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Appendix B

Useful Quantities and Relations

B.1 FRW Parameters

The expansion rate is given by the Hubble parameter

H2 ≡
(

1
a

da

dt

)2

=
(
ȧ

a

a0

a

)2

=
(
a0

a

)4 aeq + a

aeq + a0
Ω0H

2
0 −

(
a0

a

)2

K + ΩΛH
2
0 , (B.1)

where the curvature is K = −H2
0 (1−Ω0 −ΩΛ). The value of the Hubble parameter today,

for different choices of the fundamental units (see Tab. B.1), is expressed as

H0 = 100h kms−1Mpc−1

= 2.1331× 10−42hGeV

= (2997.9)−1hMpc−1

= (3.0857× 1017)−1h s−1

= (9.7778)−1hGyr−1. (B.2)

Present day densities in a given particle species X are measured in units of the critical
density ρX(a0) = ΩXρcrit, where

ρcrit = 3H2
0/8πG = 1.8788× 10−29h2 g cm−3

= 8.0980× 10−47h2 GeV4

= 1.0539× 104h2 eV cm−3

= 1.1233× 10−5h2protons cm−3

= 2.7754× 1011h2M� Mpc−3. (B.3)

For the CMB,

nγ0 = 399.3Θ3
2.7 cm−3,
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1 s = 9.7157× 10−15 Mpc
1 yr = 3.1558× 107 s
1 Mpc = 3.0856× 1024 cm
1 AU = 1.4960× 1013 cm
1 K = 8.6170× 10−5 eV
1 M� = 1.989× 1033 g
1 GeV = 1.6022× 10−3 erg

= 1.7827× 10−24 g
= (1.9733× 10−14 cm)−1

= (6.5821× 10−25 s)−1

Planck’s constant h̄ = 1.0546× 10−27 cm2 g s−1

Speed of light c = 2.9979× 1010 cm s−1

Boltzmann’s constant kB = 1.3807× 10−16 erg K−1

Fine structure constant α = 1/137.036
Gravitational constant G = 6.6720× 10−8 cm3 g−1 s−2

Stefan-Boltzmann constant σ = ac/4 = π2k4
B/60h̄3c2

a = 7.5646× 10−15 erg cm−3K−4

Thomson cross section σT = 8πα2/3m2
e = 6.6524× 10−25 cm2

Electron mass me = 0.5110 MeV
Neutron mass mn = 939.566 MeV
Proton mass mp = 938.272 MeV

Table B.1: Physical Constants and Conversion factors

ργ0 = 4.4738× 10−34Θ4
2.7 g cm−3,

Ωγ = 2.3812× 10−5h−2Θ4
2.7, (B.4)

and for the neutrinos

ρν0 = [(1− fν)−1 − 1]ργ0,

Ων = [(1− fν)−1 − 1]Ωγ, (B.5)

with (1− fν)−1 = 1.68 for the standard model, or for the total radiation

ρr0 = (1− fν)−1ργ0,

Ωr = (1− fν)−1Ωγ . (B.6)

B.2 Time Variables

Throughout the text we use four time variables interchangeably, they are a the
scale factor, z the redshift, η the conformal time, and t the coordinate time. In addition,
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three dimensionless time parameterizations are useful to consider: χ the development angle
in an open universe, D the relative amplitude of pressureless matter fluctuations, and τ the
optical depth to Compton scattering.

