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Scalar Fields
• A canonical scalar field is described by the action

Sφ =

∫
d4x
√
−g[−1

2
gµν∂µφ∂νφ− V (φ)]

• Varying the action with respect to the metric

Tµν =
1√
−g

δ

δgµν
√
−gLφ

gives the stress-energy tensor of a scalar field

T µν = ∇µφ∇νφ−
1

2
(∇αφ∇αφ+ 2V )δµν .

• Equations of motion∇µTµν = 0 with closure relations for
p(φ, ∂µφ), Π(φ, ∂µφ) or field equation∇µ∇µφ = V ′ (vary with
respect to φ)



Scalar Fields
• For the background 〈φ〉 ≡ φ0 (a−2 from conformal time)

ρφ =
1

2
a−2φ̇2

0 + V, pφ =
1

2
a−2φ̇2

0 − V

• So for kinetic dominated wφ = pφ/ρφ → 1

• And potential dominated wφ = pφ/ρφ → −1

• A slowly rolling (potential dominated) scalar field accelerates
expansion

• Can use general equations of motion of dictated by stress energy
conservation

ρ̇φ = −3(ρφ + pφ)
ȧ

a
,

to obtain the equation of motion of the background field φ

φ̈0 + 2
ȧ

a
φ̇0 + a2V ′ = 0 ,



Equation of Motion
• In terms of time instead of conformal time

d2φ0

dt2
+ 3H

dφ0

dt
+ V ′ = 0

• Field rolls down potential hill but experiences “Hubble friction” to
create slow roll. In slow roll 3Hdφ0/dt ≈ −V ′ and so kinetic
energy is determined by field position→ adiabatic – both kinetic
and potential energy determined by single degree of freedom φ0



Equation of Motion
• Likewise for the perturbations φ = φ0 + φ1

δρφ = a−2(φ̇0φ̇1 − φ̇2
0A) + V ′φ1 ,

δpφ = a−2(φ̇0φ̇1 − φ̇2
0A)− V ′φ1 ,

(ρφ + pφ)(vφ −B) = a−2kφ̇0φ1 ,

pφπφ = 0 ,

• For comoving slicing where vφ = B

φ1 = 0

and the field is spatially unperturbed - so all the dynamics are in
the metric



Sound Speed
• In this slicing δpφ = δρφ so the sound speed is δpφ/δρφ = 1.

• More generally the sound speed of the inflation is defined as the
speed at which field fluctuations propagate - i.e. the kinetic piece
to the energy density rather than the V ′φ1 potential piece - much
like in the background the +1 and −1 pieces of w.

• Non canonical kinetic terms– k-essence, DBI inflation – can
generate cs 6= 1 as do terms in the effective theory of inflation



Equation of Motion
• Scalar field fluctuations are stable inside the horizon and are a

good candidate for the smooth dark energy

• Equivalently, conservation equations imply

φ̈1 = −2
ȧ

a
φ̇1 − (k2 + a2V ′′)φ1 + (Ȧ− 3ḢL − kB)φ̇0 − 2Aa2V ′ .

• Alternately this follows from perturbing the Klein Gordon
equation∇µ∇µφ = V ′



Inflationary Perturbations
• Classical equations of motion for scalar field inflaton determine

the evolution of scalar field fluctuations generated by quantum
fluctuations

• Since the curvatureR on comoving slicing is conserved in the
absence of stress fluctuations (i.e. outside the apparent horizon,
calculate this and we’re done no matter what happens in between
inflation and the late universe (reheating etc.)

• But in the comoving slicing φ1 = 0! no scalar-field perturbation

• Solution: solve the scalar field equation in the dual gauge where
the curvature HL +HT/3 = 0 (“spatially flat” slicing) and
transform the result to comoving slicing



Transformation to Comoving Slicing
• Scalar field transforms as scalar field

φ̃1 = φ1 − φ̇0T

• To get to comoving slicing φ̃1 = 0, T = φ1/φ̇0, and
H̃T = HT + kL so

R = HL +
HT

3
− ȧ

a

φ1

φ̇0

• Transformation particularly simple from a spatially flat slicing
where HL +HT/3 = 0, i.e. spatially unperturbed metric

R = − ȧ
a

φ1

φ̇0



Spatially Flat Gauge
• Spatially Flat (flat slicing, isotropic threading):

H̃L + H̃T /3 = H̃T = 0

Af = Ã , Bf = B̃

T =

(
ȧ

a

)−1(
HL +

1

3
HT

)
L = −HT /k

• Einstein Poisson and Momentum

−3(
ȧ

a
)2Af +

ȧ

a
kBf = 4πGa2δρφ ,

ȧ

a
Af −

K

k2
(kBf ) = 4πGa2(ρφ + pφ)(vφ −Bf )/k ,

• Conservation

φ̈1 = −2
ȧ

a
φ̇1 − (k2 + a2V ′′)φ1 + (Ȧf − kBf )φ̇0 − 2Afa

2V ′ .



