Newtonian (shear free) slicing, isotropic threading $B=H_{T}=0$:

$$
\begin{aligned}
\left(k^{2}-3 K\right) \Phi & =4 \pi G a^{2}\left[\delta \rho+3 \frac{\dot{a}}{a}(\rho+p) v / k\right] \quad \text { Poisson }+ \text { Momentum } \\
k^{2}(\Psi+\Phi) & =-8 \pi G a^{2} p \Pi \quad \text { Anisotropy }
\end{aligned}
$$

so $\Psi=-\Phi$ if anisotropic stress $\Pi=0$ and

$$
\begin{aligned}
{\left[\frac{d}{d \eta}+3 \frac{\dot{a}}{a}\right] \delta \rho+3 \frac{\dot{a}}{a} \delta p } & =-(\rho+p)(k v+3 \dot{\Phi}), \\
{\left[\frac{d}{d \eta}+4 \frac{\dot{a}}{a}\right](\rho+p) v } & =k \delta p-\frac{2}{3}\left(1-3 \frac{K}{k^{2}}\right) p k \Pi+(\rho+p) k \Psi,
\end{aligned}
$$

- Newtonian competition between stress (pressure and viscosity) and potential gradients
- Note: Poisson source is the density perturbation on comoving slicing

Total Matter Gauge

- Total matter: (comoving slicing, isotropic threading)

$$
\begin{aligned}
\tilde{B} & =\tilde{v} \quad\left(T_{i}^{0}=0\right) \\
H_{T} & =0 \\
\xi & =\tilde{A} \\
\mathcal{R} & =\tilde{H}_{L} \quad \text { (comoving curvature) } \\
\Delta & =\tilde{\delta} \quad \text { (total density pert) } \\
T & =(v-B) / k \\
L & =-H_{T} / k
\end{aligned}
$$

Good: Algebraic relations between matter and metric; comoving curvature perturbation obeys conservation law

Bad: Non-intuitive threading involving v

Total Matter Gauge

- Euler equation becomes an algebraic relation between stress and potential

$$
(\rho+p) \xi=-\delta p+\frac{2}{3}\left(1-\frac{3 K}{k^{2}}\right) p \Pi
$$

- Einstein equation lacks momentum density source

$$
\frac{\dot{a}}{a} \xi-\dot{\mathcal{R}}-\frac{K}{k^{2}} k v=0
$$

Combine: \mathcal{R} is conserved if stress fluctuations negligible, e.g. above the horizon if $|K| \ll H^{2}$

$$
\dot{\mathcal{R}}+K v / k=\frac{\dot{a}}{a}\left[-\frac{\delta p}{\rho+p}+\frac{2}{3}\left(1-\frac{3 K}{k^{2}}\right) \frac{p}{\rho+p} \Pi\right] \rightarrow 0
$$

"Gauge Invariant" Approach

- Gauge transformation rules allow variables which take on a geometric meaning in one choice of slicing and threading to be accessed from variables on another choice
- Functional form of the relationship between the variables is gauge invariant (not the variable values themselves! - i.e. equation is covariant)
- E.g. comoving curvature and density perturbations

$$
\begin{aligned}
\mathcal{R} & =H_{L}+\frac{1}{3} H_{T}-\frac{\dot{a}}{a}(v-B) / k \\
\Delta \rho & =\delta \rho+3(\rho+p) \frac{\dot{a}}{a}(v-B) / k
\end{aligned}
$$

Newtonian-Total Matter Hybrid

- With the gauge in (or co) variant approach, express variables of one gauge in terms of those in another - allows a mixture in the equations of motion
- Example: Newtonian curvature and comoving density

$$
\left(k^{2}-3 K\right) \Phi=4 \pi G a^{2} \rho \Delta
$$

ordinary Poisson equation then implies Φ approximately constant if stresses negligible.

