### Astro 321

Set 1: FRW Cosmology

Wayne Hu

## FRW Cosmology

- The Friedmann-Robertson-Walker (FRW sometimes Lemaitre, FLRW) cosmology has two elements
  - The FRW geometry or metric
  - The FRW dynamics or Einstein/Friedmann equation(s)
- Same as the two pieces of General Relativity (GR)
  - A metric theory: geometry tells matter how to move
  - Field equations: matter tells geometry how to curve
- Useful to separate out these two pieces both conceptually and for understanding alternate cosmologies, e.g.
  - Modifying gravity while remaining a metric theory
  - Breaking the homogeneity or isotropy assumption under GR

- FRW geometry = homogeneous and isotropic on large scales
- Universe observed to be nearly isotropic (e.g. CMB, radio point sources, galaxy surveys)
- Copernican principle: we're not special, must be isotropic to all observers (all locations)

Implies homogeneity

Verified through galaxy redshift surveys

• FRW cosmology (homogeneity, isotropy & field equations) generically implies the expansion of the universe, except for special unstable cases

# Isotropy & Homogeneity

- Isotropy: CMB isotropic to  $10^{-3}$ ,  $10^{-5}$  if dipole subtracted
- Redshift surveys show return to homogeneity on the >100Mpc scale



Spatial geometry
 is that of a
 constant curvature

Positive: sphere

Negative: saddle

Flat: plane

Metric
 tells us how to
 measure distances
 on this surface



- ullet Closed geometry of a sphere of radius R
- Suppress 1 dimension  $\alpha$  represents total angular separation  $(\theta, \phi)$



- Two types of distances:
  - Radial distance on the arc D
     Distance (for e.g. photon) traveling along the arc
  - Angular diameter distance  $D_A$

Distance inferred by the angular separation  $d\alpha$  for a known transverse separation (on a constant latitude)  $D_A d\alpha$ Relationship  $D_A = R \sin(D/R)$ 

- As if background geometry (gravitationally) lenses image
- Positively curved geometry  $D_A < D$  and objects are further than they appear
- Negatively curved universe R is imaginary and  $R\sin(D/R) = i|R|\sin(D/i|R|) = |R|\sinh(D/|R|)$  and  $D_A > D$  objects are closer than they appear

## Angular Diameter Distance

• 3D distances restore usual spherical polar angles

$$d\Sigma^2 = dD^2 + D_A^2 d\alpha^2$$
$$= dD^2 + D_A^2 (d\theta^2 + \sin^2 \theta d\phi^2)$$

- GR allows arbitrary choice of coordinates, alternate notation is to use  $D_A$  as radial coordinate
- $D_A$  useful for describing observables (flux, angular positions)
- D useful for theoretical constructs (causality, relationship to temporal evolution)

## Angular Diameter Distance

• The line element is often also written using  $D_A$  as the coordinate distance

$$dD_A^2 = \left(\frac{dD_A}{dD}\right)^2 dD^2$$

$$\left(\frac{dD_A}{dD}\right)^2 = \cos^2(D/R) = 1 - \sin^2(D/R) = 1 - (D_A/R)^2$$

$$dD^2 = \frac{1}{1 - (D_A^2/R)^2} dD_A^2$$

and defining the curvature  $K = 1/R^2$  the line element becomes

$$d\Sigma^{2} = \frac{1}{1 - D_{A}^{2}K}dD_{A}^{2} + D_{A}^{2}(d\theta^{2} + \sin^{2}\theta d\phi^{2})$$

where K < 0 for a negatively curved space

### Volume Element

• Metric also defines the volume element

$$dV = (dD)(D_A d\theta)(D_A \sin \theta d\phi)$$
$$= D_A^2 dD d\Omega$$

where  $d\Omega = \sin \theta d\theta d\phi$  is solid angle

- Most of classical cosmology boils down to these three quantities, (comoving) radial distance, (comoving) angular diameter distance, and volume element
- For example, distance to a high redshift supernova, angular size of the horizon at last scattering and BAO feature, number density of clusters...