Spatially Flat Gauge
• For modes where |k2/K| � 1 we obtain

ȧ

a
Af = 4πGφ̇0φ1 ,

ȧ

a
kBf = 4πG[φ̇0φ̇1 − φ̇2

0Af + a2V ′φ1 + 3
ȧ

a
φ̇0φ1]

so combining Ȧf − kBf eliminates the φ̇1 term

• The metric source to the scalar field equation can be reexpressed in
terms of the field perturbation and background quantities

(Ȧf − kBf )φ̇0 − 2Afa
2V ′ − a2V ′′φ1 = f(η)φ1

• Single closed form 2nd order ODE for φ1



Mukhanov Equation
• Equation resembles a damped oscillator equation with a particular

dispersion relation

φ̈1 + 2
ȧ

a
φ̇1 + [k2 + f(η)]φ1

• f(η) involves terms with φ̇0, V ′, V ′′ implying that for a sufficiently
flat potential f(η) represents a small correction

• Transform out the background expansion u ≡ aφ1

u̇ = ȧφ+ aφ̇

ü = äφ1 + 2ȧφ̇1 + aφ̈1

ü+ [k2 − ä

a
+ f(η)]u = 0

• Note Friedmann equations say if p = −ρ, ä/a = 2(ȧ/a)2



Mukhanov Equation
• Using the background Einstein and scalar field equations, this

source term can be expressed in a surprisingly compact form

ü+ [k2 − z̈

z
]u = 0

• and

z ≡ aφ̇0

ȧ/a

• This equation is sometimes called the “Mukhanov Equation” and
is both exact (in linear theory) and compact

• For large k (subhorizon), this looks like a free oscillator equation
which can be quantized

• Let’s examine the relationship between z and the slow roll
parameters



Slow Roll Parameters
• Rewrite equations of motion in terms of slow roll parameters but

do not require them to be small or constant.

• Deviation from de Sitter expansion

ε ≡ 3

2
(1 + wφ)

=
3
2
(dφ0/dt)

2/V

1 + 1
2
(dφ0/dt)2/V

• Deviation from overdamped limit of d2φ0/dt
2 = 0

δ ≡ d2φ0/dt
2

Hdφ0/dt
(= −ηH)

=
φ̈0

φ̇0

(
ȧ

a

)−1
− 1



Slow Roll Parameters
• Friedmann equations:(

ȧ

a

)2

= 4πGφ̇2
0ε
−1

d

dη

(
ȧ

a

)
=
ä

a
−
(
ȧ

a

)2

=

(
ȧ

a

)2

(1− ε)

Take derivative of first equation, divide through by (ȧ/a)2

2
ȧ

a
(1− ε) = 2

φ̈0

φ̇0

− ε̇

ε

• Replace φ̈0 with δ

ε̇ = 2ε(δ + ε)
ȧ

a

• Evolution of ε is second order in parameters



Slow Roll parameters
• Returning to the Mukhanov equation

ü+ [k2 + g(η)]u = 0

where

g(η) ≡ f(η) + ε− 2

= −
(
ȧ

a

)2

[2 + 3δ + 2ε+ (δ + ε)(δ + 2ε)]− ȧ

a
δ̇

= − z̈
z

and recall

z ≡ a

(
ȧ

a

)−1
φ̇0



Slow Roll Limit
• Slow roll ε� 1, δ � 1, δ̇ � ȧ

a

ü+ [k2 − 2

(
ȧ

a

)2

]u = 0

or for conformal time measured from the end of inflation

η̃ = η − ηend

η̃ =

∫ a

aend

da

Ha2
≈ − 1

aH

• Compact, slow-roll equation:

ü+ [k2 − 2

η̃2
]u = 0



Quantum Fluctuations
• Simple harmonic oscillator� Hubble length

ü+ k2u = 0

• Quantize the simple harmonic oscillator

û = u(k, η̃)â+ u∗(k, η̃)â†

where u(k, η̃) satisfies classical equation of motion and the
creation and annihilation operators satisfy

[a, a†] = 1, a|0〉 = 0

• Normalize wavefunction [û, dû/dη̃] = i

u(k, η) =
1√
2k
e−ikη̃



Quantum Fluctuations
• Zero point fluctuations of ground state

〈u2〉 = 〈0|u†u|0〉

= 〈0|(u∗â† + uâ)(uâ+ u∗â†)|0〉

= 〈0|ââ†|0〉|u(k, η̃)|2

= 〈0|[â, â†] + â†â|0〉|u(k, η̃)|2

= |u(k, η̃)|2 =
1

2k

• Classical equation of motion take this quantum fluctuation outside
horizon where it freezes in.



