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Time Ordered Data
• Beyond idealizations like |Θ`m|2 type C` estimators and fsky mode

counting, basic aspects of data analysis are useful even for theorists

• Starting point is a string of “time ordered” data coming out of the
instrument (post removal of systematic errors, data cuts)

• Begin with a model of the time ordered data as (implicit
summation or matrix operation)

dt = PtiΘi + nt

where i denotes pixelized positions indexed by i, dt is the data in a
time ordered stream indexed by t e.g. number of time ordered data
numbers up to 1010 whereas number of pixels 106 − 107.

• Noise nt is drawn from distribution with known power spectrum

〈ntnt′〉 = Cd,tt′



Design Matrix
• The design, pointing or projection matrix P is the mapping

between pixel space and the time ordered data

• Simplest incarnation: row with all zeros except one column which
just says what point in the sky the telescope is pointing at that time

P =


0 0 1 . . . 0

1 0 0 . . . 0

. . . . . . . . . . . . . . .

0 0 1 . . . 0


• If each pixel were only measured once in this way then the

estimator of the map would just be the inverse of P

• More generally encorporates differencing, beam, rotation (for
polarization) and unequal coverage of pixels



Maximum Likelihood Mapmaking
• What is the best estimator of the underlying map Θi?

• Likelihood function: the probability of getting the data given the
theory L ≡ P [data|theory]. In this case, the theory is the set of
parameters Θi.

LΘ(dt) =
1

(2π)Nt/2
√

detCd

exp

[
−1

2
(dt − PtiΘi)C

−1
d,tt′ (dt′ − Pt′jΘj)

]
.

• Bayes theorem says that P [Θi|dt], the probability that the
temperatures are equal to Θi given the data, is proportional to the
likelihood function times a prior P (Θi), taken to be uniform

P [Θi|dt] ∝ P [dt|Θi] ≡ LΘ(dt)



Maximum Likelihood Mapmaking
• Maximizing the likelihood of Θi is simple since the log-likelihood

is quadratic.

• Differentiating the argument of the exponential with respect to Θi

and setting to zero leads immediately to the estimator

Θ̂i = CN,ijPjtC
−1
d,tt′dt′ ,

where CN ≡ (PtrC−1
d P)−1 is the covariance of the estimator

• Given the large dimension of the time ordered data, direct matrix
manipulation is unfeasible. A key simplifying assumption is the
stationarity of the noise, that Cd,tt′ depends only on t− t′

(temporal statistical homogeneity)



Foregrounds
• Maximum likelihood mapmaking can be applied to the time

streams of multiple observations frequencies Nν and hence obtain
multiple maps

• A cleaned CMB map can be obtained by modeling the maps as

Θ̂ν
i = Aνi Θi + nνi + f νi

where Aνi = 1 if all the maps are at the same resolution (otherwise,
embed the beam as in the pointing matrix; f νi is the noise
contributed by the foregrounds

• Again, a map making problem. Given a covariance matrix for
foregrounds noise (a prior from other data), same solution.
Alternately, can derive weights from stats of the recovered maps

• 5 foregrounds: synchrotron, free-free, radio pt sources, at low
frequencies and dust and IR pt sources at high frequencies.



Power Spectrum
• The next step in the chain of inference is the power spectrum

extraction. Here the correlation between pixels is modelled
through the power spectrum

CS,ij ≡ 〈ΘiΘj〉 =
∑
`

`(`+ 1)C`
2π

W`,ij

• W`, the window function, is derived by writing down the
expansion of Θ(n̂) in harmonic space, including smoothing by the
beam and pixelization

• For example in the simple case of a gaussian beam of width σ it is
proportional to the Legendre polynomial P`(n̂i · n̂j) for the pixel
separation multiplied by b2

` ∝ e−`(`+1)σ2



Bandpowers
• In principle the underlying theory to extract from pixel data is the

power spectrum at every `

• However with a finite patch of sky, multipoles separated by
∆` < 2π/L where L is the dimension of the survey will
fully-covary and not supply independent information

• So consider instead a theory parameterization of `(`+ 1)C`/2π

constant in bands of ∆` chosen to match the survey forming a set
of bandpowers Ba

• The likelihood of the bandpowers given the pixelized data is

LB(Θi) =
1

(2π)Np/2
√

detCΘ

exp

(
−1

2
ΘiC

−1
Θ,ijΘj

)
where CΘ = CS + CN and Np is the number of pixels in the map.



Bandpower Estmation
• As before, LB is Gaussian in the anisotropies Θi, but in this case

Θi are not the parameters to be determined; the theoretical
parameters are the Ba, upon which the covariance matrix depends.

