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Covariant Perturbation Theory
• Covariant = takes same form in all coordinate systems

• Invariant = takes the same value in all coordinate systems

• Fundamental equations: Einstein equations, covariant conservation
of stress-energy tensor:

Gµν = 8πGTµν

∇µT
µν = 0

• Preserve general covariance by keeping all free variables: 10 for
each symmetric 4×4 tensor
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Metric Tensor
• Useful to think in a 3 + 1 language since there are preferred spatial

surfaces where the stress tensor is nearly homogeneous

• In general this is an Arnowitt-Deser-Misner (ADM) split

• Specialize to the case of a nearly FRW metric

g00 = −a2, gij = a2γij .

where the “0” component is conformal time η = dt/a and γij is a
spatial metric of constant curvature K = H2

0 (Ωtot − 1).

(3)R =
6K

a2



Metric Tensor
• First define the slicing (lapse function A, shift function Bi)

g00 = −a−2(1− 2A) ,

g0i = −a−2Bi ,

A defines the lapse of proper time between 3-surfaces whereas Bi

defines the threading or relationship between the 3-coordinates of
the surfaces

• This absorbs 1+3=4 free variables in the metric, remaining 6 is in
the spatial surfaces which we parameterize as

gij = a−2(γij − 2HLγ
ij − 2H ij

T ) .

here (1) HL a perturbation to the spatial curvature; (5) H ij
T a

trace-free distortion to spatial metric (which also can perturb the
curvature)



Curvature Perturbation
• Curvature perturbation on the 3D slice

δ[(3)R] = − 4

a2
(
∇2 + 3K

)
HL +

2

a2
∇i∇jH

ij
T

• Note that we will often loosely refer to HL as the “curvature
perturbation”

• We will see that many representations have HT = 0

• It is easier to work with a dimensionless quantity

• First example of a 3-scalar - SVT decomposition



Matter Tensor
• Likewise expand the matter stress energy tensor around a

homogeneous density ρ and pressure p:

T 0
0 = −ρ− δρ ,

T 0
i = (ρ+ p)(vi −Bi) ,

T i
0 = −(ρ+ p)vi ,

T ij = (p+ δp)δij + pΠi
j ,

• (1) δρ a density perturbation; (3) vi a vector velocity, (1) δp a
pressure perturbation; (5) Πij an anisotropic stress perturbation

• So far this is fully general and applies to any type of matter or
coordinate choice including non-linearities in the matter, e.g.
scalar fields, cosmological defects, exotic dark energy.



Counting Variables

20 Variables (10 metric; 10 matter)

−10 Einstein equations

−4 Conservation equations

+4 Bianchi identities

−4 Gauge (coordinate choice 1 time, 3 space)

——

6 Free Variables

• Without loss of generality these can be taken to be the 6
components of the matter stress tensor

• For the background, specify p(a) or equivalently
w(a) ≡ p(a)/ρ(a) the equation of state parameter.



Homogeneous Einstein Equations
• Einstein (Friedmann) equations:(

1

a

da

dt

)2

= −K
a2

+
8πG

3
ρ [=

(
1

a

ȧ

a

)2

]

1

a

d2a

dt2
= −4πG

3
(ρ+ 3p) [=

1

a2
d

dη

ȧ

a
]

so that w ≡ p/ρ < −1/3 for acceleration

• Conservation equation∇µTµν = 0 implies

ρ̇

ρ
= −3(1 + w)

ȧ

a

overdots are conformal time but equally true with coordinate time



Homogeneous Einstein Equations
• Counting exercise:

20 Variables (10 metric; 10 matter)

−17 Homogeneity and Isotropy

−2 Einstein equations

−1 Conservation equations

+1 Bianchi identities

——

1 Free Variables

without loss of generality choose ratio of homogeneous & isotropic
component of the stress tensor to the density w(a) = p(a)/ρ(a).