B.2.1 Scale Factor and Redshift

The scale factor a(t) describes the state of expansion and is the fundamental
measure of time in the Hubble equation (B.1) since it controls the energy density of the
universe. In this Appendix, we leave the normalization of a free to preserve generality.
However, the normalization applied in §4, §5, §6, and Appendix A is aeq = 1. The conversion
factor between the more commonly employed normalization a0 = 1 is

aeq

a0
=

Ωr

Ω0 −Ωr

= 2.38× 10−5(Ω0h
2)−1(1− fν)−1Θ4

2.7. (B.7)

The redshift z is defined by (1 + z) = a0/a and serves the same role as the scale factor
normalized to the present. We give the scale factor normalized to 3/4 at baryon-photon
equality a special symbol R given the frequency of its appearance in equations related to
Compton scattering. More explicitly,

R =
3
4
ρb

ργ
= (1− fν)−13

4
Ωb

Ω0

a

aeq

= 31.5Ωbh
2Θ−4

2.7(z/103)−1. (B.8)

Epochs of interest for the CMB are listed in Tab. B.2 by their redshifts.

B.2.2 Conformal Time

By definition, the conformal time η =
∫
dt/a is related to the scale factor as

η =
∫
da

a

1
H

a0

a
. (B.9)

Note that in these c = 1 units, the conformal time doubles as the comoving size of the
horizon. In an open universe, it is also related to the development angle by

χ =
√−Kη. (B.10)

Asymptotic relations are often useful for converting values. Before curvature or Λ domina-
tion, the conformal time

η =
2
√

2
keq

(√
1 + a/aeq − 1

)

= 2(Ω0H
2
0 )−1/2(aeq/a0)1/2

(√
1 + a/aeq − 1

)
, (B.11)
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Epoch Definition

z∗ = 103Ω−0.027/(1+0.11lnΩb)
b Ω0 = 1 Last scattering (recomb.)

= 102(Ω0h
2/0.25)1/3(xeΩbh

2/0.0125)−2/3 Last scattering (reion.)

zd = 160(Ω0h
2)1/5x

−2/5
e Drag epoch

zeq = 4.20× 104Ω0h
2(1− fν)Θ−4

2.7 Matter-radiation equality

zbγ = 3.17× 104Ωbh
2Θ−4

2.7 Baryon-photon equality

zH = (1 + zeq){4(k/keq)2/[1 + (1 + 8(k/keq)2)1/2]} − 1 Hubble length crossing

z = (1− Ω0 − ΩΛ)/Ω0 − 1 Matter-curvature equality

z = (ΩΛ/Ω0)1/3 − 1 Matter-Λ equality

z = [ΩΛ/(1−Ω0 −ΩΛ)]1/2− 1 Curvature-Λ equality

zcool = 9.08Θ−16/5
2.7 f

2/5
cool(Ω0h

2)1/5 − 1 Compton cooling era

z > 4
√

2zK Bose-Einstein era

z < zK/8 Compton-y era

zK = 7.09× 103(1− Yp/2)−1/2(xeΩbh
2)−1/2Θ1/2

2.7 Comptonization epoch

zµ,dc = 4.09× 105(1− Yp/2)−2/5(xeΩbh
2)−2/5Θ1/5

2.7 Dbl. Compton therm. epoch

zµ,br = 5.60× 104(1− Yp/2)−4/5(xeΩbh
2)−6/5Θ13/5

2.7 Bremss. therm. epoch

Θ2.7 = T0/2.7K' 1.01 Temperature Scaling

Yp = 4nHe/nb ' 0.23 Helium mass fraction

(1− fν)−1 = 1 + ρν/ργ → 1.68132 Neutrino density correction

keq = (2Ω0H
2
0a0/aeq)1/2 Equality Hubble wavenumber

= 9.67× 10−2Ω0h
2(1− fν)1/2Θ−2

2.7Mpc−1

fcool = x−1
e [(1 + xe)/2− (3 + 2xe)Yp/8](1− Yp/2)−1 Cooling correction factor

Table B.2: Critical Redshifts
Critical epochs are also denoted as the corresponding value in the coordinate time t, scale
factor a, and conformal time η. The neutrino fraction fν is given for three families of
massless neutrinos and the standard thermal history. The Hubble crossing redshift zH is
given for the matter and radiation dominated epochs.
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and reduces to

