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Covariant Perturbation Theory

e Covariant = takes same form 1n all coordinate systems
e Invariant = takes the same value 1n all coordinate systems

e Fundamental equations: Einstein equations, covariant conservation
of stress-energy tensor:

G, = 8rG1,,
v, 7" =0

e Preserve general covariance by keeping all free variables: 10 for
each symmetric 4 x4 tensor
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Metric Tensor

e Useful to think in a 3 4+ 1 language since there are preferred spatial
surfaces where the stress tensor 1s nearly homogeneous

e In general this i1s an Arnowitt-Deser-Misner (ADM) split

e Specialize to the case of a nearly FRW metric

o 2 9
Joo = —a-, Giz — @ 7ij -

where the “0” component is conformal time 1 = dt/a and ~;; is a
spatial metric of constant curvature K = H§(Qyor — 1).
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Metric Tensor
e First define the slicing (lapse function A, shift function B*)

g’ = —a*(1-24),
@ = —a2B
A defines the lapse of proper time between 3-surfaces whereas B®

defines the threading or relationship between the 3-coordinates of
the surfaces

e This absorbs 1+3=4 free variables in the metric, remaining 6 1s in
the spatial surfaces which we parameterize as

g7 = a2(y¥ —2H; /Y —2HY) .
here (1) H; a perturbation to the spatial curvature; (5) H ;:7 a

trace-free distortion to spatial metric (which also can perturb the
curvature)



Curvature Perturbation

e Curvature perturbation on the 3D slice

4
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2 g
0[P R = —= (V*+3K) Hy, + — ViV, Hy

e Note that we will often loosely refer to H;, as the “curvature
perturbation”

e We will see that many representations have Hy = 0

e It 1s easier to work with a dimensionless quantity

e First example of a 3-scalar - SVT decomposition



Matter Tensor

e Likewise expand the matter stress energy tensor around a
homogeneous density p and pressure p:

TOO — —pP— 5p7
7% = (p+p)(vi—By),
Ty = —(p+pr',

1% = (p+op)d’; +pll',,
e (1) 0p a density perturbation; (3) v; a vector velocity, (1) op a
pressure perturbation; (5) 11;; an anisotropic stress perturbation

e So far this 1s fully general and applies to any type of matter or
coordinate choice including non-linearities in the matter, e.g.
scalar fields, cosmological defects, exotic dark energy.



Counting Variables

20  Vanables (10 metric; 10 matter)
—10  Einstein equations

—4  Conservation equations

+4  Bianchi identities

—4  Gauge (coordinate choice 1 time, 3 space)

6 Free Variables

e Without loss of generality these can be taken to be the 6
components of the matter stress tensor

e For the background, specify p(a) or equivalently
w(a) = p(a)/p(a) the equation of state parameter.



Homogeneous Einstein Equations

e Einstein (Friedmann) equations:

lda\" _ K _ 81G | (1&)°
a dt a2 3 ¥ T\

1 d*a ArGG 1 da
daz = 3 ) B

so that w = p/p < —1/3 for acceleration
e Conservation equation V#1,,,, = 0 implies

P 301+ w)l
0 a

overdots are conformal time but equally true with coordinate time



Homogeneous Einstein Equations

e Counting exercise:

20  Variables (10 metric; 10 matter)
—17  Homogeneity and Isotropy

—2  Einstein equations

—1  Conservation equations

+1  Bianchi identities

1 Free Variables

without loss of generality choose ratio of homogeneous & i1sotropic
component of the stress tensor to the density w(a) = p(a)/p(a).



Acceleration Implies Negative Pressure

e Role of stresses in the background cosmology

e Homogeneous Einstein equations G, = 8wG1),,, imply the two
Friedmann equations (flat universe, or associating curvature

pr = —3K/8nGa?)