Acceleration Implies Negative Pressure
• Role of stresses in the background cosmology

• Homogeneous Einstein equations Gµν = 8πGTµν imply the two
Friedmann equations (flat universe, or associating curvature
ρK = −3K/8πGa2)(

1

a

da

dt

)2

=
8πG

3
ρ

1

a

d2a

dt2
= −4πG

3
(ρ+ 3p)

so that the total equation of state w ≡ p/ρ < −1/3 for acceleration

• Conservation equation∇µTµν = 0 implies

ρ̇

ρ
= −3(1 + w)

ȧ

a

so that ρ must scale more slowly than a−2



Scalar, Vector, Tensor
• In linear perturbation theory, perturbations may be separated by

their transformation properties under 3D rotation and translation.

• The eigenfunctions of the Laplacian operator form a complete set

∇2Q(0) = −k2Q(0) S ,

∇2Q
(±1)
i = −k2Q(±1)

i V ,

∇2Q
(±2)
ij = −k2Q(±2)

ij T ,

• Vector and tensor modes satisfy divergence-free and
transverse-traceless conditions

∇iQ
(±1)
i = 0

∇iQ
(±2)
ij = 0

γijQ
(±2)
ij = 0



Vector and Tensor Quantities
• A scalar mode carries with it associated vector (curl-free) and

tensor (longitudinal) quantities

• A vector mode carries and associated tensor (trace and divergence
free) quantities

• A tensor mode has only a tensor (trace and divergence free)

• These are built from the mode basis out of covariant derivatives
and the metric

Q
(0)
i = −k−1∇iQ

(0) ,

Q
(0)
ij = (k−2∇i∇j +

1

3
γij)Q

(0) ,

Q
(±1)
ij = − 1

2k
[∇iQ

(±1)
j +∇jQ

(±1)
i ] ,



Perturbation k-Modes
• For the kth eigenmode, the scalar components become

A(x) = A(k)Q(0) , HL(x) = HL(k)Q(0) ,

δρ(x) = δρ(k)Q(0) , δp(x) = δp(k)Q(0) ,

the vectors components become

Bi(x) =
1∑

m=−1

B(m)(k)Q
(m)
i , vi(x) =

1∑
m=−1

v(m)(k)Q
(m)
i ,

and the tensors components

HT ij(x) =
2∑

m=−2

H
(m)
T (k)Q

(m)
ij , Πij(x) =

2∑
m=−2

Π(m)(k)Q
(m)
ij ,

• Note that the curvature perturbation only involves scalars

δ[(3)R] =
4

a2
(k2 − 3K)(H

(0)
L +

1

3
H

(0)
T )Q(0)



Spatially Flat Case
• For a spatially flat background metric, harmonics are related to

plane waves:

Q(0) = exp(ik · x)

Q
(±1)
i =

−i√
2

(ê1 ± iê2)iexp(ik · x)

Q
(±2)
ij = −

√
3

8
(ê1 ± iê2)i(ê1 ± iê2)jexp(ik · x)

where ê3 ‖ k. Chosen as spin states, c.f. polarization.

• For vectors, the harmonic points in a direction orthogonal to k

suitable for the vortical component of a vector



Spatially Flat Case
• Tensor harmonics are the transverse traceless gauge representation

• Tensor amplitude related to the more traditional

h+[(e1)i(e1)j − (e2)i(e2)j] , h×[(e1)i(e2)j + (e2)i(e1)j]

as

h+ ± ih× = −
√

6H
(∓2)
T

• H(±2)
T proportional to the right and left circularly polarized

amplitudes of gravitational waves with a normalization that is
convenient to match the scalar and vector definitions



Covariant Scalar Equations
• DOF counting exercise

8 Variables (4 metric; 4 matter)

−4 Einstein equations

−2 Conservation equations

+2 Bianchi identities

−2 Gauge (coordinate choice 1 time, 1 space)

——

2 Free Variables

without loss of generality choose scalar components of the stress
tensor δp, Π .