Slow Roll Limit
• Classical equation of motion then has the exact solution

u =
1√
2k

(
1− i

kη̃

)
e−ikη̃

• For |kη̃| � 1 (late times,� Hubble length) fluctuation freezes in

lim
|kη̃|→0

u = − 1√
2k

i

kη̃
≈ iHa√

2k3

φ1 =
iH√
2k3

• Power spectrum of field fluctuations

∆2
φ1

=
k3|φ1|2

2π2
=

H2

(2π)2



Slow Roll Limit
• RecallR = −(ȧ/a)φ1/φ̇0 and slow roll says(

ȧ

a

)2
1

φ̇2
0

=
8πGa2V

3

3

2a2V ε
=

4πG

ε

Thus the curvature power spectrum

∆2
R =

8πG

2

H2

(2π)2ε



Tilt
• Curvature power spectrum is scale invariant to the extent that H is

constant

• Scalar spectral index

d ln ∆2
R

d ln k
≡ nS − 1

= 2
d lnH

d ln k
− d ln ε

d ln k

• Evaluate at horizon crossing where fluctuation freezes

d lnH

d ln k

∣∣
−kη̃=1

=
k

H

dH

dη̃

∣∣
−kη̃=1

dη̃

dk

∣∣
−kη̃=1

=
k

H
(−aH2ε)

∣∣
−kη̃=1

1

k2
= −ε

where aH = −1/η̃ = k



Tilt
• Evolution of ε

d ln ε

d ln k
= − d ln ε

d ln η̃
= −2(δ + ε)

ȧ

a
η̃ = 2(δ + ε)

• Tilt in the slow-roll approximation

nS = 1− 4ε− 2δ



Relationship to Potential
• To leading order in slow roll parameters

ε =
3
2
φ̇2
0/a

2V

1 + 1
2
φ̇2
0/a

2V

≈ 3

2
φ̇2
0/a

2V

≈ 3

2a2V

a4V ′2

9(ȧ/a)2
, (3φ̇0

ȧ

a
= −a2V ′)

≈ 1

6

3

8πG

(
V ′

V

)2

,

(
ȧ

a

)2

=
8πG

3
a2V

≈ 1

16πG

(
V ′

V

)2

so ε� 1 is related to the first derivative of potential being small



Relationship to Potential
• And

δ =
φ̈0

φ̇0

(
ȧ

a

)−1
− 1

(φ̇0 ≈ −a2
(
ȧ

a

)−1
V ′

3
)

(φ̈0 ≈ −
a2V ′

3
(1 + ε) + a4

(
ȧ

a

)−2
V ′V ′′

9
)

≈ − 1

a2V ′/3

(
−a

2V ′

3
(1 + ε) +

a2

9

3

8πG

V ′V ′′

V

)
− 1 ≈ ε− 1

8πG

V ′′

V

so δ is related to second derivative of potential being small. Very
flat potential.



Relationship to Potential
• Exact relations

1

8πG
(
V ′

V
)2 = 2ε

(1 + δ/3)2

(1− ε/3)2

1

8πG

V ′′

V
=
ε− δ − [δ2 − εδ − (a/ȧ)δ̇]/3

1− εH/3

agree in the limit ε, |δ| � 1 and |(a/ȧ)δ̇| � ε, |δ|

• Like the Mukhanov to slow roll simplification, identification with
potential requires a constancy of δ assumption



Gravitational Waves
• Gravitational wave amplitude satisfies Klein-Gordon equation

(K = 0), same as scalar field

Ḧ
(±2)
T + 2

ȧ

a
Ḣ

(±2)
T + k2H

(±2)
T = 0 .

• Acquires quantum fluctuations in same manner as φ. Lagrangian
sets the normalization

φ1 → H
(±2)
T

√
3

16πG

• Scale-invariant gravitational wave amplitude converted back to +

and × states H(±2)
T = −(h+ ∓ ih×)/

√
6)

∆2
+,× = 16πG∆2

φ1
= 16πG

H2

(2π)2



Gravitational Waves
• Gravitational wave power ∝ H2 ∝ V ∝ E4

i where Ei is the energy
scale of inflation

• Tensor-scalar ratio - various definitions - WMAP standard is

r ≡ 4
∆2

+

∆2
R

= 16ε

• Tensor tilt:

d ln ∆2
H

d ln k
≡ nT = 2

d lnH

d ln k
= −2ε



Gravitational Waves
• Consistency relation between tensor-scalar ratio and tensor tilt

r = 16ε = −8nT

• Measurement of scalar tilt and gravitational wave amplitude
constrains inflationary model in the slow roll context

• Comparision of tensor-scalar ratio and tensor tilt tests the idea of
slow roll itself



Gravitational Wave Phenomenology
• Equation of motion

Ḧ
(±2)
T + 2

ȧ

a
Ḣ

(±2)
T + k2H

(±2)
T = 0 .