# **Comoving Coordinates**

- Remaining degree of freedom (preserving homogeneity and isotropy) is the temporal evolution of overall scale factor
- Relates the geometry (fixed by the radius of curvature R) to physical coordinates – a function of time only

$$d\sigma^2 = a^2(t)d\Sigma^2$$

our conventions are that the scale factor today  $a(t_0) \equiv 1$ 

- Similarly physical distances are given by d(t) = a(t)D,  $d_A(t) = a(t)D_A$ .
- Distances in upper case are comoving; lower, physical
   Do not change with time
   Simplest coordinates to work out geometrical effects

### Time and Conformal Time

• Proper time (with c = 1)

$$d\tau^2 = dt^2 - d\sigma^2$$
$$= dt^2 - a^2(t)d\Sigma^2$$

• Taking out the scale factor in the time coordinate

$$d\tau^2 \equiv a^2(t) \left( d\eta^2 - d\Sigma^2 \right)$$

 $d\eta = dt/a$  defines conformal time – useful in that photons travelling radially from observer then obey

$$\Delta D = \Delta \eta = \int \frac{dt}{a}$$

so that time and distance may be interchanged

### Horizon

- Distance travelled by a photon in the whole lifetime of the universe defines the horizon
- Since  $d\tau = 0$ , the horizon is simply the elapsed conformal time

$$D_{\text{horizon}}(t) = \int_0^t \frac{dt'}{a} = \eta(t)$$

- Horizon always grows with time
- Always a point in time before which two observers separated by a distance D could not have been in causal contact
- Horizon problem: why is the universe homogeneous and isotropic on large scales especially for objects seen at early times, e.g.
   CMB, when horizon small

#### FRW Metric

• Proper time defines the metric  $g_{\mu\nu}$ 

$$d\tau^2 \equiv g_{\mu\nu} dx^{\mu} dx^{\nu}$$

Einstein summation - repeated lower-upper pairs summed Signature follows proper time convention (rather than proper length, compatibility with Peacock's book - I tend to favor length so beware I may mess up overall sign in lectures)

- Usually we will use comoving coordinates and conformal time as the  $x^\mu$  unless otherwise specified metric for other choices are related by a(t)
- We will avoid real General Relativity but rudimentary knowledge useful

#### Hubble Parameter

Useful to define the expansion rate or Hubble parameter

$$H(t) \equiv \frac{1}{a} \frac{da}{dt} = \frac{d \ln a}{dt}$$

fractional change in the scale factor per unit time -  $\ln a = N$  is also known as the e-folds of the expansion

Cosmic time becomes

$$t = \int dt = \int \frac{d\ln a}{H(a)}$$

Conformal time becomes

$$\eta = \int \frac{dt}{a} = \int \frac{d\ln a}{aH(a)}$$

### Redshift

- Wavelength of light "stretches"
   with the scale factor
- Given an observed wavelength today  $\lambda$ , physical rest wavelength at emission  $\lambda_0$

$$\lambda = \frac{1}{a(t)} \lambda_0 \equiv (1+z)\lambda_0$$

$$\frac{\delta \lambda}{\lambda_0} = \frac{\lambda - \lambda_0}{\lambda_0} = z$$



• Interpreting the redshift as a Doppler shift, objects recede in an expanding universe

### Distance-Redshift Relation

- Given atomically known rest wavelength  $\lambda_0$ , redshift can be precisely measured from spectra
- Combined with a measure of distance, distance-redshift  $D(z) \equiv D(z(a))$  can be inferred
- Related to the expansion history as

$$D(a) = \int dD = \int_{a}^{1} \frac{d \ln a'}{a' H(a')}$$
$$[d \ln a' = -d \ln(1+z) = -a' dz]$$
$$D(z) = -\int_{z}^{0} \frac{dz'}{H(z')} = \int_{0}^{z} \frac{dz'}{H(z')}$$

#### **Hubble Law**

Note limiting case is the Hubble law

$$\lim_{z \to 0} D(z) = z/H(z=0) \equiv z/H_0$$

independently of the geometry and expansion dynamics

ullet Hubble constant usually quoted as as dimensionless h

$$H_0 = 100 h \, \mathrm{km \, s^{-1} Mpc^{-1}}$$

- Observationally  $h \sim 0.7$  (see below)
- With c=1,  $H_0^{-1}=9.7778$  ( $h^{-1}$  Gyr) defines the time scale (Hubble time,  $\sim$  age of the universe)
- As well as  $H_0^{-1} = 2997.9 \, (h^{-1} \, \text{Mpc})$  a length scale (Hubble scale  $\sim$  Horizon scale)