Covariant Scalar Equations
• Einstein equations (suppressing 0) superscripts

(k2 − 3K)[HL +
1

3
HT ]− 3(

ȧ

a
)2A+ 3

ȧ

a
ḢL +

ȧ

a
kB =

= 4πGa2δρ , 00 Poisson Equation

k2(A+HL +
1

3
HT ) +

(
d

dη
+ 2

ȧ

a

)
(kB − ḢT )

= −8πGa2pΠ , ij Anisotropy Equation
ȧ

a
A− ḢL −

1

3
ḢT −

K

k2
(kB − ḢT )

= 4πGa2(ρ+ p)(v −B)/k , 0i Momentum Equation[
2
ä

a
− 2

(
ȧ

a

)2

+
ȧ

a

d

dη
− k2

3

]
A−

[
d

dη
+
ȧ

a

]
(ḢL +

1

3
kB)

= 4πGa2(δp+
1

3
δρ) , ii Acceleration Equation



Covariant Scalar Equations
• Conservation equations: continuity and Navier Stokes[

d

dη
+ 3

ȧ

a

]
δρ+ 3

ȧ

a
δp = −(ρ+ p)(kv + 3ḢL) ,[

d

dη
+ 4

ȧ

a

] [
(ρ+ p)

(v −B)

k

]
= δp− 2

3
(1− 3

K

k2
)pΠ + (ρ+ p)A ,

• Equations are not independent since∇µG
µν = 0 via the Bianchi

identities.

• Related to the ability to choose a coordinate system or “gauge” to
represent the perturbations.



Covariant Vector Equations
• Einstein equations

(1− 2K/k2)(kB(±1) − Ḣ(±1)
T )

= 16πGa2(ρ+ p)(v(±1) −B(±1))/k ,[
d

dη
+ 2

ȧ

a

]
(kB(±1) − Ḣ(±1)

T )

= −8πGa2pΠ(±1) .

• Conservation Equations[
d

dη
+ 4

ȧ

a

]
[(ρ+ p)(v(±1) −B(±1))/k]

= −1

2
(1− 2K/k2)pΠ(±1) ,

• Gravity provides no source to vorticity→ decay



Covariant Vector Equations
• DOF counting exercise

8 Variables (4 metric; 4 matter)

−4 Einstein equations

−2 Conservation equations

+2 Bianchi identities

−2 Gauge (coordinate choice 1 time, 1 space)

——

2 Free Variables

without loss of generality choose vector components of the stress
tensor Π(±1).



Covariant Tensor Equation
• Einstein equation[

d2

dη2
+ 2

ȧ

a

d

dη
+ (k2 + 2K)

]
H

(±2)
T = 8πGa2pΠ(±2) .

• DOF counting exercise

4 Variables (2 metric; 2 matter)

−2 Einstein equations

−0 Conservation equations

+0 Bianchi identities

−0 Gauge (coordinate choice 1 time, 1 space)

——

2 Free Variables

wlog choose tensor components of the stress tensor Π(±2).



Arbitrary Dark Components
• Total stress energy tensor can be broken up into individual pieces

• Dark components interact only through gravity and so satisfy
separate conservation equations

• Einstein equation source remains the sum of components.

• To specify an arbitrary dark component, give the behavior of the
stress tensor: 6 components: δp, Π(i), where i = −2, ..., 2.

• Many types of dark components (dark matter, scalar fields,
massive neutrinos,..) have simple forms for their stress tensor in
terms of the energy density, i.e. described by equations of state.

• An equation of state for the background w = p/ρ is not sufficient
to determine the behavior of the perturbations.



Separate Universes
• Geometry of the gauge or time slicing and spatial threading

• For perturbations larger than the horizon, a local observer should
just see a different (separate) FRW universe

• Scalar equations should be equivalent to an appropriately
remapped Friedmann equation

• Unit normal vector Nµ to constant time hypersurfaces
Nµdx

µ = N0dη, NµNµ = −1, to linear order in metric

N0 = −a(1 +AQ), Ni = 0

N0 = a−1(1−AQ), N i = −BQi

• Expansion of spatial volume per proper time is given by
4-divergence

∇µNµ ≡ θ = 3H(1−AQ) +
k

a
BQ+

3

a
ḢLQ



Shear and Acceleration
• Other pieces of ∇νNµ give the vorticity, shear and acceleration

∇νNµ ≡ ωµν + σµν +
1

3
θPµν − aµNν

with

Pµν = gµν +NµNν

ωµν = P α
µ P β

ν (∇βNα −∇αNβ)