• has solutions

H
(±2)
T = C1H1(kη) + C2H2(kη)

H1 ∝ x−mjm(x)

H2 ∝ x−mnm(x)

where m = (1− 3w)/(1 + 3w)

• If w > −1/3 then gravity wave is constant above horizon x� 1

and then oscillates and damps

• If w < −1/3 then gravity wave oscillates and freezes into some
value, just like scalar field



Gravitational Wave Phenomenology
• A gravitational wave makes a quadrupolar (transverse-traceless)

distortion to metric

• Just like the scale factor or spatial curvature, a temporal variation
in its amplitude leaves a residual temperature variation in CMB
photons – here anisotropic

• Before recombination, anisotropic variation is eliminated by
scattering

• Gravitational wave temperature effect drops sharply at the horizon
scale at recombination



Gravitational Wave Phenomenology
• Source to polarization goes as τ̇ /ḢT and peaks at the horizon not

damping scale

• More distinct signature in the polarization since symmetry of plane
wave is broken by the transverse nature of gravity wave
polarization

• B modes formed as photons propagate – the spatial variation in the
plane waves modulate the signal: described by Boltzmann eqn.

∆Bpeak ≈ 0.024

(
Ei

1016GeV

)2

µK



Large Field Models
• For detectable gravitational waves, scalar field must roll by order
Mpl = (8πG)−1/2

dφ0

dN
=

dφ0

d ln a
=
dφ0

dt

1

H
• The larger ε is the more the field rolls in an e-fold

ε =
r

16
=

3

2V

(
H
dφ0

dN

)2

=
8πG

2

(
dφ0

dN

)2

• Observable scales span ∆N ∼ 5 so

∆φ0 ≈ 5
dφ

dN
= 5(r/8)1/2Mpl ≈ 0.6(r/0.1)1/2Mpl

• Does this make sense as an effective field theory? Lyth (1997)



Large Field Models
• Large field models include monomial potentials V (φ) = Aφn

ε ≈ n2

16πGφ2

δ ≈ ε− n(n− 1)

8πGφ2

• Slow roll requires large field values of φ > Mpl

• Thus ε ∼ |δ| and a finite tilt indicates finite ε

• Given WMAP tilt, potentially observable gravitational waves



Small Field Models
• If the field is near an maximum of the potential

V (φ) = V0 −
1

2
µ2φ2

• Inflation occurs if the V0 term dominates

ε ≈ 1

16πG

µ4φ2

V 2
0

δ ≈ ε+
1

8πG

µ2

V0
→ δ

ε
=

V0
µ2φ2

� 1

• Tilt reflects δ: nS ≈ 1− 2δ and ε is much smaller

• The field does not roll significantly during inflation and
gravitational waves are negligible



Hybrid Models
• If the field is rolling toward a minimum of the potential

V (φ) = V0 +
1

2
m2φ2

• Slow roll parameters similar to small field but a real m2

ε ≈ 1

16πG

m4φ2

V 2
0

δ ≈ ε− 1

8πG

m2

V0

• Then V0 domination ε, δ < 0 and nS > 1 - blue tilt

• For m2 domination, monomial-like.

• Intermediate cases with intermediate predictions - can have
observable gravity waves but does not require it.



Hybrid Models
• But how does inflation end? V0 remains as field settles to minimum

• Implemented as multiple field model with V0 supplied by second
field

• Inflation ends when rolling triggers motion in the second field to
the true joint minimum



Features
• The slow roll simplification carried an extra assumption that δ is

not only small but also constant

• Assumption that ε is nearly constant is justified if |δ| � 1

• These conditions can be violated if there are rapid, not necessarily
large, changes in the potential

• What happens when we relax these conditions?

• Go back to Mukhanov equation and for convenience transform
variables to y =

√
2ku and x = −kη̃ and ′ = d/d ln η̃

d2y

dx2
+

(
1− 2

x2

)
y =

g(lnx)

x2
y

g =
f ′′ − 3f ′

f
, f = 2π

φ̇aη

H



Generalized Slow Roll
• Note that the LHS is the slow roll version of Mukhanov and the

RHS is a source that depends on the slow roll parameters as

g = 2[(aHη̃)2 − 1] + (aHη̃)2[2ε+ 3δ + 2ε2 + 4δε+ δ2]

where we have eliminated δ̇ in favor of a third parameter

δ2 =
dδ

d ln a
− εδ + δ2

• Since (aHη̃) ≈ −(1 + ε), g vanishes to zeroth order in slow roll

• Keeping δ2 restores the relationship with the potential

g ≈ 1

8πG

[
9

2
(
V ′

V
)2 − 3

V ′′

V

]