1da\’ 8
a dt 3 7
1 d*a At
- - = 3
so that the total equation of state w = p/p < —1/3 for acceleration

e Conservation equation V#T,,,, = 0 implies

P o 301+ w)”
P a

so that p must scale more slowly than a2



Scalar, Vector, Tensor

e In linear perturbation theory, perturbations may be separated by
their transformation properties under 3D rotation and translation.

e The eigenfunctions of the Laplacian operator form a complete set

V2Q(0) — _k2Q(0) S,
VQQ(il) _ _kZQ(il) V
VY = -kQyY T,

e Vector and tensor modes satisty divergence-free and
transverse-traceless conditions

viQr =0
ViQ; " =0

17QiY =0



Vector and Tensor Quantities

e A scalar mode carries with 1t associated vector (curl-free) and
tensor (longitudinal) quantities

e A vector mode carries and associated tensor (trace and divergence
free) quantities

e A tensor mode has only a tensor (trace and divergence free)

e These are built from the mode basis out of covariant derivatives
and the metric

QY = -k 'v,QO,
1
0 _
Q,fj) = (k ZVz'VjJrg%j)Q(o),
1
QFY = ——v,Q\ + v,

* 2k



Perturbation k-Modes

e For the kth eigenmode, the scalar components become
Ax) = A(R)QY,  Hi(x)
op(k)Q®,  dp(x)

the vectors components become

Bix) = Y B™®HQ™,

op(x) =

m=—1

and the tensors components

Hi (k) QW
op(k) QY

2
(k) QE;%)a I1;;(x) = Z H(””(/f) an)a

m=—2

e Note that the curvature perturbation only involves scalars

319 R] -

a2

4 1
(k* — 3K)(H" +

3
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Spatially Flat Case

e For a spatially flat background metric, harmonics are related to
plane waves:

QY = exp(ik-x)

Q= _—Z(él + 765);exp(ik - x)

Z V2
3. A\ n .
QE;EQ) —\/g(el + zeg)i(el + zeg)jexp(zk . X)

where €3 || k. Chosen as spin states, c.f. polarization.

e For vectors, the harmonic points in a direction orthogonal to k
suitable for the vortical component of a vector



Spatially Flat Case

e Tensor harmonics are the transverse traceless gauge representation

e Tensor amplitude related to the more traditional

hil(er)i(er); — (e2)i(ea);],  hx[(ei)i(ez); + (e2)i(e1);]

as

hy +ihy = —V/6HT?

o ;ﬂ) proportional to the right and left circularly polarized
amplitudes of gravitational waves with a normalization that 1s

convenient to match the scalar and vector definitions



Covariant Scalar Equations

e DOF counting exercise

8  Variables (4 metric; 4 matter)
—4  Einstein equations
—2  Conservation equations
+2  Bianchi identities

—2  Gauge (coordinate choice 1 time, 1 space)

2 Free Variables

without loss of generality choose scalar components of the stress
tensor op, II .



Covariant Scalar Equations

e Einstein equations (suppressing 0) superscripts

1
(k* = 3K)[H}, + 3HT] —3(= )2A + 3— HL + kB =
= A7rGa*Sp, 00 Poisson Equatlon

1 d :
KA+ Hy + Hp) + (dn ; 2a> (kB — Iir)

3
= —81Ga?pll, ij Anisotropy Equation
1. K
—A H;, —-Hy — —=(kB—-—H
L= ghr k2( T)
= 41Ga’*(p+ p)(v — B)/k, 0i Momentum Equation

. e\ 2 . 2
lza_g(a) Lad K
a a adn 3

1
= 47Ga*(6p + §5 p), i1 Acceleration Equation

d a : 1
A—|—+—-| (H —kB
[d77+a]( L—l—3 )



Covariant Scalar Equations

e Conservation equations: continuity and Navier Stokes

d

= 432 6p+356p = —(p+p)(kv+3HL),

dn a a
d  a (v — B) 2 K
@ .l = dp— =(1—=3=)plIl A
[d?7+ a] [(p+p) ; ] L

e Equations are not independent since V,,G*” = 0 via the Bianchi
1dentities.

e Related to the ability to choose a coordinate system or “gauge” to
represent the perturbations.