# Measuring D(z)

Standard Ruler: object of known physical size

$$\lambda = a(t)\Lambda$$

subtending an observed angle  $\alpha$  on the sky  $\alpha$ 

$$\alpha = \frac{\Lambda}{D_A(z)} \equiv \frac{\lambda}{d_A(z)}$$
$$d_A(z) = aD_A(a) = \frac{D_A(z)}{1+z}$$

where, by analogy to  $D_A$ ,  $d_A$  is the physical angular diameter distance

• Since  $D_A \to D_{\mathrm{horizon}}$  whereas (1+z) unbounded, angular size of a fixed physical scale at high redshift actually increases with radial distance

# Measuring D(z)

- Standard Candle: object of known luminosity L with a measured flux S (energy/time/area)
  - Comoving surface area  $4\pi D_A^2$
  - Frequency/energy redshifts as (1+z)
  - Time-dilation or arrival rate of photons (crests) delayed as (1+z):

$$F = \frac{L}{4\pi D_A^2} \frac{1}{(1+z)^2} \equiv \frac{L}{4\pi d_L^2}$$

So luminosity distance

$$d_L = (1+z)D_A = (1+z)^2 d_A$$

• As  $z \to 0$ ,  $d_L = d_A = D_A$ 

#### Olber's Paradox

Surface brightness

$$S = \frac{F}{\Delta\Omega} = \frac{L}{4\pi d_L^2} \frac{d_A^2}{\lambda^2}$$

• In a non-expanding geometry (regardless of curvature), surface brightness is conserved  $d_A=d_L$ 

$$S = \text{const.}$$

- So since each site line in universe full of stars will eventually end on surface of star, night sky should be as bright as sun (not infinite)
- In an expanding universe

$$S \propto (1+z)^{-4}$$

### Olber's Paradox

- Second piece: age finite so even if stars exist in the early universe, not all site lines end on stars
- But even as age goes to infinity and the number of site lines goes to 100%, surface brightness of distant objects (of fixed physical size) goes to zero
  - Angular size increases
  - Redshift of energy and arrival time

# Measuring D(z)

 Ratio of fluxes or difference in log flux (magnitude) measurable independent of knowing luminosity

$$m_1 - m_2 = -2.5 \log_{10}(F_1/F_2)$$

related to  $d_L$  by definition by inverse square law

$$m_1 - m_2 = 5 \log_{10}[d_L(z_1)/d_L(z_2)]$$

• If absolute magnitude is known

$$m - M = 5 \log_{10}[d_L(z)/10 \text{pc}]$$

absolute distances measured, e.g. at low  $z = z_0$  Hubble constant

$$d_L \approx z_0/H_0 \to H_0 = z_0/d_L$$

Also standard ruler whose length, calibrated in physical units

# Measuring D(z)

• If absolute calibration of standards unknown, then both standard candles and standard rulers measure relative sizes and fluxes

For standard candle, e.g. compare magnitudes low  $z_0$  to a high z object involves

$$\Delta m = m_z - m_{z_0} = 5 \log_{10} \frac{d_L(z)}{d_L(z_0)} = 5 \log_{10} \frac{H_0 d_L(z)}{z_0}$$

Likewise for a standard ruler comparison at the two redshifts

$$\frac{d_A(z)}{d_A(z_0)} = \frac{H_0 d_A(z)}{z_0}$$

- Distances are measured in units of  $h^{-1}$  Mpc.
- Change in expansion rate measured as  $H(z)/H_0$

#### **Hubble Constant**

 Hubble in 1929 used the Cepheid period luminosity relation to infer distances to nearby galaxies thereby discovering the expansion of the universe



- Hubble actually inferred too large a Hubble constant of  $H_0 \sim 500 \mathrm{km/s/Mpc}$
- Miscalibration of the Cepheid distance scale absolute measurement hard, checkered history
- $H_0$  now measured as  $74.2 \pm 3.6$ km/s/Mpc by SHOES calibrating off AGN water maser