η =

{
(ΩrH

2
0 )−1/2a/a0 RD

2(Ω0H
2
0 )−1/2(a/a0)1/2, MD

(B.12)

where Ωr/Ω0 ' aeq/a0. In a Λ = 0 universe, it also has an asymptotic solution for a� aeq

η =
1√−K cosh−1

[
1 +

2(1−Ω0)
Ω0

a

a0

]
MD/CD

lim
Ω0→0

η0 → (−K)−1/2 ln(4/Ω0), (B.13)

and thus the horizon scale is larger than the curvature scale (−K)−1/2 for low Ω0 universes.
In a flat universe,

η0 ' 2(Ω0H
2
0 )−1/2(1 + ln Ω0.085

0 ), Ω0 + ΩΛ = 1 (B.14)

and the horizon goes to a constant η = 2.8 H−1
0 Ω−1/3

0 (1− Ω0)−1/6 as a/a0 →∞.

B.2.3 Coordinate Time

The coordinate time is defined in terms of the scale factor as,

t =
∫
da

a

1
H
. (B.15)

It also takes on simple asymptotic forms, e.g.

t =
2
3
(Ω0H

2
0 )−1/2a

−3/2
0 [(a+ aeq)1/2(a− 2aeq) + 2a3/2

eq ]. RD/MD (B.16)

Explicitly, this becomes

t =
1
2
(Ω0H

2
0 )−1/2(a0/aeq)1/2(a/a0)2 RD

= 2.4358× 1019Θ−2
2.7(1 + z)−2s. (B.17)

and

t =
2
3
(Ω0H

2
0 )-1/2(a/a0)3/2 MD

= 2.0571× 1017(Ω0h
2)−1/2(1 + z)−3/2s. (B.18)

The expansion time, defined as H−1 scales similarly

texp = (Ω0H
2
0 )−1/2(a/a0)2a

1/2
      0  (a+ a   eq)−1/2

= 4.88× 1019(z + zeq + 2)−1/2Θ−2
2.7(1 + z)−3/2s. (B.19)

For Λ = 0 universes, the coordinate time at late epochs when radiation can be neglected is
given by

t = H−1
0

[
(1 + Ω0z)1/2

(1−Ω0)(1 + z)
− Ω0

2(1−Ω0)3/2
cosh−1

(
2(1−Ω0)
Ω0(1 + z)

+ 1
)]

. MD/CD (B.20)
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In particular, the age of the universe today is

t0 = H−1
0 (1−Ω0)−1

[
1− Ω0

2
(1−Ω0)−1/2 cosh(2/Ω0 − 1)

]
, ΩΛ = 0 (B.21)

where the factor in square brackets goes to unity as Ω0 → 0. This should be compared with
the flat Ω0 + ΩΛ = 1 result

t0 =
2
3
H−1

0 (1−Ω0)−1/2 ln

[
1 +
√

1− Ω0√
Ω0

]
, Ω0 + ΩΛ = 1, (B.22)

which diverges logarithmically as Ω0 → 0. Finally a microphysical time scale of interest for
the CMB,

tC = (dτ/dt)−1 = (xeneσT )−1

= 4.4674× 1018(1− Yp/2)−1(xeΩbh
2)−1(1 + z)−3s, (B.23)

is the Compton mean free time between scatterings.

B.2.4 Growth Function

The amplitude of matter fluctuations undergoing pressureless growth is another
useful parameterization of time. It is given by equation (5.9) as

D =
5
2
Ω0

a0

aeq
g(a)

∫
da

a

1
g3(a)

(
a0

a

)2

, (B.24)

where the dimensionless, “pressureless” Hubble parameter is

g2(a) =
(
a0

a

)3

Ω0 +
(
a0

a

)2

(1−Ω0 −ΩΛ) + ΩΛ. (B.25)

In the matter or radiation-dominated epoch, D = a/aeq by construction. In a Λ = 0
universe, D becomes