- Example: Exact Newtonian curvature above the horizon derived through comoving curvature conservation
Gauge transformation

$$
\Phi=\mathcal{R}+\frac{\dot{a}}{a} \frac{v}{k}
$$

Hybrid "Gauge Invariant" Approach

Einstein equation to eliminate velocity

$$
\frac{\dot{a}}{a} \Psi-\dot{\Phi}=4 \pi G a^{2}(\rho+p) v / k
$$

Friedmann equation with no spatial curvature

$$
\left(\frac{\dot{a}}{a}\right)^{2}=\frac{8 \pi G}{3} a^{2} \rho
$$

With $\dot{\Phi}=0$ and $\Psi \approx-\Phi$

$$
\frac{\dot{a}}{a} \frac{v}{k}=-\frac{2}{3(1+w)} \Phi
$$

Newtonian-Total Matter Hybrid

Combining gauge transformation with velocity relation

$$
\Phi=\frac{3+3 w}{5+3 w} \mathcal{R}
$$

Usage: calculate \mathcal{R} from inflation determines Φ for any choice of matter content or causal evolution.

- Example: Scalar field ("quintessence" dark energy) equations in total matter gauge imply a sound speed $\delta p / \delta \rho=1$ independent of potential $V(\phi)$. Solve in synchronous gauge.

Synchronous Gauge

- Synchronous: (proper time slicing, orthogonal threading)

$$
\begin{aligned}
\tilde{A} & =\tilde{B}=0 \\
\eta_{T} & \equiv-\tilde{H}_{L}-\frac{1}{3} \tilde{H}_{T} \\
h_{L} & \equiv 6 H_{L} \\
T & =a^{-1} \int d \eta a A+c_{1} a^{-1} \\
L & =-\int d \eta(B+k T)+c_{2}
\end{aligned}
$$

Good: stable, the choice of numerical codes
Bad: residual gauge freedom in constants c_{1}, c_{2} must be specified as an initial condition, intrinsically relativistic, threading conditions breaks down beyond linear regime if c_{1} is fixed to CDM comoving.

Synchronous Gauge

- The Einstein equations give

$$
\begin{aligned}
\dot{\eta}_{T}-\frac{K}{2 k^{2}}\left(\dot{h}_{L}+6 \dot{\eta}_{T}\right) & =4 \pi G a^{2}(\rho+p) \frac{v}{k}, \\
\ddot{h}_{L}+\frac{\dot{a}}{a} \dot{h}_{L} & =-8 \pi G a^{2}(\delta \rho+3 \delta p), \\
-\left(k^{2}-3 K\right) \eta_{T}+\frac{1}{2} \frac{\dot{a}}{a} \dot{h}_{L} & =4 \pi G a^{2} \delta \rho
\end{aligned}
$$

[choose (1\&2) or (1 \& 3)] while the conservation equations give

$$
\begin{aligned}
& {\left[\frac{d}{d \eta}+3 \frac{\dot{a}}{a}\right] \delta \rho_{J}+3 \frac{\dot{a}}{a} \delta p_{J}=-\left(\rho_{J}+p_{J}\right)\left(k v_{J}+\frac{1}{2} \dot{h}_{L}\right),} \\
& {\left[\frac{d}{d \eta}+4 \frac{\dot{a}}{a}\right]\left(\rho_{J}+p_{J}\right) \frac{v_{J}}{k}=\delta p_{J}-\frac{2}{3}\left(1-3 \frac{K}{k^{2}}\right) p_{J} \Pi_{J} .}
\end{aligned}
$$

Synchronous Gauge

- Lack of a lapse A implies no gravitational forces in Navier-Stokes equation. Hence for stress free matter like cold dark matter, zero velocity initially implies zero velocity always.
- Choosing the momentum and acceleration Einstein equations is good since for CDM domination, curvature η_{T} is conserved and \dot{h}_{L} is simple to solve for.
- Choosing the momentum and Poisson equations is good when the equation of state of the matter is complicated since δp is not involved. This is the choice of CAMB.

Caution: since the curvature η_{T} appears and it has zero CDM source, subtle effects like dark energy perturbations are important everywhere

Spatially Flat Gauge

- Spatially Flat (flat slicing, isotropic threading):

$$
\begin{aligned}
\tilde{H}_{L} & =\tilde{H}_{T}=0 \\
L & =-H_{T} / k \\
\tilde{A}, \tilde{B} & =\text { metric perturbations } \\
T & =\left(\frac{\dot{a}}{a}\right)^{-1}\left(H_{L}+\frac{1}{3} H_{T}\right)
\end{aligned}
$$

Good: eliminates spatial metric in evolution equations; useful in inflationary calculations (Mukhanov et al)
Bad: non-intuitive slicing (no curvature!) and threading

- Caution: perturbation evolution is governed by the behavior of stress fluctuations and an isotropic stress fluctuation δp is gauge dependent.