σµν =
1

2
P α
µ P β

ν (∇βNα +∇αNβ)− 1

3
θPµν

aµ = (∇αNµ)Nα

projection PµνNν = 0, trace free antisymmetric vorticity,
symmetric shear and acceleration



Shear and Acceleration
• Vorticity ωµν = 0, σ00 = σ0i = 0 = a0

• Remaining perturbed quantities are the spatial shear and
acceleration

σij = a(ḢT − kB)Qij

ai = −kAQi

• A convenient choice of coordinates might be shear free
ḢT − kB = 0

• A alone is related to the perturbed acceleration



Separate Universes
• So the e-foldings of the expansion are given by dτ = (1 +AQ)adη

N =

∫
dτ

1

3
θ

=

∫
dη

(
ȧ

a
+ ḢLQ+

1

3
kBQ

)
Thus if kB can be ignored as k → 0 then HL plays the role of a
local change in the scale factor, more generally B plays the role of
Eulerian→ Lagrangian coordinates.

• Change in HL between separate universes related to change in
number of e-folds: so called δN approach, simplifying equations
by using N as time variable to absorb local scale factor effects

• We shall see that for adiabatic perturbations p(ρ) that ḢL = 0

outside horizon for an appropriate choice of slicing – plays an
important role in simplifying calculations



Separate Universes
• Choosing coordinates where ḢL + kB/3 = 0 (defines the slicing),

the e-folding remains unperturbed, we get that the 00 Einstein
equations at k → 0 are

−
(
ȧ

a

)2

A+
1

3

k2 − 3K

a2
(HL +HT /3) =

4πG

3
a2δρ

which is to be compared to the Friedmann equation

H2 +
K

a2
=

8πG

3
ρ

Noting that H = H̄(1− AQ) and using the perturbation to (3)R

2δHH̄ +
δK

a2
=

8πG

3
δρQ

−2AQH̄2 +
2

3

k2 − 3K

a2
(HL +HT /3)Q =

8πG

3
δρQ

−
(
ȧ

a

)2

A+
1

3

k2 − 3K

a2
(HL +HT /3) =

4πG

3
δρ



Separate Universes
• And the space-space piece[

2
ä

a
− 2

(
ȧ

a

)2

+
ȧ

a

d

dη

]
A =

4πG

3
a2(δρ+ 3δp)

which is to be compared with the acceleration equation

d

dη
(aH) = −4πG

3
a2(ρ+ 3p)

again expanding H = H̄(1− AQ) and also dη = (1 + AQ)dη̄

d

dη
(aH) = (1−AQ)

d

dη̄
(aH̄)[1−AQ]

≈ d

dη̄
(aH̄)− 2AQ

d

dη̄

ȧ

a
+
ȧ

a

d

dη̄
AQ



Separate Universes
• Finally the continuity equation (using slicing with ḢL = −kB/3)

δ̇ρ+ 3
ȧ

a
(δρ+ δp) = −(ρ+ p)k(v −B)

is to be compared to

dρ/dη = −3(aH)(ρ+ p)

which again with the substitutions becomes

(1 −AQ)
d

dη̄
(ρ̄+ δρQ) = −3(aH)(1 −AQ)[ρ̄+ p̄] − 3(aH)[δρ+ δp]Q

d

dη̄
δρ = −3

ȧ

a
(δρ+ δp)

• δρ/ρ constant in ḢL + kB/3 = 0 slicing outside horizon where
peculiar velocity cannot move matter (cf. Newtonian gauge below).

• Note also that v −B has a special interpretation as well: setting
v = B gives a comoving slicing since N i ∝ vi, Ni ∝ vi −Bi = 0



Separate Universes
• There are other possible choices what to hold fixed on constant

time slices besides N = ln a. While separate universe statements
still hold a must be perturbed and the simplest gauge to see these
identifications with the Friedmann equations changes.

• More generally the analysis of the normal to constant time surfaces
has identified geometric quantities associated with the metric
perturbations

• Uniform efolding: ḢL + kB/3 = 0

• Shear free: ḢT − kB = 0

• Zero acceleration, coordinate and proper time coincide: A = 0

• Uniform expansion: −3HA+ (3ḢL + kB) = 0

• Comoving: v = B



Gauge
• Metric and matter fluctuations take on different values in different

coordinate system

• No such thing as a “gauge invariant” density perturbation!