D =
5

2xeq

[
1 +

3
x

+
3(1 + x)1/2

x3/2
ln[(1 + x)1/2 − x1/2]

]
, (B.26)

where x = (Ω−1
0 −1)a/a0. Fitting formulae for the growth factor, valid for the general case,

are occasionally useful [26]:

D0

a0
' 5

2
Ω0

[
Ω4/7

0 −ΩΛ +
(

1 +
1
2
Ω0

)(
1− 1

70
ΩΛ

)]−1

, (B.27)

d lnD
d lna

'
[

Ω0(1 + z)3

Ω0(1 + z)3 − (Ω0 + ΩΛ − 1)(1 + z)2 + ΩΛ

]4/7

. (B.28)

The latter relation is often employed to relate the velocity to the density field.
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B.2.5 Optical Depth

For the CMB, the optical depth τ to Compton scattering is a useful lookback time
parameterization,

τ(a, a0) =
∫ η0

η
dη′xeneσT a

′

= 6.91× 10−2(1− Yp/2)xeΩbh

∫ a0

a

da′

a′
H0

H

(
a0

a′

)3

, (B.29)

for constant ionization fraction. If a� aeq , this has closed form solution,

τ(a, a0) = 4.61× 10−2(1− Yp/2)xe
Ωbh

Ω2
0

×
{

2− 3Ω0 + (1 + Ω0z)1/2(Ω0z + 3Ω0 − 2) ΩΛ = 0

Ω0[1−Ω0 + Ω0(1 + z)3]1/2 −Ω0. Ω0 + ΩΛ = 1
(B.30)

Furthermore, since the optical depth is dominated by early contributions the distinction
between open and Λ universes for τ ∼> 1 is negligible.

B.3 Critical Scales

B.3.1 Physical Scales

Several physical scales are also of interest. We always use comoving measures
when quoting distances. The most critical quantity is the horizon scale η given in the last
section and the curvature scale (−K)−1/2 = 2997.9h(1− Ω0 − ΩΛ)1/2Mpc. There are two
related quantities of interest, the Hubble scale and the conformal angular diameter distance
to the horizon. The Hubble scale is often employed instead of the horizon scale because it
is independent of the past evolution of the universe. The wavenumber corresponding to the
Hubble scale is

kH =
ȧ

a
=




(ΩrH
2
0 )1/2(a0/a) RD

(Ω0H
2
0 )1/2(a0/a)1/2 MD

(−K)1/2 CD

(ΩΛH
2
0 )1/2a/a0. ΛD

(B.31)

Comparison with the relations for η shows that kHη ∼ 1 during radiation and matter
domination but not curvature or Λ domination. Indeed, due to the exponential expansion,
the Hubble scale goes to zero as a/a0 →∞, reflecting the fact that regions which were once
in causal contact can no longer communicate. This is of course how inflation solves the
horizon problem. Throughout the main text we have blurred the distinction between the
Hubble scale and the horizon scale when discussing the radiation- and matter-dominated
epochs.

The distance inferred for an object of known spatial extent by its angular diameter
is known as the conformal angular diameter distance. It multiplies the angular part of the
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spatial metric. Moreover, in an open universe, it is not equivalent to the distance measured
in conformal time. For an observer at the present, it is given by

rθ(η) = (−K)−1/2 sinh[(η0− η)(−K)1/2]. (B.32)

Note that the argument of sinh is the difference in development angle χ in an open universe.
Of particular interest is the angular diameter distance to the horizon rθ(0) since many
features in the CMB are generated early

rθ(0) '
{

2(Ω0H0)−1 ΩΛ = 0

2(Ω0H
2
0 )−1/2(1 + ln Ω0.085

0 ). ΩΛ + Ω0 = 1
(B.33)