## **Hubble Constant History**

- Took 70 years to settle on this value with a factor of 2 discrepancy persisting until late 1990's
- Difficult measurement since local galaxies where individual Cepheids can be measured have peculiar motions and so their velocity is not entirely due to the "Hubble flow"
- A "distance ladder" of cross calibrated measurements
- Primary distanceindicators cepheids, novae planetary nebula or globular cluster luminosity function, AGN water maser
- Use more luminous secondary distance indications to go out in distance to Hubble flow

Tully-Fisher, fundamental plane, surface brightness fluctuations, Type 1A supernova

## Maser-Cepheid-SN Distance Ladder

- Water maser around
   AGN, gas in Keplerian orbit
- Measure proper motion, radial velocity, acceleration of orbit



Method 1: radial velocity plus
 orbit infer tangential velocity = distance × angular proper motion

$$v_t = d_A(d\alpha/dt)$$

 Method 2: centripetal acceleration and radial velocity from line infer physical size

$$a = v^2/R, \qquad R = d_A \theta$$

## Maser-Cepheid-SN Distance Ladder

- Calibrate Cepheid period-luminosity relation in same galaxy
- SHOES project then calibrates SN distance in galaxies with Cepheids

Also: consistent with recent HST parallax determinations of 10 galactic Cepheids (8% distance each) with  $\sim 20\%$  larger  $H_0$  error bars - normal metalicity as opposed to LMC Cepheids.

- Measure SN at even larger distances out into the Hubble flow
- Riess et al  $H_0 = 74.2 \pm 3.6$ km/s/Mpc more precise (5%) than the HST Key Project calibration (11%).
- Ongoing VLBI surveys are trying to find Keplerian water maser systems directly out in the Hubble flow (100 Mpc) to eliminate rungs in the distance ladder

## Supernovae as Standard Candles

- Type 1A supernovae
   are white dwarfs that reach
   Chandrashekar mass where
   electron degeneracy pressure
   can no longer support the star,
   hence a very regular explosion
- Moreover, the
   scatter in absolute magnitude
   is correlated with the
   shape of the light curve the
   rate of decline from peak light,
   empirical "Phillips relation"



• Higher <sup>56</sup>N, brighter SN, higher opacity, longer light curve duration

## Beyond Hubble's Law

- Type 1A are therefore "standardizable" candles leading to a very low scatter  $\delta m \sim 0.15$  and visible out to high redshift  $z \sim 1$
- Two groups in 1999
   found that SN more distant at
   a given redshift than expected
- Cosmic acceleration



### Beyond Hubble's Law

• Using SN as a relative indicator (independent of absolute magnitude), comparison of low and high z gives

$$H_0D(z) = \int dz \frac{H_0}{H}$$

more distant implies that H(z) not increasing at expect rate, i.e. is more constant

• Take the limiting case where H(z) is a constant (a.k.a. de Sitter expansion

$$H = \frac{1}{a} \frac{da}{dt} = \text{const}$$

$$\frac{dH}{dt} = \frac{1}{a} \frac{d^2a}{dt^2} - H^2 = 0$$

$$\frac{1}{a} \frac{d^2a}{dt^2} = H^2 > 0$$

### Beyond Hubble's Law

- Indicates that the expansion of the universe is accelerating
- Intuition tells us (FRW dynamics shows) ordinary matter decelerates expansion since gravity is attractive
- Ordinary expectation is that

$$H(z>0) > H_0$$

so that the Hubble parameter is higher at high redshift

• Or equivalently that expansion rate decreases as it expands

## FRW Dynamics

- This is as far as we can go on FRW geometry alone we still need to know how the scale factor a(t) evolves given matter-energy content
- General relativity: matter tells geometry how to curve, scale factor determined by content
- Build the Einstein tensor  $G_{\mu\nu}$  out of the metric and use Einstein equation (overdots conformal time derivative)

$$G_{\mu\nu}(=R_{\mu\nu} - \frac{1}{2}g_{\mu\nu}R) = -8\pi G T_{\mu\nu}$$

$$G_{0}^{0} = -\frac{3}{a^{2}} \left[ \left( \frac{\dot{a}}{a} \right)^{2} + \frac{1}{R^{2}} \right]$$

$$G_{j}^{i} = -\frac{1}{a^{2}} \left[ 2\frac{\ddot{a}}{a} - \left( \frac{\dot{a}}{a} \right)^{2} + \frac{1}{R^{2}} \right] \delta_{j}^{i}$$