Covariant Vector Equations

e Einstein equations
- (£1
(1 —2K/k?)(kB*Y — FY)
= 167Ga’(p + p)(vF) — BEY) /|
d a - (£1)
— 4+ 22| (kBEY — A
— —87Ga’pll*Y .

e Conservation Equations

o+ 42 | 1o+ PO = B0

1
= —5(1- 2K /k2)pIT+Y

e Gravity provides no source to vorticity — decay



Covariant Vector Equations

e DOF counting exercise

8  Variables (4 metric; 4 matter)
—4  Einstein equations
—2  Conservation equations
+2  Bianchi identities

—2  Gauge (coordinate choice 1 time, 1 space)

2 Free Variables

without loss of generality choose vector components of the stress
tensor IT(+1),



Covariant Tensor Equation

e Einstein equation

d? 1 d

-+ zﬁd— + (K + 2K)] 1 = 8rGa?pll+2)
n a ar

e DOF counting exercise

4 Variables (2 metric; 2 matter)
—2  Einstein equations
—0  Conservation equations
+0  Bianchi identities

—0  Gauge (coordinate choice 1 time, 1 space)

2 Free Variables

wlog choose tensor components of the stress tensor I1(+2),



Arbitrary Dark Components

e Total stress energy tensor can be broken up into individual pieces

e Dark components interact only through gravity and so satisty
separate conservation equations

e Einstein equation source remains the sum of components.

e To specify an arbitrary dark component, give the behavior of the
stress tensor: 6 components: dp, [1(, where s = —2, ..., 2.

e Many types of dark components (dark matter, scalar fields,
massive neutrinos,..) have simple forms for their stress tensor in
terms of the energy density, 1.e. described by equations of state.

e An equation of state for the background w = p/p is not sufficient
to determine the behavior of the perturbations.



Separate Universes

e Geometry of the gauge or time slicing and spatial threading

e For perturbations larger than the horizon, a local observer should
just see a different (separate) FRW universe

e Scalar equations should be equivalent to an appropriately
remapped Friedmann equation

e Unit normal vector N# to constant time hypersurfaces
N, dz" = Nodn, N*N, = —1, to linear order in metric

No = —a(l+ AQ), N; =0
N = a7 '(1- AQ), N'= —BQ"

e Expansion of spatial volume per proper time 1s given by
4-divergence

k 3
VuNF =0=3H(1-AQ) + ~BQ+ “H1Q



Shear and Acceleration

e Other pieces of V,, [N, give the vorticity, shear and acceleration

1
VN, =wyy +0opp + 0P, —a,N,

3
with
P, = gu+N.N,
wy = P,*P,’(VgNa — VaNp)
1 1
ow = 5P, Pyﬁ(VgNa—i—VaNB)—gHPW
a, = (V4uN,)N“

projection P, N = 0, trace free antisymmetric vorticity,
symmetric shear and acceleration



Shear and Acceleration

o VOI'tiCity Wpy = O, Ooo — Op; — 0= ao

e Remaining perturbed quantities are the spatial shear and
acceleration

Uz’j — CL(HT—]{‘B)Q,U
a; = —kAQ;

e A convenient choice of coordinates might be shear free
Hr —kB =0

e A alone is related to the perturbed acceleration



Separate Universes
e So the e-foldings of the expansion are given by d7 = (1 + AQ)adn

N = /dTéé’
= /dn (ﬁ +HLQ+ lkBQ)
a 3
Thus if £B can be ignored as £ — 0 then H, plays the role of a

local change 1n the scale factor, more generally B plays the role of
Eulerian — Lagrangian coordinates.

e Change in H; between separate universes related to change in
number of e-folds: so called 0NV approach, simplifying equations
by using /V as time variable to absorb local scale factor effects

o We shall see that for adiabatic perturbations p(p) that H; = 0
outside horizon for an appropriate choice of slicing — plays an
important role in simplifying calculations



Separate Universes

e Choosing coordinates where H; + kB /3 = 0 (defines the slicing),
the e-folding remains unperturbed, we get that the 00 Einstein
equations at £ — 0 are

.\ 2
a 1k? —3K e
— =) A+ = H; + Hp/3) = 25

which 1s to be compared to the Friedmann equation

K 87G
2 _
H+a2_ 3'0

Noting that H = H(1 — AQ) and using the perturbation to ®R

20HH + 5@—}2( = ?5,0@
_, 2k -3K 87G
—2AQH” + ST (HL+ Hr/3)Q = —2-0pQ

. 2 2
1k —3K A
—<g> A—I—g .2 (HL + Hr/3) = —7; op

a



Separate Universes

e And the space-space piece

i a\° ad
[2_2() LK)
a a a dn

which is to be compared with the acceleration equation

A= 47;Ga2(5,0 + 30p)