Generalized Slow Roll
• Generalized slow roll approximation exploits this fact by taking an

iterative Green function approach

• LHS “homogeneous” equation is solved by

y0(x) =

(
1 +

i

x

)
eix

so in the approximation that y ≈ y0 on the RHS

y(x) = y0(x)−
∫ ∞
x

du

u2
g(lnu)y0(u)Im[y∗0(u)y0(x)]

which is an integral equation for the field an curvature spectrum
given some deviation from slow roll as quantified by V ′/V and
V ′′/V



Generalized Slow Roll
• For example, by assuming |δ| � 1, ε ≈ const. and

∆2
R(k) =

V (8πG)2

12π2

(
V

V ′

)2 {
1 + (3α− 1

6
)

1

8πG
(
V ′

V
)2|k=aH

− 2

8πG

∫ ∞
0

du

u
Wθ(u)

V ′′

V

}
,

where α ≈ 0.73 and

Wθ(u) =
3 sin(2u)

2u3
− 3 cos 2u

u2
− 3 sin(2u)

2u
− θ(1− u)

• u� 1 goes 2u2/5 and u� 1 oscillates as −3 sin(2u)/2u

• Therefore changes in V ′′/V around horizon crossing for mode
produce a ringing response in the power spectrum – WMAP
glitches?

• Can extend to |δ| ∼ O(1), and can be iterated to higher order



Non-Gaussianity
• In single field slow roll inflation, the inflaton is nearly free field -

modes don’t interact - fluctuations are Gaussian to a high degree.

• Non-gaussianities are at best second order effects and with 10−5

fluctuations, this is a 10−10 effect!

• Coupling of long wavelength curvature to short wavelength (field)
must satisfy consistency relation and hence related to ns− 1 or ε, δ.

R(2) = [R(1)]2O(ε, δ)

• Second order effects generate larger correction. Curvature on
constant density slicing ζ still conserved, transform back to
Newtonian gauge and extract fluctuation returns a form

Φ(x) = Φ(1)(x) + fNL[(Φ(1)(x))2 − 〈Φ(1)(x)〉2]

called a local non-Gaussianity - generic prediction is fNL = O(1)



Non-Gaussianity
• Decompose in harmonics (assume k2 � |K|, nearly flat)

Φ(k) =

∫
d3xe−ik·xΦ(x)

= Φ(1)(k) + fNL

∫
d3xe−ik·x

∫
d3k1

(2π)3
eik1·xΦ(1)(k1)

∫
d3k2

(2π)3
eik2·xΦ(1)(k2)

with
∫
d3xei(k−k

′)·x = (2π)3δ(k− k′) yields

Φ(k) = Φ(1)(k) + fNL

∫
d3k1

(2π)3
Φ(1)(k1)Φ(1)(k− k1)

• Given that the first order term is a Gaussian field represented by
the power spectrum

〈Φ(1)(k)Φ(1)(k′)〉 = (2π)3δ(k + k′)PΦ(k)

we get a bispectrum contribution



Non-Gaussianity
• The bispectrum is proportional to the product of power spectra

〈Φ(k1)Φ(k2)Φ(k3)〉 = (2π)3δ(k1 + k2 + k3)[2fNLPΦ(k1)PΦ(k2) + perm]

• Bispectrum contains most of the information on local
non-Gaussianity

• Higher point correlations also exist and can be measured with
good S/N but their sample variance is high and so don’t help in
constraining fNL



Non-Gaussianity Measurements
• Measure in 2D analogue in the Planck CMB data fNL = 2.7± 5.8

(68% CL)

• Counterintuitively, this level can also be reached by measuring
power spectrum of rare objects at low k (large scales)

• Bispectrum for k1 ∼ −k2 and |k3| � |k1|, k2 looks like a
correlation of high k power with low k amplitude

• Enhanced power allows for formation of rare objects in essentially
the same way as the peak-background split picture for bias

• Relative effect increases at low k where the intrinsic power in the
density spectrum falls

• Strong scale dependence of bias (Dalal et al 2007)



Curvaton
• Beyond single field slow roll inflation, larger fNL can be generated

• Suppose there is a second light field σ called the curvaton during
inflation, it also has quantum fluctuations

∆2
σ ≈

(
H

2π

)2

• After inflation the curvaton oscillates around its minimum and
decays leaving its field fluctuations as density fluctuations

Vσ =
1

2
m2
σσ

2

• Energy density oscillates from potential to kinetic, w = ±1 with
average of w = 0 - redshifts like matter - can dominate the energy
density of the universe