## Einstein Equations

Isotropy demands that the stress-energy tensor take the form

$$T^{0}_{0} = \rho$$
$$T^{i}_{j} = -p\delta^{i}_{j}$$

where  $\rho$  is the energy density and p is the pressure

- It is not necessary to assume that the content is a perfect fluid consequence of FRW symmetry
- So Einstein equations become

$$\left(\frac{\dot{a}}{a}\right)^2 + \frac{1}{R^2} = \frac{8\pi G}{3}a^2\rho$$
$$2\frac{\ddot{a}}{a} - \left(\frac{\dot{a}}{a}\right)^2 + \frac{1}{R^2} = -8\pi Ga^2p$$

## Friedmann Equations

 More usual to see Einstein equations expressed in cosmic time not conformal time

$$\frac{\dot{a}}{a} = \frac{da}{d\eta} \frac{1}{a} = \frac{da}{dt} = aH(a)$$

$$\frac{\ddot{a}}{a} - \left(\frac{\dot{a}}{a}\right)^2 = \frac{d}{d\eta} \left(\frac{\dot{a}}{a}\right) = a\frac{d}{dt} \left(\frac{da}{dt}\right) = a\frac{d^2a}{dt^2}$$

Combine two Einstein equations to form

$$\frac{\ddot{a}}{a} - \left(\frac{\dot{a}}{a}\right)^2 = -\frac{4\pi G}{3}a^2(\rho + 3p) = a\frac{d^2a}{dt^2}$$

## Friedmann Equations

• Friedmann equations:

$$H^{2}(a) + \frac{1}{a^{2}R^{2}} = \frac{8\pi G}{3}\rho$$
$$\frac{1}{a}\frac{d^{2}a}{dt^{2}} = -\frac{4\pi G}{3}(\rho + 3p)$$

- Acceleration source is  $\rho + 3p$  requiring  $p < -3\rho$  for positive acceleration
- Curvature as an effective energy density component

$$\rho_K = -\frac{3}{8\pi G a^2 R^2} \propto a^{-2}$$

## Critical Density

• Friedmann equation for H then reads

$$H^{2}(a) = \frac{8\pi G}{3}(\rho + \rho_{K}) \equiv \frac{8\pi G}{3}\rho_{c}$$

defining a critical density today  $\rho_c$  in terms of the expansion rate

• In particular, its value today is given by the Hubble constant as

$$\rho_{\rm c}(z=0) = \frac{3H_0^2}{8\pi G} = 1.8788 \times 10^{-29} h^2 \text{g cm}^{-3}$$

• Energy density today is given as a fraction of critical

$$\Omega \equiv \frac{\rho}{\rho_c(z=0)}$$

• Note that physical energy density  $\propto \Omega h^2$  (g cm<sup>-3</sup>)

## Critical Density

• Likewise radius of curvature then given by

$$\Omega_K = (1 - \Omega) = -\frac{1}{H_0^2 R^2} \to R = (H_0 \sqrt{\Omega - 1})^{-1}$$

• If  $\Omega \approx 1$ , then true density is near critical  $\rho \approx \rho_c$  and

$$\rho_K \ll \rho_c \leftrightarrow H_0 R \ll 1$$

Universe is flat across the Hubble distance

•  $\Omega > 1$  positively curved

$$D_A = R\sin(D/R) = \frac{1}{H_0\sqrt{\Omega - 1}}\sin(H_0D\sqrt{\Omega - 1})$$

•  $\Omega < 1$  negatively curved

$$D_A = R\sin(D/R) = \frac{1}{H_0\sqrt{1-\Omega}}\sinh(H_0D\sqrt{1-\Omega})$$

## Newtonian Energy Interpretation

- Consider a test particle of mass m as part of expanding spherical shell of radius r and total mass M.
- Energy conservation

$$E = \frac{1}{2}mv^2 - \frac{GMm}{r} = \text{const}$$

$$\frac{1}{2}\left(\frac{dr}{dt}\right)^2 - \frac{GM}{r} = \text{const}$$

$$\frac{1}{2}\left(\frac{1}{r}\frac{dr}{dt}\right)^2 - \frac{GM}{r^3} = \frac{\text{const}}{r^2}$$

$$H^2 = \frac{8\pi G\rho}{3} - \frac{\text{const}}{a^2}$$



# Newtonian Energy Interpretation

- Constant determines whether
  the system is bound and
  in the Friedmann equation is
  associated with curvature not
  general since neglects pressure
- Nonetheless Friedmann
  equation is the same with
  pressure but mass-energy
  within expanding shell is not constant