d 4G
" (aH) = —
dn (aH) 3

again expanding H = H(1 — AQ) and also dn = (1 + AQ)dn

a*(p + 3p)

d d =
g = (1-AQ) = (aH)l - AQ
d _ da ad



Separate Universes
e Finally the continuity equation (using slicing with H;, = —kB /3)
p+3%(6p +0p) = ~(p + D)k(v — B)
1s to be compared to

dp/dn = —=3(aH)(p + p)

which again with the substitutions becomes

<1—AQ>d%<ﬁ+6pQ> —  3(aH)(1— AQ)[p + p] — 3(aH)[5p + 5pQ
diﬁép = —3%(5/)4—(5]0)

e §p/p constant in H; + kB/3 = 0 slicing outside horizon where
peculiar velocity cannot move matter (ctf. Newtonian gauge below).

e Note also that v — B has a special interpretation as well: setting
v = B gives a comoving slicing since N* o< v*, N; o< v; — B; = 0



Separate Universes

e There are other possible choices what to hold fixed on constant
time slices besides N = In a. While separate universe statements
still hold a must be perturbed and the simplest gauge to see these
identifications with the Friedmann equations changes.

e More generally the analysis of the normal to constant time surfaces
has 1dentified geometric quantities associated with the metric
perturbations

e Uniform efolding: H; + kB/3 = 0

e Shear free: HT — kB =0

e Zero acceleration, coordinate and proper time coincide: A = 0
e Uniform expansion: —3HA + (3H;, + kB) = 0

e Comoving: v = B



Gauge

e Metric and matter fluctuations take on different values in different
coordinate system

e No such thing as a “gauge invariant” density perturbation!

e General coordinate transformation:

n = n+7T
P o= 4+ I

free to choose (7, L") to simplify equations or physics -
corresponds to a choice of slicing and threading in ADM.

e Decompose these into scalar 7', L(®) and vector harmonics L(*1).



Gauge

e g, and 1, transtorm as tensors, so components 1n different
frames can be related

SR Oz* Ox” Z.
g,ul/(nax ) — 8:%” @f’/ gaﬁ(n7$ )
Ox® Oz | .
— w3(m—T0, 7" — L)'
57 Az Jes(l — 1Q, 1" — LQ')

e Fluctuations are compared at the same coordinate positions (not
same space time positions) between the two gauges

e For example with a 7'C) perturbation, an event labeled with
1 =const. and & =const. represents a different time with respect to
the underlying homogeneous and 1sotropic background



Gauge Transformation

e Scalar Metric:

A= A-17-%7,
a
B = B+ L+kT,
~ k .
H, = H,—~r-%1
3 a
) 1. 1 a
Hy = Hp+kL,  Hy+ Hp=Hp+  Hp—-T
a

curvature perturbation depends on slicing not threading

e Scalar Matter (Jth component):

opy = opy—pjT,
opg = opy;—pjT,
{}J = Uyt La

density and pressure likewise depend on slicing only



Gauge Transformation

e Vector:
B(il) _ B(il) —I—L(il),
ﬁ;il) _ H;il) —I—kL(il),
@Sil) _ vgil) —|—L(i1),

e Spatial vector has no background component hence no dependence
on slicing at first order

Tensor: no dependence on slicing or threading at first order

e Gauge transformations and covariant representation can be
extended to higher orders

e A coordinate system 1s fully specified if there 1s an explicit
prescription for (7', L") or for scalars (7', L)



Slicing
Common choices for slicing 1": set something geometric to zero

e Proper time slicing A = 0: proper time between slices
corresponds to coordinate time — 1" allows ¢/a freedom

e Comoving (velocity orthogonal) slicing: v — B = 0, matter 4
velocity 1s related to N and orthogonal to slicing - 1" fixed

e Newtonian (shear free) slicing: Hy — kB =0, expansion rate 1s
1sotropic, shear free, 7' fixed

e Uniform expansion slicing: —(a/a)A + H, + kB/3 =0,
perturbation to the volume expansion rate 6 vanishes, 7' fixed

e Flat (constant curvature) slicing, o R =0,(H; + Hr /3 =0),
1" fixed

e Constant density slicing, 0p; = 0, T' fixed



Threading

e Threading specifies the relationship between constant spatial
coordinates between slices and 1s determined by L
Typically involves a condition on v, 5, Hrp

e Orthogonal threading B = 0, constant spatial coordinates
orthogonal to slicing (zero shift), allows 0 L. = c translational
freedom

e Comoving threading v = 0, allows 0 L. = c translational
freedom.

e [sotropic threading Hp = 0, fully fixes L



Newtonian (Longitudinal) Gauge

e Newtonian (shear free slicing, 1sotropic threading):

N N &

Hr =0

A (Newtonian potential)
H; (Newtonian curvature)
—Hr/k

~B/k+ Hyp/K?