Curvaton
• Its energy density is given by the square of the field amplitude. To

leading order

ρσ ≈
1

2
m2
σσ

2

• The fractional density fluctuation is related to the fractional field
fluctuation

δρσ
ρσ
≈ 2

δσ

σ

• Power spectrum enhanced by 1/σ2
∗ (evaluated at horizon crossing)

• Via change in dominant species (or more generally change in
equation of state of total), once negligible δρσ ≈ δρ

• From density fluctuation in the spatially flat gauge move to a
curvature fluctuation on the constant density gauge ζ



Curvaton
• Via the gauge transformation from spatially flat gauge to constant

density gauge

ζ = HL +
HT

3
− ȧ

a

δρ

ρ̇

= − ȧ
a

δρσ
ρ̇σ

=
1

3

δρσ
ρσ

=
2

3

δσ

σ∗

• So if the curvaton dominates the energy density before decaying
into particles then the curvature fluctuation

∆2
ζ =

4

9

(
H∗

2πσ∗

)2

• If the curvaton decays before it fully dominates the energy density
then its density fluctuations are diluted by the ratio of curvaton to
total energy density



Curvaton
• More generally, curvaton decays when H = Γ the decay rate and
H is controlled by total energy density and Friedmann equation

• So if both the radiation and curvaton contribute significantly to the
energy density, we go to the surface of constant total density and
define the decay time td

H2(td) = 8πGρ(td)/3 = Γ2

ρ(x, td) = ρ(td)|δ=0 = ρr(x, td) + ρσ(x, td)

where note that the r and σ contributions are inhomogeneous on
this surface in general

(1 + δr)ρr + (1 + δσ)ρσ = ρ

(1 + δr)

(
1− ρσ

ρ

)
+ (1 + δσ)

ρσ
ρ

= 1



Curvaton
• The surfaces for which they are individually homogeneous are

reached by the gauge transformation

ζr = ζ − ȧ

a

δρr
ρ̇r

= ζ +
1

4
δr

ζσ = ζ − ȧ

a

δρσ
ρ̇σ

= ζ +
1

3
δσ

• So we can eliminate ρr(x, td) and ρσ(x, td) in favor of ζ’s

[1 + 4(ζr − ζ)]

(
1− ρσ

ρ

)
+ [1 + 3(ζσ − ζ)]

ρσ
ρ

= 1

• Given ζσ, ζr, and r this defines the curvature fluctuation ζ

• ζr is the curvature perturbation associated with the inflaton
decaying to radiation



Curvaton
• Take ζr � ζσ

[1− 4ζ]

(
1− ρσ

ρ

)
+ [1 + 3(ζσ − ζ)]

ρσ
ρ

= 1

or

ζ =
3ρσ

4ρ− ρσ
ζσ =

3ρσ
4ρr + 3ρσ

ζσ = rζσ

where r is the ratio of ρ+ p

r =
ρ̇σ
ρ̇

=
3ρσ

4ρr + 3ρσ

• Thus the curvature spectrum becomes

∆2
ζ =

4

9
r2
(
H∗

2πσ∗

)2



Curvaton
• Moreover since the density is the square of the field, there is a

local non-Gaussianity that can be much larger

δρσ
ρσ
≈ 2

δσ

σ
+

(δσ)2

σ2

• So with Φ = 3ζ/5 for r = 1

Φ =
1

5

[
2

(
δσ

σ

)
+

(
δσ

σ

)2
]
, fNL =

5

4

• For r < 1 it is enhanced by 1/r with the detailed relation requiring
expanding the decay condition to second order via the relations

ρr(x, td) = ρ̄r(td)e
4(ζr−ζ)

ρσ(x, td) = ρ̄σ(td)e
4(ζr−ζ)



Curvaton
• Generalizing beyond just curvaton and radiation to multiple

species like CDM, baryons etc entails keeping a ζi for each

• Difference between ζi − ζj represents a fluctuation in the relative
number density of various particle species

• If for example, the CDM was created before curvaton decay (no
longer in equilibrium with plasma), its curvature fluctuation comes
from the inflation ζCDM = ζr whereas the other particles share
ζj = ζσ

• This gives a number density fluctuation between e.g. the photons
and the CDM



Variable Decay
• Suppose the decay rate of the inflation during reheating were

controlled by some light scalar Γ ∝ χ

• χ gets quantum fluctuations δχ ≈ H/2π as any light scalar

• Fluctuations in the field cause fluctuations in the decay rate

• In a region where decay is more rapid, the inflaton converts its
energy to radiation earlier, thereafter redshifting like radiation

• Net result is a density fluctuation of order the decay rate
fluctuation δρ/ρ ∝ δΓ/Γ