In the flat case, rθ(0) = η0.
A microphysical scale, the mean free path of a photon to Compton scattering, is

also of interest for the CMB,

λC = (xeneσT a/a0)−1 = 4.3404× 104(1− Yp/2)−1(xeΩbh
2)−1(1 + z)−2Mpc. (B.34)

The diffusion length is roughly the geometric mean of λC and the horizon η. More precisely,
it is given by equation (A.55) as

λ2
D ∼ k−2

D =
1
6

∫
dη

1
τ̇

R2 + 4f−1
2 (1 +R)/5

(1 + R)2
. (B.35)

where

f2 =




1 isotropic, unpolarized

9/10 unpolarized

3/4 polarized

(B.36)

where isotropic means that the angular dependence of Compton scattering has been ne-
glected, and the polarization case accounts for feedback from scattering induced polariza-
tion. Throughout the main text, we have used f2 = 1 for simplicity. If the diffusion scale
is smaller than the sound horizon, acoustic oscillations will be present in the CMB. The
sound horizon is given by

rs =
∫ η

0
csdη

′ =
2
3

1
keq

√
6
Req

ln
√

1 + R+
√
R+ Req

1 +
√
Req

, (B.37)

which relates it to the horizon at equality ηeq = (4− 2
√

2)k−1
eq , where

keq = (2Ω0H
2
0a0/aeq)1/2

= 9.67× 10−2Ω0h
2(1− fν)1/2Θ−2

2.7Mpc−1,

ηeq = 12.1(Ω0h
2)−1(1− fν)1/2Θ2

2.7Mpc, (B.38)

with keq as the wavenumber that passes the Hubble scale at equality.
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B.3.2 Angular Scales

A physical scale at η subtends an angle or equivalently a multipole on the sky `

` = krθ(η) ' θ−1, `� 1 (B.39)

where the angle-distance relation rθ is given by equation (B.32). Three angular scales are
of interest to the CMB. The sound horizon at last scattering determines the location of the
acoustic peaks

`A = π
rθ(η∗)
rs(η∗)

,

`p =

{
m`A adiabatic

(m− 1
2 )`A, isocurvature

(B.40)

where `p is the location of the pth acoustic peak. If R∗� 1, `A takes on a simple form

`A = 172
(
z∗
103

)1/2 fG

fR
, (B.41)

where fR is the correction for the expansion during radiation domination

fR = (1 + xR)1/2 − x1/2
R ,

xR = aeq/a∗ = 2.38× 10−2(Ω0h
2)−1(1− fν)−1Θ4

2.7(z∗/103), (B.42)

and fG is the geometrical factor

fG '
{

Ω−1/2
0 ΩΛ = 0

1 + lnΩ0.085
0 . ΩΛ + Ω0 = 1

(B.43)

The diffusion damping scale at last scattering subtends an angle given by

`D = kD(η∗)rθ(η∗), (B.44)

where kD(η∗) is the effective damping scale at last scattering accounting for the recombi-
nation process. From §6.3.4, to order of magnitude it is

`D ∼ 103(Ωb/0.05)1/4Ω−1/4
0 f

−1/2
R fG, (B.45)

if Ωbh
2 is low as required by nucleosynthesis. The scaling is only approximate since the

detailed physics of recombination complicates the calculation of kD (see Appendix A.2.2).
The curvature radius at the horizon distance (i.e. early times) subtends an angle given by

`K '
√−Krθ(0)

' 2
√

1− Ω0

Ω0
. (B.46)

This relation is also not exact since for reasonable Ω0, the curvature scale subtends a large
angle on the sky and the small angle approximation breaks down. Note also that at closer
distances as is relevant for the late ISW effect, the curvature scale subtends an even larger
angle on the sky than this relation predicts.
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B.4 Normalization Conventions

B.4.1 Power Spectra

There are unfortunately a number of normalization conventions used in the litera-
ture and indeed several that run through the body of this work. Perhaps the most confusing
conventions are associated with open universes. The power in fluctuations is expressed alter-
nately per logarithmic intervals of the Laplacian wavenumber k or the eigenfunction index
ν = k̃/