Good: intuitive Newtonian like gravity; matter and metric
algebraically related; commonly chosen for analytic CMB and

lensing work

Bad: numerically unstable



Newtonian (Longitudinal) Gauge

e Newtonian (shear free) slicing, 1sotropic threading 5 = Hy =0 :

(k* —=3K)® = 4nGa* [5,0 + 3 (p+ p)v/k] Poisson + Momentum
a
(U 4+ ®) = —8rGa’pll Anisotropy
so W = —& 1f anisotropic stress 11 = 0 and
d a a :
[— + 3—] op+3=0p = —(p+p)(kv+3D),
dn a a
d a 2 K
— 44— = kop— =(1—-3-—=5)pkll kW
2] e = ko= BRI+ (o )k

e Newtonian competition between stress (pressure and viscosity)
and potential gradients

e Note: Poisson source 1s the density perturbation on comoving
slicing



Total Matter Gauge

e Total matter: (comoving slicing, isotropic threading)

B = o (I} =0
Hr = 0

¢ = A

R = H; (comoving curvature)
A = § (total density pert)

T = (v—B)/k

L = —Hp/k

Good: Algebraic relations between matter and metric;
comoving curvature perturbation obeys conservation law

Bad: Non-intuitive threading involving v



Total Matter Gauge

e Euler equation becomes an algebraic relation between stress and

potential
2 K
(p+p)é=—-dp+5(1——5|pll
3 k
e Einstein equation lacks momentum density source
a . K
55 — R — ﬁkv =0

Combine: R 1s conserved if stress fluctuations negligible, e.g.
above the horizon if |K| < H*

. [ o 2 3K
R+Kv//c:9[——p+—(1— ) P H]%O
al p+p 3 k2 ) p+p




“Gauge Invariant” Approach

e Gauge transformation rules allow variables which take on a
geometric meaning in one choice of slicing and threading to be
accessed from variables on another choice

e Functional form of the relationship between the variables 1s gauge
invariant (not the variable values themselves! — 1.e. equation is

covariant)

e E.g. comoving curvature and density perturbations

| .
R = HL+§HT—9(v—B)/k
a

Ap = 0p+ 3(p+p)g(v — B)/k



Newtonian-Total Matter Hybrid

e With the gauge in(or co)variant approach, express variables of one
gauge 1n terms of those in another — allows a mixture in the
equations of motion

e Example: Newtonian curvature and comoving density

(k* — 3K)® = 4nGa’pA
ordinary Poisson equation then implies ¢ approximately constant
if stresses negligible.

e Example: Exact Newtonian curvature above the horizon derived
through comoving curvature conservation

Gauge transformation

a v
O =R+ ——
_l_a,k



Hybrid “Gauge Invariant” Approach

Einstein equation to eliminate velocity

¢ = ArGa’(p + p)v/k
a

Friedmann equation with no spatial curvature

(d>2 &G
a 3

With® = 0and ¥ ~ —®

@w___ 2 4
ak 3(1 4+ w)




Newtonian-Total Matter Hybrid

Combining gauge transformation with velocity relation

_S—I—Sw
543w

o

Usage: calculate ‘R from inflation determines ¢ for any choice of
matter content or causal evolution.

e Example: Scalar field (*quintessence” dark energy) equations in
total matter gauge imply a sound speed dp/dp = 1 independent of
potential V' (¢). Solve in synchronous gauge.



Synchronous Gauge

e Synchronous: (proper time slicing, orthogonal threading )

~

A = B=0

- 1 -~
nr = _HL_gHT
hL = 6HL

T = a_1/dnaA—|—cla_1
L = —/dn(B—l—kT)+02

Good: stable, the choice of numerical codes

Bad: residual gauge freedom in constants c;, co must be
specified as an initial condition, intrinsically relativistic,
threading conditions breaks down beyond linear regime if c; 1s
fixed to CDM comoving.



