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CMB Blackbody
• COBE FIRAS spectral measurement. yellBlackbody spectrum.
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CMB Blackbody
• CMB is a (nearly) perfect blackbody characterized by a phase

space distribution function

f =
1

eE/T − 1

where the temperature T (x, n̂, t) is observed at our position x = 0

and time t0 to be nearly isotropic with a mean temperature of
T̄ = 2.725K

• Our observable then is the temperature anisotropy

Θ(n̂) ≡ T (0, n̂, t0)− T̄
T̄

• Given that physical processes essentially put a band limit on this
function it is useful to decompose it into a complete set of
harmonic coefficients



Spherical Harmonics
• Laplace Eigenfunctions

∇2Y m
` = −[l(l + 1)]Y m

`

• Orthogonal and complete∫
dn̂Y m∗

` (n̂)Y m
` (n̂) = δ``′δmm′∑

`m

Y m∗
` (n̂)Y m

` (n̂′) = δ(φ− φ′)δ(cos θ − cos θ′)

Generalizable to tensors on the sphere (polarization), modes on a
curved FRW metric

• Conjugation

Y m∗
` = (−1)mY −m`



Multipole Moments
• Decompose into multipole moments

Θ(n̂) =
∑
`m

Θ`mY
m
` (n̂)

• So Θ`m is complex but Θ(n̂) real:

Θ∗(n̂) =
∑
`m

Θ∗`mY
m∗
` (n̂)

=
∑
`m

Θ∗`m(−1)mY −m` (n̂)

= Θ(n̂) =
∑
`m

Θ`mY
m
` (n̂) =

∑
`−m

Θ`−mY
−m
` (n̂)

so m and −m are not independent

Θ∗`m = (−1)mΘ`−m



N -pt correlation
• Since the fluctuations are random and zero mean we are interested

in characterizing the N -point correlation

〈Θ(n̂1) . . .Θ(n̂n)〉 =
∑
`1...`n

∑
m1...mn

〈Θ`1m1 . . .Θ`nmn〉Y m1
`1

(n̂1) . . . Y mn
`n

(n̂n)

• Statistical isotropy implies that we should get the same result in a
rotated frame

R[Y m
` (n̂)] =

∑
m′

D`
m′m(α, β, γ)Y

m′

` (n̂)

where α, β and γ are the Euler angles of the rotation and D is the
Wigner function (note Y m

` is a D function)

〈Θ`1m1 . . .Θ`nmn〉 =
∑

m′
1...m

′
n

〈Θ`1m′
1
. . .Θ`nm′

n
〉D`1

m1m′
1
. . . D`n

mnm′
n



N -pt correlation
• For any N -point function, combine rotation matrices (group

multiplication; angular momentum addition) and orthogonality∑
m

(−1)m2−mD`1
m1m

D`1
−m2−m = δm1m2

• The simplest case is the 2pt function:

〈Θ`1m1Θ`2m2〉 = δ`1`2δm1−m2(−1)m1C`1

where C` is the power spectrum. Check

=
∑
m′

1m
′
2

δ`1`2δm′
1−m′

2
(−1)m

′
1C`1D

`1
m1m′

1
D`2
m2m′

2

= δ`1`2C`1
∑
m′

1

(−1)m
′
1D`1

m1m′
1
D`2
m2−m′

1
= δ`1`2δm1−m2(−1)m1C`1



N -pt correlation
• Using the reality of the field

〈Θ∗`1m1
Θ`2m2〉 = δ`1`2δm1m2C`1 .

• If the statistics were Gaussian then all the N -point functions would
be defined in terms of the products of two-point contractions, e.g.

〈Θ`1m1Θ`2m2Θ`3m3Θ`4m4〉 = δ`1`2δm1m2δ`3`4δm3m4C`1C`3 + perm.

• More generally we can define the isotropy condition beyond
Gaussianity, e.g. the bispectrum

〈Θ`1m1 . . .Θ`3m3〉 =

(
`1 `2 `3

m1 m2 m3

)
B`1`2`3



CMB Temperature Fluctuations
• Angular Power Spectrum

Low l Anomalies
•	 Low quadrupole, octupole; C(θ); alignment; hemispheres; TT vs TE
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Why `2C`/2π?
• Variance of the temperature fluctuation field

〈Θ(n̂)Θ(n̂)〉 =
∑
`m

∑
`′m′

〈Θ`mΘ∗`′m′〉Y m
` (n̂)Y m′∗

`′ (n̂)

=
∑
`

C`
∑
m

Y m
` (n̂)Y m∗

` (n̂)

=
∑
`

2`+ 1

4π
C`

via the angle addition formula for spherical harmonics

• For some range ∆` ≈ ` the contribution to the variance is

〈Θ(n̂)Θ(n̂)〉`±∆`/2 ≈ ∆`
2`+ 1

4π
C` ≈

`2

2π
C`

• Conventional to use `(`+ 1)/2π for reasons below



Cosmic Variance
• We only have access to our sky, not the ensemble average

• There are 2`+ 1 m-modes of given ` mode, so average

Ĉ` =
1

2`+ 1

∑
m

Θ∗`mΘ`m

• 〈Ĉ`〉 = C` but now there is a cosmic variance

σ2
C`

=
〈(Ĉ` − C`)(Ĉ` − C`)〉

C2
`

=
〈Ĉ`Ĉ`〉 − C2

`

C2
`

• For Gaussian statistics

σ2
C`

=
1

(2`+ 1)2C2
`

〈
∑
mm′

Θ∗`mΘ`mΘ∗`m′Θ`m′〉 − 1

=
1

(2`+ 1)2

∑
mm′

(δmm′ + δm−m′) =
2

2`+ 1



Cosmic Variance
• Note that the distribution of Ĉ` is that of a sum of squares of

Gaussian variates

• Distributed as a χ2 of 2`+ 1 degrees of freedom

• Approaches a Gaussian for 2`+ 1→∞ (central limit theorem)

• Anomalously low quadrupole is not that unlikely

• σC`
is a useful quantification of errors at high `

• Suppose C` depends on a set of cosmological parameters ci then
we can estimate errors of ci measurements by error propagation

Fij = Cov−1(ci, cj) =
∑
``′

∂C`
∂ci

Cov−1(C`,C`′)
∂C`′

∂cj

=
∑
`

(2`+ 1)

2C2
`

∂C`
∂ci

∂C`
∂cj



Idealized Statistical Errors
• Take a noisy estimator of the multipoles in the map

Θ̂`m = Θ`m +N`m

and take the noise to be statistically isotropic

〈N∗`mN`′m′〉 = δ``′δmm′CNN
`

• Construct an unbiased estimator of the power spectrum 〈Ĉ`〉 = C`

Ĉ` =
1

2`+ 1

l∑
m=−l

Θ̂∗`mΘ̂`m − CNN
`

• Covariance in estimator

Cov(C`, C`′) =
2

2`+ 1
(C` + CNN

` )2δ``′



Incomplete Sky
• On a small section of sky, the number of independent modes of a

given ` is no longer 2`+ 1

• As in Fourier analysis, there are two limitations: the lowest ` mode
that can be measured is the wavelength that fits in angular patch θ

`min =
2π

θ
;

modes separated by ∆` < `min cannot be measured independently

• Estimates of C` covary on a scale imposed by ∆` < `min

• Crude approximation: account only for the loss of independent
modes by rescaling the errors rather than introducing covariance

Cov(C`, C`′) =
2

(2`+ 1)fsky

(C` + CNN
` )2δ``′