### Newtonian Force Interpretation

- An alternate, more general Newtonian derivation, comes about by realizing that locally around an observer, gravity must look Newtonian.
- Given Newton's iron sphere theorem, the gravitational acceleration due to a spherically symmetric distribution of mass outside some radius r is zero (Birkhoff theorem in GR)
- We can determine the acceleration simply from the enclosed mass

$$\nabla^2 \Psi_N = 4\pi G(\rho + 3p)$$

$$\nabla \Psi_N = \frac{4\pi G}{3}(\rho + 3p)r = \frac{GM_N}{r^2}$$

where  $\rho + 3p$  reflects the active gravitational mass provided by pressure.

### Newtonian Force Interpretation

Hence the gravitational acceleration

$$\frac{\ddot{r}}{r} = -\frac{1}{r}\nabla\Psi_N = -\frac{4\pi G}{3}(\rho + 3p)$$

• We'll come back to this way of viewing the effect of the expansion on spherical collapse including the dark energy.

#### Conservation Law

- The two Friedmann equation are redundant in that one can be derived from the other via energy conservation
  - (Consequence of Bianchi identities in GR:  $\nabla^{\mu}G_{\mu\nu} = 0$ )

$$d\rho V + pdV = 0$$

$$d\rho a^3 + pda^3 = 0$$

$$\dot{\rho}a^3 + 3\frac{\dot{a}}{a}\rho a^3 + 3\frac{\dot{a}}{a}pa^3 = 0$$

$$\frac{\dot{\rho}}{\rho} = -3(1+w)\frac{\dot{a}}{a}$$

- Time evolution depends on "equation of state"  $w(a) = p/\rho$
- If w= const. then the energy density depends on the scale factor as  $\rho \propto a^{-3(1+w)}$ .

### Multicomponent Universe

- Special cases:
  - nonrelativistic matter  $\rho_m = m n_m \propto a^{-3}$ ,  $w_m = 0$
  - ultrarelativistic radiation  $\rho_r = E n_r \propto \nu n_r \propto a^{-4}, w_r = 1/3$
  - curvature  $\rho_K \propto a^{-2}$ ,  $w_K = -1/3$
  - (cosmological) constant energy density  $\rho_{\Lambda} \propto a^0$ ,  $w_{\Lambda} = -1$
  - total energy density summed over above

$$\rho(a) = \sum_{i} \rho_i(a) = \rho_c(a=1) \sum_{i} \Omega_i a^{-3(1+w_i)}$$

• If constituent w also evolve (e.g. massive neutrinos)

$$\rho(a) = \rho_c(a=1) \sum_i \Omega_i e^{-\int d \ln a \, 3(1+w_i)}$$

### Multicomponent Universe

• Friedmann equation gives Hubble parameter evolution in a

$$H^{2}(a) = H_{0}^{2} \sum_{i} \Omega_{i} e^{-\int d \ln a \, 3(1+w_{i})}$$

• In fact we can always define a critical equation of state

$$w_c = \frac{p_c}{\rho_c} = \frac{\sum w_i \rho_i - \rho_K / 3}{\sum_i \rho_i + \rho_K}$$