√−K, k̃ = (k2 + K)1/2. The relation between the two follows from the identity
kdk = k̃dk̃,

P̃X(k̃) =
k

k̃
PX(k), (B.47)

where PX is the power spectrum of fluctuations in X . For example, our power law spectra

|Φ(0, k)|2 = Bkn−4,

|S(0, k)|2 = Ckm, (B.48)

become

|Φ̃(0, k̃)|2 = B(1−K/k̃2)(n−3)/2k̃n−4,

|S̃(0, k̃)|2 = C(1−K/k̃2)m/2k̃m. (B.49)

To add to the confusion, adiabatic fluctuations are often expressed in terms of the density
power spectrum at present P (k) = |∆T (η0, k)|2. The two conventions are related by the
Poisson equation,

(k2 − 3K)Φ =
3
2
Ω0H

2
0 (1 + aeq/a)

a0

a
∆T . (B.50)

To account for the growth between the initial conditions and the present, one notes that at
large scales (k → 0) the growth function is described by pressureless linear theory. From
equations (A.8) and (A.9),

∆T (η0, k) =
3
5
(Ω0H

2
0 )−1

[
1 +

4
15
fν

] [
1 +

2
5
fν

]−1

(1− 3K/k2)
D

Deq

aeq

a
Φ(0, k). (B.51)

If the neutrino anisotropic stress is neglected, drop the fν factors for consistency. Thus for
a normalization convention of P (k) = Akn at large scales

A =
9
25

(Ω0H
2
0 )−2

[
1 +

4
15
fν

]2 [
1 +

2
5
fν

]−2

(1− 3K/k2)2
(
D

Deq

aeq

a

)2

B. (B.52)

Notice that in an open universe, power law conditions for the potential do not imply power
law conditions for the density,

P (k) ∝ (k2 − 3K)2kn−4,

P̃ (k̃) ∝ k̃−1(k̃2 −K)−1(k̃2 − 4K)2(k̃2 −K)(n−1)/2. (B.53)



APPENDIX B. USEFUL QUANTITIES AND RELATIONS 199

Experiment `0 `1 `2 Qflat(µK) Ref.
COBE – – 18 19.9± 1.6 [62]
FIRS – – 30 19± 5 [57]
Ten. 20 13 30 26± 6 [70]
SP94 67 32 110 26± 6 [68]
SK 69 42 100 29± 6 [119]
Pyth. 73 50 107 37± 12 [49]
ARGO 107 53 180 25± 6 [43]
IAB 125 60 205 61± 27 [131]
MAX-2 (γUMi) 158 78 263 74± 31 [2]
MAX-3 (γUMi) 158 78 263 50± 11 [67]
MAX-4 (γUMi) 158 78 263 48± 11 [44]
MAX-3 (µPeg) 158 78 263 19± 8 [117]
MAX-4 (σHer) 158 78 263 39± 8 [32]
MAX-4 (ιDra) 158 78 263 39± 11 [32]
MSAM2 143 69 234 40± 14 [30]
MSAM3 249 152 362 39± 12 [30]

Table B.3: Anisotropy Data Points
A compilation of anisotropy measurements from [146]. The experimental window function
peaks at `0 and falls to half power at `1 and `2. Points are plotted in Fig. 1.3.

P̃ (k̃) is the form most often quoted in the literature [175, 82, 134].
The power spectrum may also be expressed in terms of the bulk velocity field. At

late times, pressure can be neglected and the total continuity equation (5.6) reduces to

kVT = −∆̇T

= − ȧ
a

d lnD
d lna

∆T , (B.54)

and in particular

kVT (η0, k) = −H0
d lnD
d lna

∣∣∣∣
η0

∆T (η0, k), (B.55)

or

PV (k) ≡ |VT (η0, k)|2 = H2
0

(
d lnD
d lna

)2 ∣∣∣∣
η0

P (k), (B.56)

for the velocity power spectrum. Recall from equation (B.27) that d lnD/d lna ' Ω0.6
0 in

an open universe.