• In the constant density gauge this is a curvature fluctuation

ζ = −1

6

δΓ

Γ



Effective Field Theory
• Choosing a gauge where scalar field is unperturbed (comoving

gauge to leading order) is a preferred hypersurface

• Generalize to arbitrary single field model: field is the only clock

• Suggests that we can move beyond canonical fields and linear
order by exploiting this concept

• Choose the unitary gauge as constant field gauge to all orders

φ(x, tu) = φ0(tu)

• Given that by assumption the universe is dominated by this scalar
field and it is homogenous in this frame, the only thing that the
action can be built out of is terms that depend on tu
• In the EFT language, write down all possible terms that is

consistent with unbroken spatial diffeomorphism invariance in this
slicing



Effective Field Theory
• In unitary gauge, there is only the metric to work with. In general

it transforms as a tensor

g̃µν(t̃, x̃i) =
∂x̃µ

∂xα
∂x̃ν

∂xβ
gαβ(t, xi)

• Note: to stay close to the inflationary literature, 0 will represent
coordinate rather than conformal time

• Consider the restricted set of gauge transformations that change
only the spatial coordinates

x̃i = xi + Li; t̃ = t

• Only component that is left invariant under this transformation is
g00; g00 is not invariant if Li depends on t.

• So the most general action is the most general function of g00



Effective Field Theory
• Now consider that g00 + 1 is a small metric perturbation. A general

function may be expanded around this value in a Taylor series

S =

∫
d4x
√
−g
[1

2
M2

PlR+

∞∑
n=0

1

n!
M4
n(tu)(g00u + 1)n

]
,

• Varying action with respect to gµν we get the Einstein equations

• Constant term gives a cosmological constant whereas the n = 1

term gives the effective stress tensor of the field in the background

H2 = − 1

3M2
Pl

[
M4

0 + 2M4
1

]
Ḣ +H2 = − 1

3M2
Pl

[
M4

0 −M4
1

]



Effective Field Theory
• Friedmann equation can thus eliminate n = 0, 1

M4
0 = −(3H2 + 2Ḣ)M2

Pl

M4
1 = ḢM2

Pl

• Now we an restore time slicing invariance or temporal diffs
allowing for a general change in the time coordinate

tu = t+ π(t, xi)

• In particle physics language this is the Stuckelberg trick and π is a
Stuckelberg field.

• To connect with the canonical linearized treatment φ1 = φ̇0π so
R = −Hπ but here defined to be the field fluctuation to all orders.



Effective Field Theory
• Transformation to arbitrary slicing is given by

g00u =
∂tu
∂xµ

∂tu
∂xν

gµν

• Each M4
n(tu = t+ π) and hence carry extra Taylor expansion

terms

• In general, transformation mixes π and metric fluctuations δgµν

including terms like

π̇δg00, δgπ̇, ∂iπg
0i, ∂iπ∂jπδg

ij

in the canonical linear theory calculation, the first three were the
Ȧ, ḢL, kB terms after integration by parts and the last is cubic
order



Effective Field Theory
• Again we make use of the fact that sub horizon scales these metric

terms are subdominant

• In spatially flat gauge the domain of validity extends even through
the horizon if we neglect slow roll corrections

• In this case we can ignore the terms associated with the spatial
pieces of the metric and replace

g00u = −(1 + π̇)2 +
(∂iπ)2

a2

• Each g00u + 1 factor carries terms that are linear and quadratic in π

(g00u + 1)n = (−π̇)n
n∑
i=0

2n−in!

i!(n− i)!
Πi



Effective Field Theory
• So each M4

n term contributes from πn to π2n

Π = π̇

(
1− (∂iπ)2

a2π̇2

)
• For example M2

(g00u + 1)2 = π̇2

[
4 + 4π̇

(
1− (∂iπ)2

a2π̇2

)
+ π̇2

(
1− (∂iπ)2

a2π̇2

)2
]

= 4(π̇2 + π̇3 − π̇ (∂iπ)2

a2
) + . . .

implies both a cubic and quartic Lagrangian. To cubic order

Sπ =

∫
d4x
√
−g
[
−M2

PlḢ

(
π̇2 − (∂iπ)2

a2

)
+ 2M4

2 (π̇2 + π̇3 − π̇ (∂iπ)2

a2
) + . . .



Effective Field Theory
• Isolate the quadratic action

Sπ2 =

∫
d4x
√
−g
[
(−M2

PlḢ + 2M4
2 )π̇2 +M2

PlḢ
(∂iπ)2

a2

]
and identify the sound speed from ω = (k/a)cs

c−2
s = 1− 2M4

2

M2
PlḢ

; Π ∼ π̇
(

1− 1

c2s

)

using −Ḣ = εH2

Sπ2 =

∫
dtd3x(a3εH2)M2

Plc
−2
s

[
π̇2 − c2s

(∂iπ)2

a2

]
=

∫
dηd3x

z2H2M2
Pl

2

[(
∂π

∂η

)2

− c2s(∂iπ)2
]

where z2 = 2a2ε/c2s is the generalization of Mukhanov z



Effective Field Theory
• So a field redefinition canonically normalizes the field

u = zHπMPl

brings the EFT action to canonical form (assuming M4
n =const.)