Uniform Density Gauge

- Uniform density: (constant density slicing, isotropic threading)

$$
\begin{aligned}
H_{T} & =0, \\
\zeta_{I} & \equiv H_{L} \\
B_{I} & \equiv B \\
A_{I} & \equiv A \\
T & =\frac{\delta \rho_{I}}{\dot{\rho}_{I}} \\
L & =-H_{T} / k
\end{aligned}
$$

Good: Curvature conserved involves only stress energy conservation; simplifies isocurvature treatment

Bad: non intuitive slicing (no density pert! problems beyond linear regime) and threading

Uniform Density Gauge

- Einstein equations with I as the total or dominant species

$$
\begin{aligned}
\left(k^{2}-3 K\right) \zeta_{I}-3\left(\frac{\dot{a}}{a}\right)^{2} A_{I}+3 \frac{\dot{a}}{a} \dot{\zeta}_{I}+\frac{\dot{a}}{a} k B_{I} & =0, \\
& \frac{\dot{a}}{a} A_{I}-\dot{\zeta}_{I}-\frac{K}{k} B_{I}
\end{aligned}=4 \pi G a^{2}(\rho+p) \frac{v-B_{I}}{k}, ~ l
$$

- The conservation equations (if $J=I$ then $\delta \rho_{J}=0$)

$$
\begin{aligned}
{\left[\frac{d}{d \eta}+3 \frac{\dot{a}}{a}\right] \delta \rho_{J}+3 \frac{\dot{a}}{a} \delta p_{J} } & =-\left(\rho_{J}+p_{J}\right)\left(k v_{J}+3 \dot{\zeta}_{I}\right), \\
{\left[\frac{d}{d \eta}+4 \frac{\dot{a}}{a}\right]\left(\rho_{J}+p_{J}\right) \frac{v_{J}-B_{I}}{k} } & =\delta p_{J}-\frac{2}{3}\left(1-3 \frac{K}{k^{2}}\right) p_{J} \Pi_{J}+\left(\rho_{J}+p_{J}\right) A_{I} .
\end{aligned}
$$

Uniform Density Gauge

- Conservation of curvature - single component I

$$
\dot{\zeta}_{I}=-\frac{\dot{a}}{a} \frac{\delta p_{I}}{\rho_{I}+p_{I}}-\frac{1}{3} k v_{I} .
$$

- Since $\delta \rho_{I}=0, \delta p_{I}$ is the non-adiabatic stress and curvature is constant as $k \rightarrow 0$ for internally adiabatic stresses $p_{I}\left(\rho_{I}\right)$.
- Note that this conservation law does not involve the Einstein equations at all: just local energy momentum conservation so it is valid for alternate theories of gravity
- Curvature on comoving slices \mathcal{R} and ζ_{I} related by

$$
\zeta_{I}=\mathcal{R}+\left.\frac{1}{3} \frac{\rho_{I} \Delta_{I}}{\left(\rho_{I}+p_{I}\right)}\right|_{\text {comoving }} .
$$

and coincide above the horizon for adiabatic fluctuations

Uniform Density Gauge

- Simple relationship to density fluctuations in the spatially flat gauge

$$
\zeta_{I}=\left.\frac{1}{3} \frac{\delta \tilde{\rho}_{I}}{\left(\rho_{I}+p_{I}\right)}\right|_{\text {flat }} .
$$

- For each particle species $\delta \rho /(\rho+p)=\delta n / n$, the number density fluctuation
- Multiple ζ_{J} carry information about number density fluctuations between species
- ζ_{J} constant component by component outside horizon if each component is adiabatic $p_{J}\left(\rho_{J}\right)$.

Vector Gauges

- Vector gauge depends only on threading L
- Poisson gauge: orthogonal threading $B^{(\pm 1)}=0$, leaves constant L translational freedom
- Isotropic gauge: isotropic threading $H_{T}^{(\pm 1)}=0$, fixes L
- To first order scalar and vector gauge conditions can be chosen separately
- More care required for second and higher order where scalars and vectors mix