Critical energy density obeys energy conservation

$$\rho_c(a) = \rho_c(a=1)e^{-\int d\ln a \, 3(1+w_c(a))}$$

And the Hubble parameter evolves as

$$H^{2}(a) = H_{0}^{2} e^{-\int d \ln a \, 3(1+w_{c}(a))}$$

### Acceleration Equation

• Time derivative of (first) Friedmann equation

$$\frac{dH^2}{dt} = \frac{8\pi G}{3} \frac{d\rho_c}{dt}$$

$$2H \left[ \frac{1}{a} \frac{d^2 a}{dt^2} - H^2 \right] = \frac{8\pi G}{3} H[-3(1+w_c)\rho_c]$$

$$\left[ \frac{1}{a} \frac{d^2 a}{dt^2} - 2\frac{4\pi G}{3}\rho_c \right] = -\frac{4\pi G}{3}[3(1+w_c)\rho_c]$$

$$\frac{1}{a} \frac{d^2 a}{dt^2} = -\frac{4\pi G}{3}[(1+3w_c)\rho_c]$$

$$= -\frac{4\pi G}{3}(\rho + \rho_K + 3\rho + 3\rho_K)$$

$$= -\frac{4\pi G}{3}(1+3w)\rho$$

• Acceleration equation says that universe decelerates if w > -1/3

## **Expansion Required**

• Friedmann equations "predict" the expansion of the universe. Non-expanding conditions da/dt=0 and  $d^2a/dt^2=0$  require

$$\rho = -\rho_K \qquad \rho = -3p$$

i.e. a positive curvature and a total equation of state  $w \equiv p/\rho = -1/3$ 

• Since matter is known to exist, one can in principle achieve this by adding a balancing cosmological constant

$$\rho = \rho_m + \rho_{\Lambda} = -\rho_K = -3p = 3\rho_{\Lambda}$$

$$\rho_{\Lambda} = -\frac{1}{3}\rho_K, \quad \rho_m = -\frac{2}{3}\rho_K$$

Einstein introduced  $\rho_{\Lambda}$  for exactly this reason – "biggest blunder"; but note that this balance is unstable:  $\rho_m$  can be perturbed but  $\rho_{\Lambda}$ , a true constant cannot

### Cosmic Microwave Radiation

- Existence of a  $\sim 10 \text{K}$  radiation background predicted by Gamow and Alpher in 1948 based on the formation of light elements in a hot big bang (BBN)
- Peebles, Dicke, Wilkinson & Roll in 1965 independently predicted this background and proceeded to build instrument to detect it
- Penzias & Wilson 1965 found unexplained excess isotropic noise in a communications antennae and learning of the Peebles et al calculation announced the discovery of the blackbody radiation
- Thermal radiation proves that the universe began in a hot dense state when matter and radiation was in equilibrium ruling out a competing steady state theory

### Cosmic Microwave Radiation

• Modern measurement from COBE satellite of blackbody spectrum.  $T=2.725 {\rm K}$  giving  $\Omega_{\gamma} h^2=2.471 \times 10^{-5}$ 



### Cosmic Microwave Radiation

• Radiation is isotropic to  $10^{-5}$  in temperature  $\rightarrow$  horizon problem



#### **Total Radiation**

- Adding in neutrinos to the radiation gives the total radiation (next lecture set) content as  $\Omega_r h^2 = 4.153 \times 10^{-5}$
- Since radiation redshifts faster than matter by one factor of 1+z even this small radiation content will dominate the total energy density at sufficiently high redshift
- Matter-radiation equality

$$1 + z_{\rm eq} = \frac{\Omega_m h^2}{\Omega_r h^2}$$

$$1 + z_{\rm eq} = 3130 \frac{\Omega_m h^2}{0.13}$$

#### Dark Matter

- Since Zwicky in the 1930's non-luminous or dark matter has been known to dominate over luminous matter in stars (and hot gas)
- Arguments based on internal motion holding system up against gravitational force
- Equilibrium requires a balance pressure of internal motions rotation velocity of spiral galaxies velocity dispersion of galaxies in clusters gas pressure or thermal motion in clusters radiation pressure in CMB acoustic oscillations

## Classical Argument

- Classical argument for measuring total amount of dark matter
- Assuming that the object is somehow typical in its non-luminous to luminous density: "mass-to-light ratio"
- Convert to dark matter density as  $M/L \times$  luminosity density
- From galaxy surveys the luminosity density in solar units is

$$\rho_L = 2 \pm 0.7 \times 10^8 h \, L_{\odot} \rm Mpc^{-3}$$

(h's:  $L \propto Fd^2$  so  $\rho_L \propto L/d^3 \propto d^{-1}$  and d in  $h^{-1}$  Mpc