Synchronous Gauge

e The Einstein equations give

nr — @(hL + 6nr) = 4rGa*(p + p)

v
k Y,
hi + ghL = —81Ga’*(dp + 30p) ,

la.
—(k2 — 3K)77T + ighlj = 47TGCL25,0

[choose (1 & 2) or (1 & 3)] while the conservation equations give

d a a 1.
L 3% 50, +3%6p, = - kvy + =
[dﬁ +3a] PJ+3a DJ (ps+py)(kvy + 5 L),

Vg 2 K

d a
=gl L= Spy— 21— 3 )pyTly .
[dn+ a] (ps +pJ) I pJ 3( Skg)pJ J



Synchronous Gauge

e Lack of a lapse A implies no gravitational forces in Navier-Stokes
equation. Hence for stress free matter like cold dark matter, zero
velocity initially implies zero velocity always.

e Choosing the momentum and acceleration Einstein equations 1s
good since for CDM domination, curvature 7 is conserved and /.
1s simple to solve for.

e Choosing the momentum and Poisson equations 1s good when the
equation of state of the matter is complicated since op is not

involved. This 1s the choice of CAMB.

Caution: since the curvature np appears and it has zero CDM
source, subtle effects like dark energy perturbations are important
everywhere



Spatially Flat Gauge

e Spatially Flat (flat slicing, 1sotropic threading):

H, = Hr=0
L = —Hrp/k
A,B = metric perturbations
a\ 1
e (o) (megm)
a 3

Good: eliminates spatial metric in evolution equations; useful in
inflationary calculations ( )

Bad: non-intuitive slicing (no curvature!) and threading
e Caution: perturbation evolution is governed by the behavior of

stress fluctuations and an isotropic stress fluctuation op is gauge
dependent.



Uniform Density Gauge

e Uniform density: (constant density slicing, 1sotropic threading)

HT:()a

¢r =Hp

B[EB

A[EA

T %P1
PI1

L=—Hp/k

Good: Curvature conserved involves only stress energy
conservation; simplifies 1socurvature treatment

Bad: non intuitive slicing (no density pert! problems beyond
linear regime) and threading



Uniform Density Gauge

e Einstein equations with / as the total or dominant species

. 2 . .
(k2—3kﬁg~—3(9) Ar+3%¢ 4+ 2kB; =0,
a a a

) . K v — By
—A; — (; — —B; = 41Gd?
A C1 D1 mGa”(p + p) o

e The conservation equations (if J = [ then 0p; = 0)

d a a '
[d— —+ 3—] 5,0J + 3—5pj = _(,OJ +pJ>(kUJ + 3CI)7
i a ¢
d vy — Br 2

a K
=4 4= = 0py — =(1 — 3= )pyII A
[d?7+ a] (ps +DpJ) I pJ 3( 3k2)PJ g+ (ps+ps)As




Uniform Density Gauge

e Conservation of curvature - single component /

e Since dp;y = 0, dpy is the non-adiabatic stress and curvature is
constant as k — 0 for internally adiabatic stresses pr(pr).

e Note that this conservation law does not involve the Einstein
equations at all: just local energy momentum conservation so it 1s
valid for alternate theories of gravity

e Curvature on comoving slices ‘R and (; related by

1 prAg
— R4+ =
= 3 (o1 + 1)

and coincide above the horizon for adiabatic fluctuations

comoving



Uniform Density Gauge

e Simple relationship to density fluctuations in the spatially flat

gauge
C_} 0p1
! 3 (pr +pr)

e For each particle species 6p/(p + p) = dn/n, the number density

flat .

fluctuation

e Multiple {; carry information about number density fluctuations
between species

e (; constant component by component outside horizon if each
component is adiabatic p;(p;).



Vector Gauges
Vector gauge depends only on threading L

Poisson gauge: orthogonal threading B*!Y = 0, leaves constant L
translational freedom

Isotropic gauge: 1sotropic threading H;il) = 0, fixes L

To first order scalar and vector gauge conditions can be chosen
separately

More care required for second and higher order where scalars and
vectors mix