• General coordinate transformation:

η̃ = η + T

x̃i = xi + Li

free to choose (T, Li) to simplify equations or physics -
corresponds to a choice of slicing and threading in ADM.

• Decompose these into scalar T , L(0) and vector harmonics L(±1).



Gauge
• gµν and Tµν transform as tensors, so components in different

frames can be related

g̃µν(η̃, x̃
i) =

∂xα

∂x̃µ
∂xβ

∂x̃ν
gαβ(η, xi)

=
∂xα

∂x̃µ
∂xβ

∂x̃ν
gαβ(η̃ − TQ, x̃i − LQi)

• Fluctuations are compared at the same coordinate positions (not
same space time positions) between the two gauges

• For example with a TQ perturbation, an event labeled with
η̃ =const. and x̃ =const. represents a different time with respect to
the underlying homogeneous and isotropic background



Gauge Transformation
• Scalar Metric:

Ã = A− Ṫ − ȧ

a
T ,

B̃ = B + L̇+ kT ,

H̃L = HL −
k

3
L− ȧ

a
T ,

H̃T = HT + kL , H̃L +
1

3
H̃T = HL +

1

3
HT −

ȧ

a
T

curvature perturbation depends on slicing not threading

• Scalar Matter (J th component):

δρ̃J = δρJ − ρ̇JT ,
δp̃J = δpJ − ṗJT ,
ṽJ = vJ + L̇,

density and pressure likewise depend on slicing only



Gauge Transformation
• Vector:

B̃(±1) = B(±1) + L̇(±1),

H̃
(±1)
T = H

(±1)
T + kL(±1),

ṽ
(±1)
J = v

(±1)
J + L̇(±1),

• Spatial vector has no background component hence no dependence
on slicing at first order

Tensor: no dependence on slicing or threading at first order

• Gauge transformations and covariant representation can be
extended to higher orders

• A coordinate system is fully specified if there is an explicit
prescription for (T, Li) or for scalars (T, L)



Slicing
Common choices for slicing T : set something geometric to zero

• Proper time slicing A = 0: proper time between slices
corresponds to coordinate time – T allows c/a freedom

• Comoving (velocity orthogonal) slicing: v −B = 0, matter 4
velocity is related to N ν and orthogonal to slicing - T fixed

• Newtonian (shear free) slicing: ḢT − kB = 0, expansion rate is
isotropic, shear free, T fixed

• Uniform expansion slicing: −(ȧ/a)A+ ḢL + kB/3 = 0,
perturbation to the volume expansion rate θ vanishes, T fixed

• Flat (constant curvature) slicing, δ(3)R = 0, (HL +HT/3 = 0),
T fixed

• Constant density slicing, δρI = 0, T fixed



Threading
• Threading specifies the relationship between constant spatial

coordinates between slices and is determined by L

Typically involves a condition on v, B, HT

• Orthogonal threading B = 0, constant spatial coordinates
orthogonal to slicing (zero shift), allows δL = c translational
freedom

• Comoving threading v = 0, allows δL = c translational
freedom.

• Isotropic threading HT = 0, fully fixes L



Newtonian (Longitudinal) Gauge
• Newtonian (shear free slicing, isotropic threading):

B̃ = H̃T = 0

Ψ ≡ Ã (Newtonian potential)

Φ ≡ H̃L (Newtonian curvature)

L = −HT /k

T = −B/k + ḢT /k
2

Good: intuitive Newtonian like gravity; matter and metric
algebraically related; commonly chosen for analytic CMB and
lensing work

Bad: numerically unstable



Newtonian (Longitudinal) Gauge
• Newtonian (shear free) slicing, isotropic threading B = HT = 0 :

(k2 − 3K)Φ = 4πGa2

[
δρ+ 3

ȧ

a
(ρ+ p)v/k

]
Poisson + Momentum

k2(Ψ + Φ) = −8πGa2pΠ Anisotropy

so Ψ = −Φ if anisotropic stress Π = 0 and[
d

dη
+ 3

ȧ

a

]
δρ+ 3

ȧ

a
δp = −(ρ+ p)(kv + 3Φ̇) ,[

d

dη
+ 4

ȧ

a

]
(ρ+ p)v = kδp− 2

3
(1− 3

K

k2
)p kΠ + (ρ+ p) kΨ ,

• Newtonian competition between stress (pressure and viscosity)
and potential gradients