• The likelihood function is not Gaussian in the parameters, and
there is no simple, analytic way to find the maximum likelihood
bandpowers or their covariance

• In principle one can still use Bayes’ Theorem to find the posterior
joint probability of the bandpowers or the cosmological parameters
that parameterize them

• In practice the exact likelihood is expensive to compute

• Need fast approximation to the likelihood function and a fast way
of exploring it



Bandpower Estmation
• One example is to find the maximum likelihood bandpowers by

iteration

• Take a trial point B(0)
a and improve estimate based a

Newton-Rhapson approach to finding zeros

B̂a = B̂(0)
a + F̂−1

B,ab

∂ lnLB
∂Bb

= B̂(0)
a +

1

2
F̂−1
B,ab

(
ΘiC

−1
Θ,ij

∂CΘ,jk

∂Bb

C−1
Θ,klΘl − C−1

Θ,ij

∂CΘ,ji

∂Bb

)
,

• Still need the covariance matrix of the bandpowers



Fisher Matrix
• The expectation value of the local curvature is the Fisher matrix

FB,ab ≡
〈
−∂

2 lnLB
∂Ba∂Bb

〉
=

1

2
C−1

Θ,ij

∂CΘ,jk

∂Ba

C−1
Θ,kl

∂CΘ,li

∂Bb

.

• This is a general statement: for a gaussian distribution the Fisher
matrix

Fab =
1

2
Tr[C−1C,aC

−1C,b]

• Kramer-Rao identity says that the best possible covariance matrix
on a set of parameters is C = F−1

• Thus, the iteration returns an estimate of the covariance matrix of
the estimators CB



Cosmological Parameters
• The probability distribution of the bandpowers given the

cosmological parameters ci is not Gaussian but central limit
theorem says at high ` it is often an adequate approximation

Lc(B̂a) ≈
1

(2π)Nc/2
√

detCB

exp

[
−1

2
(B̂a −Ba)C

−1
B,ab(B̂b −Bb)

]
• Again Bayes’ theorem gives the joint posterior of the cosmological

parameters from the bandpower likelihood

• With this or other more sophisticated approximations to the
bandpower likelihood, still need a fast approach to exploring the
bandpower likelihood function



MCMC
• Monte Carlo Markov Chain (MCMC)

• Start with a set of cosmological parameters cm, compute likelihood

• Take a random step in parameter space to cm+1 of size drawn from
a multivariate Gaussian (a guess at the parameter covariance
matrix) Cc (e.g. from the crude Fisher approximation or the
covariance of a previous short chain run). Compute likelihood.

• Draw a random number between 0,1 and if the likelihood ratio
exceeds this value take the step (add to Markov chain); if not then
do not take the step (add the original point to the Markov chain).
Repeat.

• Given Bayes’ theorem the chain is then a sampling of the joint
posterior probability density of the parameters



Parameter Errors
• Can compute any statistic based on the probability distribution of

parameters

• For example, compute the mean and variance of a given parameter

c̄i =
1

NM

NM∑
m=1

cmi

σ2(ci) =
1

NM − 1

NM∑
m=1

(cmi − c̄i)2

• Trick is in assuring burn in (not sensitive to initial point), step size,
and convergence

• Usually requires running multiple chains. Typically tens of
thousands of elements per chain.



Radical Compression
• Started with time ordered data ∼ 1010 numbers for a satellite

experiment

• Compressed to a map assuming a CMB spectrum (and time
independent fluctuations) ∼ 107 numbers

• Compressed to a power spectrum (Gaussian statistics) independent
of m (statistical isotropy) ∼ 103 numbers

• Compressed to cosmological parameters (a cosmological model)
∼ 103

• A factor of 109 reduction in the representation. Nature is very
efficient.



Parameter Forecasts
• Now connect this discussion with the crude approximations from

previous set of notes.

• Gaussian approximation says Fisher matrix of the cosmological
parameters becomes

Fc,ij =
∂Ba

∂ci
C−1
B,ab

∂Bb

∂cj

which is the error propagation formula discussed above

• The bandpower covariance can be computed from the Fisher
approximation of the pixel likelihood.

• In the crude approximation one takes the covariance to be given by
the number of independent modes going into each bandpower
estimate



Parameter Forecasts
• For bandpowers being C` itself, i.e. estimating every `

approximate covariance with an increased variance:

Fij =
∑
`

(2`+ 1)fsky

2(CΘΘ
` + CNN

` )2

∂CΘΘ
`

∂ci

∂CΘΘ
`

∂cj

where the sky fraction fsky quantifies the loss of independent
modes due to the sky cut

• This is the form we previously derived from just thinking about the
simple estimator