B.4.2 Anisotropies

The anisotropy power spectrum C` is given by

2`+ 1
4π

C` =
∫
dk

k
T 2

` (k)×
{
k3|Φ(0, k)|2 adiabatic

k3|S(0, k)|2, isocurvature
(B.57)
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where T`(k) is the radiation transfer function from the solution to the Boltzmann equation.
Examples are given in §6. The power measured by a given experiment with a window
function W` has an ensemble average value of

(
∆T
T

)2

rms
=

1
4π

∑
`

(2`+ 1)C`W`. (B.58)

Only if the whole sky is measured at high signal to noise does the variance follow the “cos-
mic variance” prediction of a χ2 with 2` + 1 degrees of freedom. Real experiments make
noisy measurements of a fraction of the sky and therefore require a more detailed statistical
treatment. To employ likelihood techniques, we must assume some underlying power spec-
trum. In order to divorce the measurement from theoretical prejudice, experimental results
are usually quoted with a model independent choice. The two most common conventions
are the gaussian autocorrelation function Cgacf(θ) = C0exp(−θ2/2θ2c ) and the “flat” power
spectrum motivated by the Sachs-Wolfe tail of adiabatic models (see e.g. [174]),

C`gacf = 2πC0θ
2
c exp[−`(`+ 1)θ2c/2],

C`flat =
24π
5

(
Qflat

T0

)2

[`(`+ 1)]−1. (B.59)

The two power estimates are thus related by

Q2
flat

6
5

∑
`

2`+ 1
`(`+ 1)

W` = C0θ
2
c

1
2

∑
`

(2`+ 1)exp[−`(`+ 1)θ2c/2]W`. (B.60)

The current status of measurements is summarized in Tab. B.3 [146].

B.4.3 Large Scale Structure

Large scale structure measurements probe a smaller scale and have yet another set
of normalization conventions based on the two point correlation function of astrophysical
objects

ξab(x) =
〈
δρa(x′ + x)δρb(x′)/ρ̄aρ̄b

〉
. (B.61)

If all objects are clustered similarly, then all ξaa = ξ and the two-point correlation function
is related to the underlying power spectrum by

ξ(r) =
V

2π2

∫
dk

k
k3P (k)X0

ν(
√−Kr)

' V

2π2

∫
dk

k
k3P (k)

sin(kr)
kr

, (B.62)

where the approximation assumes that scales of interest are well below the curvature scale.
The normalization of the power spectrum is often quoted by the N th moment of the corre-
lation function JN (r) =

∫ r
0 ξ(x)x

(N−1)dx which implies

J3(r) =
V

2π2

∫
dk

k
P (k)(kr)2j1(kr). (B.63)
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For reference, j1(x) = x−2sinx − x−1cosx. Another normalization convention involves the
rms density fluctuation in spheres of constant radii

σ2(r) =
V

2π2

∫
dk

k
k3P (k)

(
3j1(kr)
kr

)2

. (B.64)

The observed galaxy distribution implies that

J3(10h−1Mpc) ' 270h−3Mpc3 (B.65)

σ8 ≡ σ(8h−1Mpc) =

{
1.1± 0.15 optical [109]

0.69± 0.04. IRAS [55]
(B.66)

The discrepancy between estimates of the normalization obtained by different populations
of objects implies that they may all be biased tracers of the underlying mass. The simplest
model for bias assumes ξaa = b2aξ with constant b. Peacock & Dodds [122] find that the
best fit to the Abell cluster (A), radio galaxy (R), optical galaxy (O), and IRAS galaxy (I)
data sets yields bA : bR : bO : bI = 4.5 : 1.9 : 1.3 : 1.