• Note: Poisson source is the density perturbation on comoving
slicing



Total Matter Gauge
• Total matter: (comoving slicing, isotropic threading)

B̃ = ṽ (T 0
i = 0)

HT = 0

ξ = Ã

R = H̃L (comoving curvature)

∆ = δ̃ (total density pert)

T = (v −B)/k

L = −HT /k

Good: Algebraic relations between matter and metric;
comoving curvature perturbation obeys conservation law

Bad: Non-intuitive threading involving v



Total Matter Gauge
• Euler equation becomes an algebraic relation between stress and

potential

(ρ+ p)ξ = −δp+
2

3

(
1− 3K

k2

)
pΠ

• Einstein equation lacks momentum density source

ȧ

a
ξ − Ṙ − K

k2
kv = 0

Combine: R is conserved if stress fluctuations negligible, e.g.
above the horizon if |K| � H2

Ṙ+Kv/k =
ȧ

a

[
− δp

ρ+ p
+

2

3

(
1− 3K

k2

)
p

ρ+ p
Π

]
→ 0



“Gauge Invariant” Approach
• Gauge transformation rules allow variables which take on a

geometric meaning in one choice of slicing and threading to be
accessed from variables on another choice

• Functional form of the relationship between the variables is gauge
invariant (not the variable values themselves! – i.e. equation is
covariant)

• E.g. comoving curvature and density perturbations

R = HL +
1

3
HT −

ȧ

a
(v −B)/k

∆ρ = δρ+ 3(ρ+ p)
ȧ

a
(v −B)/k



Newtonian-Total Matter Hybrid
• With the gauge in(or co)variant approach, express variables of one

gauge in terms of those in another – allows a mixture in the
equations of motion

• Example: Newtonian curvature and comoving density

(k2 − 3K)Φ = 4πGa2ρ∆

ordinary Poisson equation then implies Φ approximately constant
if stresses negligible.

• Example: Exact Newtonian curvature above the horizon derived
through comoving curvature conservation

Gauge transformation

Φ = R+
ȧ

a

v

k



Hybrid “Gauge Invariant” Approach
Einstein equation to eliminate velocity

ȧ

a
Ψ− Φ̇ = 4πGa2(ρ+ p)v/k

Friedmann equation with no spatial curvature(
ȧ

a

)2

=
8πG

3
a2ρ

With Φ̇ = 0 and Ψ ≈ −Φ

ȧ

a

v

k
= − 2

3(1 + w)
Φ



Newtonian-Total Matter Hybrid
Combining gauge transformation with velocity relation

Φ =
3 + 3w

5 + 3w
R

Usage: calculateR from inflation determines Φ for any choice of
matter content or causal evolution.

• Example: Scalar field (“quintessence” dark energy) equations in
total matter gauge imply a sound speed δp/δρ = 1 independent of
potential V (φ). Solve in synchronous gauge.



Synchronous Gauge
• Synchronous: (proper time slicing, orthogonal threading )

Ã = B̃ = 0

ηT ≡ −H̃L −
1

3
H̃T

hL ≡ 6HL

T = a−1

∫
dηaA+ c1a

−1

L = −
∫
dη(B + kT ) + c2

Good: stable, the choice of numerical codes

Bad: residual gauge freedom in constants c1, c2 must be
specified as an initial condition, intrinsically relativistic,
threading conditions breaks down beyond linear regime if c1 is
fixed to CDM comoving.