Critical density in solar units is

$$\rho_c = 2.7754 \times 10^{11} h^2 \, M_{\odot} \rm Mpc^{-3}$$

so that the critical mass-to-light ratio in solar units is

$$M/L \approx 1400h$$

### Dark Matter: Rotation Curves

• Flat rotation curves:

$$GM/r^2 \approx v^2/r$$

$$M \approx v^2 r/G$$

so  $M \propto r$  out to tens of kpc

- Implies M/L > 30hand perhaps more – closure if flat out to  $\sim 1$  Mpc.
- Mass required to keep rotation curves flat much larger than implied by stars and gas.
- Hence "dark" matter



#### Dark Matter: Clusters

- Similar argument holds in clusters of galaxies
- Velocity dispersion replaces circular velocity
- Centripetal force is replaced by a "pressure gradient"  $T/m = \sigma^2$  and  $p = \rho T/m = \rho \sigma^2$
- Zwicky got  $M/L \approx 300h$ .
- Generalization to the gas distribution also gives evidence for dark matter

### Dark Matter: Bullet Cluster

• Merging clusters: gas (visible matter) collides and shocks (X-rays), dark matter measured by gravitational lensing passes through



### Hydrostatic Equilibrium

- Evidence for dark matter in X-ray clusters also comes from direct hydrostatic equilibrium inference from the gas: balance radial pressure gradient with gravitational potential gradient
- Infinitesimal volume of area dA and thickness dr at radius r and interior mass M(r): pressure difference supports the gas

$$[p_g(r) - p_g(r + dr)]dA = \frac{GmM}{r^2} = \frac{G\rho_g M}{r^2} dV$$

$$\frac{dp_g}{dr} = -\rho_g \frac{d\Phi}{dr}$$

with  $p_g = \rho_g T_g/m$  becomes

$$\frac{GM}{r} = -\frac{T_g}{m} \left( \frac{d \ln \rho_g}{d \ln r} + \frac{d \ln T_g}{d \ln r} \right)$$

•  $\rho_g$  from X-ray luminosity;  $T_g$  sometimes taken as isothermal

## CMB Hydrostatic Equilibrium

- Same argument in the CMB with radiation pressure in the gas balancing the gravitational potential gradients of linear fluctuations
- Best measurement of the dark matter density to date:  $\Omega_c h^2 = 0.1109 \pm 0.0056, \, \Omega_b h^2 = (2.258 \pm 0.057) \times 10^{-2}.$
- Unlike other techniques, measures the physical density of the dark matter rather than contribution to critical since the CMB temperature sets the physical density and pressure of the photons

### Gravitational Lensing

- Mass can be directly measured in the gravitational lensing of sources behind the cluster
- Strong lensing (giant arcs) probes central region of clusters
- Weak lensing (1-10%) elliptical distortion to galaxy image probes outer regions of cluster and total mass

### Giant Arcs

• Giant arcs in galaxy clusters: galaxies, source; cluster, lens



### Cosmic Shear

• On even larger scales, the large-scale structure weakly shears background images: weak lensing





## Dark Energy

• Distance redshift relation depends on energy density components

$$H_0D(z) = \int dz \frac{H_0}{H(a)}$$

- SN dimmer, distance further than in a matter dominated epoch
- Hence H(a) must be smaller than expected in a matter only  $w_c = 0$  universe where it increases as  $(1+z)^{3/2}$

$$H_0 D(z) = \int dz e^{\int d \ln a \, \frac{3}{2} (1 + w_c(a))}$$

- Distant supernova Ia as standard candles imply that  $w_c < -1/3$  so that the expansion is accelerating
- Consistent with a cosmological constant that is  $\Omega_{\Lambda} = 0.74$
- Coincidence problem: different components of matter scale differently with a. Why are two components comparable today?

#### Cosmic Census

- With h=0.71 and CMB  $\Omega_m h^2=0.133,\,\Omega_m=0.26$  consistent with other, less precise, dark matter measures
- CMB provides a test of  $D_A \neq D$  through the standard rulers of the acoustic peaks and shows that the universe is close to flat  $\Omega \approx 1$
- Consistency has lead to the standard model for the cosmological matter budget:
  - 74% dark energy
  - 26% non-relativistic matter (with 83% of that in dark matter)
  - 0% spatial curvature