Su =

∫
dηd3x

[(
∂u

∂η

)2

− c2s(∂iu)2 − 2u
∂u

∂η

d ln z

dη
+ u2

(
d ln z

dη

)2
]

=

∫
dηd3x

[(
∂u

∂η

)2

− c2s(∂iu)2 +
u2

z

d2z

dη

]

which is the generalization of the u field of canonical inflation

• Quantize this field, noting that 1/
√
E normalization factor goes to

1/
√
kcs yielding the modefunction

u =
1√
2kcs

(
1− i

kcsη̃

)
e−ikcsη̃



Effective Field Theory
• Curvature fluctuations then freezeout at kcsη̃ = 1 (sound horizon

crossing) at a value

R = −Hπ =
cs

a
√

2ε

1√
2kcs

i

kcsη̃MPl

≈ −iH
2k3/2

√
εcsMPl

• So

∆2
R =

k3|R|2

2π2
=

H2

8π2εcsM2
Pl

• Generalization is that the sound speed enters in two ways: boosts
scalars over tensors by cs and changes the epoch of freezeout
between scalars and tensors



Effective Field Theory
• Returning to the original π action, since M4

2 carries cubic term this
requires a non-Gaussianity

Sπ =

∫
d4x
√
−g
[
−M

2
PlḢ

c2s

(
π̇2 + c2s

(∂iπ)2

a2

)
+M2

PlḢ

(
1− 1

c2s

)(
π̇3 − π̇ (∂iπ)2

a2

)]
+ . . .

• For cs � 1, spatial gradients dominate temporal derivatives

∂0 → ω, ∂i → k, ω = kcs/a

and leading order cubic term is π̇(∂iπ)2

• Estimate the size of the non-Gaussianity by taking the ratio of
cubic to quadratic at cs � 1

π̇(∂iπ)2

a2π̇2
∼ kπrms

csa
where πrms =

(
k3|π|2

2π2

)1/2



Effective Field Theory
• Deep within the horizon u = 1/

√
2kcs and so

kπrms

csa
∼ k

csa

(
k2

2z2H2csM2
Pl

)1/2

∼
(
kcs
aH

)2
H

MPl
√
εcs

1

c2s

∼
(
kcs
aH

)2
∆R
c2s

< 1

• Since kcs/aH ∼ ω/H is a ratio of an energy scale to Hubble, the
bound determines the strong coupling scale

ωsc
H
∼ cs√

∆R
∼ 102cs

• For cs < 0.01 the strong coupling scale is near the horizon and the
effective theory has broken down before freezeout



Effective Field Theory
• Now consider a less extreme cs

• Here the effective theory becomes valid at least several efolds
before horizon crossing and we can make predictions within the
theory

• Not surprisingly non-Gaussianity is enhanced by these self
interactions and freezeout at kcs ∼ aH

kπrms

csa
∼ k

csa

(
1

εcsM2
Pl

)1/2

∼ kcs
aH

H√
εcsMPl

1

c2s

∼ ∆R
c2s

and so bispectrum is enhanced over the naive expectation by c−2s



Effective Field Theory
• More generally, each M4

n sets its own strong coupling scale

Ln
L2

∼ 1

These coincide if

M4
n

M4
2

∼
(

1

c2s

)n−2
which would be the natural prediction if the M2 strong coupling
scale indicated the scale of new physics and we take all allowed
operators as order unity at that scale



K-inflation P (X,φ)
• EFT was built to cover the case of scalar field Lagrangian that is a

general function of its kinetic term and field value

L = P (X,φ)

where 2X = −gµν∂µφ∂νφ

• In this case

M4
n = (−X)n

∂nP

∂Xn

and

c−2s = 1 +
2XP,XX
P,X



DBI
• An example coming from string inspired models is the

Dirac-Born-Infeld Lagrangian

L =
[
1−

√
1− 2X/T (φ)

]
T (φ)− V (φ),

where T (φ) is the warped brane tension and φ denotes the position
of the brane in a higher dimension

• If X/T � 1 then L = X − V , the same as a canonical scalar field



DBI
• Here

cs(φ,X) =
√

1− 2X/T (φ)

and

cn = (−1)n
M4

n

M4
2

=
(2n− 3)!!

2n−2

(
1

c2s
− 1

)n−2
satisfying the cs scaling of the EFT prescription