Synchronous Gauge
• The Einstein equations give

η̇T −
K

2k2
(ḣL + 6η̇T ) = 4πGa2(ρ+ p)

v

k
,

ḧL +
ȧ

a
ḣL = −8πGa2(δρ+ 3δp) ,

−(k2 − 3K)ηT +
1

2

ȧ

a
ḣL = 4πGa2δρ

[choose (1 & 2) or (1 & 3)] while the conservation equations give[
d

dη
+ 3

ȧ

a

]
δρJ + 3

ȧ

a
δpJ = −(ρJ + pJ)(kvJ +

1

2
ḣL) ,[

d

dη
+ 4

ȧ

a

]
(ρJ + pJ)

vJ
k

= δpJ −
2

3
(1− 3

K

k2
)pJΠJ .



Synchronous Gauge
• Lack of a lapse A implies no gravitational forces in Navier-Stokes

equation. Hence for stress free matter like cold dark matter, zero
velocity initially implies zero velocity always.

• Choosing the momentum and acceleration Einstein equations is
good since for CDM domination, curvature ηT is conserved and ḣL
is simple to solve for.

• Choosing the momentum and Poisson equations is good when the
equation of state of the matter is complicated since δp is not
involved. This is the choice of CAMB.

Caution: since the curvature ηT appears and it has zero CDM
source, subtle effects like dark energy perturbations are important
everywhere



Spatially Flat Gauge
• Spatially Flat (flat slicing, isotropic threading):

H̃L = H̃T = 0

L = −HT /k

Ã , B̃ = metric perturbations

T =

(
ȧ

a

)−1(
HL +

1

3
HT

)
Good: eliminates spatial metric in evolution equations; useful in
inflationary calculations (Mukhanov et al)

Bad: non-intuitive slicing (no curvature!) and threading

• Caution: perturbation evolution is governed by the behavior of
stress fluctuations and an isotropic stress fluctuation δp is gauge
dependent.



Uniform Density Gauge
• Uniform density: (constant density slicing, isotropic threading)

HT = 0 ,

ζI ≡ HL

BI ≡ B

AI ≡ A

T =
δρI
ρ̇I

L = −HT /k

Good: Curvature conserved involves only stress energy
conservation; simplifies isocurvature treatment

Bad: non intuitive slicing (no density pert! problems beyond
linear regime) and threading



Uniform Density Gauge
• Einstein equations with I as the total or dominant species

(k2 − 3K)ζI − 3

(
ȧ

a

)2

AI + 3
ȧ

a
ζ̇I +

ȧ

a
kBI = 0 ,

ȧ

a
AI − ζ̇I −

K

k
BI = 4πGa2(ρ+ p)

v −BI
k

,

• The conservation equations (if J = I then δρJ = 0)[
d

dη
+ 3

ȧ

a

]
δρJ + 3

ȧ

a
δpJ = −(ρJ + pJ)(kvJ + 3ζ̇I) ,[

d

dη
+ 4

ȧ

a

]
(ρJ + pJ)

vJ −BI
k

= δpJ −
2

3
(1− 3

K

k2
)pJΠJ + (ρJ + pJ)AI .



Uniform Density Gauge
• Conservation of curvature - single component I

ζ̇I = − ȧ
a

δpI
ρI + pI

− 1

3
kvI .

• Since δρI = 0, δpI is the non-adiabatic stress and curvature is
constant as k → 0 for internally adiabatic stresses pI(ρI).

• Note that this conservation law does not involve the Einstein
equations at all: just local energy momentum conservation so it is
valid for alternate theories of gravity

• Curvature on comoving slicesR and ζI related by

ζI = R+
1

3

ρI∆I

(ρI + pI)

∣∣∣
comoving

.

and coincide above the horizon for adiabatic fluctuations



Uniform Density Gauge
• Simple relationship to density fluctuations in the spatially flat

gauge

ζI =
1

3

δρ̃I
(ρI + pI)

∣∣∣
flat

.

• For each particle species δρ/(ρ+ p) = δn/n, the number density
fluctuation

• Multiple ζJ carry information about number density fluctuations
between species

• ζJ constant component by component outside horizon if each
component is adiabatic pJ(ρJ).



Vector Gauges
• Vector gauge depends only on threading L

• Poisson gauge: orthogonal threading B(±1) = 0, leaves constant L
translational freedom

• Isotropic gauge: isotropic threading H(±1)
T = 0, fixes L

• To first order scalar and vector gauge conditions can be chosen
separately

• More care required for second and higher order where scalars and
vectors mix


