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Time Ordered Data

e Beyond idealizations like |O,,, | type C; estimators and Jsky mode
counting, basic aspects of data analysis are useful even for theorists

e Starting point is a string of “time ordered” data coming out of the
instrument (post removal of systematic errors, data cuts)

e Begin with a model of the time ordered data as (implicit
summation or matrix operation)

dt = Ptz@z ‘|‘7’Lt

where ¢ denotes pixelized positions indexed by ¢, d; is the data in a
time ordered stream indexed by ¢ e.g. number of time ordered data
numbers up to 10!° whereas number of pixels 10° — 107.

e Noise n; 1s drawn from distribution with known power spectrum
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Design Matrix

e The design, pointing or projection matrix P is the mapping
between pixel space and the time ordered data

e Simplest incarnation: row with all zeros except one column which
just says what point in the sky the telescope 1s pointing at that time
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e If each pixel were only measured once in this way then the
estimator of the map would just be the inverse of P

e More generally encorporates differencing, beam, rotation (for
polarization) and unequal coverage of pixels



Maximum Likelthood Mapmaking
e What is the best estimator of the underlying map ©,?

e Likelihood function: the probability of getting the data given the
theory £ = P|data|theory|. In this case, the theory is the set of
parameters ©,.
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e Bayes theorem says that P|©;|d,], the probability that the
temperatures are equal to ©; given the data, is proportional to the

likelihood function times a prior P(0©;), taken to be uniform

P|©;|d;] o< P|d;|0;] = Lo(d;)



Maximum Likelthood Mapmaking

e Maximizing the likelihood of ©; is simple since the log-likelihood
1s quadratic.

e Differentiating the argument of the exponential with respect to O,
and setting to zero leads immediately to the estimator
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where Cy = (P C'P)~! is the covariance of the estimator

e Given the large dimension of the time ordered data, direct matrix
manipulation is unfeasible. A key simplifying assumption is the
stationarity of the noise, that C;+ depends only on ¢ — ¢’
(temporal statistical homogeneity)



Foregrounds

e Maximum likelithood mapmaking can be applied to the time
streams of multiple observations frequencies /V,, and hence obtain
multiple maps

e A cleaned CMB map can be obtained by modeling the maps as

Of = A70; +nj + f}
where AY = 1 if all the maps are at the same resolution (otherwise,
embed the beam as in the pointing matrix; f! is the noise
contributed by the foregrounds

e Again, a map making problem. Given a covariance matrix for
foregrounds noise (a prior from other data), same solution.
Alternately, can derive weights from stats of the recovered maps

e 5 foregrounds: synchrotron, free-free, radio pt sources, at low
frequencies and dust and IR pt sources at high frequencies.



Power Spectrum

e The next step in the chain of inference 1s the power spectrum
extraction. Here the correlation between pixels 1s modelled
through the power spectrum
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e V,, the window function, 1s derived by writing down the
expansion of ©(n) in harmonic space, including smoothing by the
beam and pixelization

e For example in the simple case of a gaussian beam of width o 1t 1s

proportional to the Legendre polynomial P(n; - nn;) for the pixel

separation multiplied by b7 oc e=¢(¢+1)7”



Bandpowers

e In principle the underlying theory to extract from pixel data 1s the
power spectrum at every £

e However with a finite patch of sky, multipoles separated by
Al < 27 /L where L is the dimension of the survey will
fully-covary and not supply independent information

e So consider instead a theory parameterization of £(¢ + 1)Cy /2w
constant in bands of A/ chosen to match the survey forming a set
of bandpowers B,

e The likelihood of the bandpowers given the pixelized data 1s
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where Cg = Cg + Cp and N, 1s the number of pixels in the map.




Bandpower Estmation

e As before, L g is Gaussian in the anisotropies ©;, but in this case
O, are not the parameters to be determined; the theoretical
parameters are the 5,, upon which the covariance matrix depends.

e The likelihood function 1s not Gaussian in the parameters, and
there 1s no simple, analytic way to find the maximum likelihood
bandpowers or their covariance

e In principle one can still use Bayes’ Theorem to find the posterior
joint probability of the bandpowers or the cosmological parameters
that parameterize them

e In practice the exact likelihood 1s expensive to compute

e Need fast approximation to the likelihood function and a fast way
of exploring it



Bandpower Estmation

e One example 1s to find the maximum likelihood bandpowers by
iteration

(0)

e Take a trial point B, and improve estimate based a

Newton-Rhapson approach to finding zeros
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e Still need the covariance matrix of the bandpowers



Fisher Matrix

The expectation value of the local curvature 1s the Fisher matrix

Ia _ _(92 ln/JB
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This 1s a general statement: for a gaussian distribution the Fisher
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Kramer-Rao identity says that the best possible covariance matrix
on a set of parameters is C = F~!

Thus, the iteration returns an estimate of the covariance matrix of
the estimators Cp



Cosmological Parameters

e The probability distribution of the bandpowers given the
cosmological parameters c; 1s not Gaussian but central limit
theorem says at high 7 it is often an adequate approximation
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e Again Bayes’ theorem gives the joint posterior of the cosmological

LIC(Ba) ~

parameters from the bandpower likelihood

e With this or other more sophisticated approximations to the
bandpower likelihood, still need a fast approach to exploring the
bandpower likelihood function



MCMC
Monte Carlo Markov Chain (MCMC)

Start with a set of cosmological parameters ¢, compute likelihood

m+1 of size drawn from

Take a random step in parameter space to c
a multivariate Gaussian (a guess at the parameter covariance
matrix) C. (e.g. from the crude Fisher approximation or the

covariance of a previous short chain run). Compute likelihood.

Draw a random number between 0,1 and if the likelithood ratio
exceeds this value take the step (add to Markov chain); if not then
do not take the step (add the original point to the Markov chain).
Repeat.

Given Bayes’ theorem the chain 1s then a sampling of the joint
posterior probability density of the parameters



Parameter Errors

e Can compute any statistic based on the probability distribution of
parameters

e For example, compute the mean and variance of a given parameter

= - m
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e Trick 1s 1n assuring burn 1n (not sensitive to initial point), step size,
and convergence

e Usually requires running multiple chains. Typically tens of
thousands of elements per chain.



Radical Compression

e Started with time ordered data ~ 10'° numbers for a satellite
experiment

e Compressed to a map assuming a CMB spectrum (and time
independent fluctuations) ~ 107 numbers

e Compressed to a power spectrum (Gaussian statistics) independent
of m (statistical isotropy) ~ 10° numbers

e Compressed to cosmological parameters (a cosmological model)
~ 10°

o A factor of 10” reduction in the representation. Nature is very
efficient.



Parameter Forecasts

e Now connect this discussion with the crude approximations from
previous set of notes.

e Gaussian approximation says Fisher matrix of the cosmological
parameters becomes

Fryj = —2CgL, =
X B,CLb
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which 1s the error propagation formula discussed above

e The bandpower covariance can be computed from the Fisher
approximation of the pixel likelihood.

e In the crude approximation one takes the covariance to be given by
the number of independent modes going into each bandpower
estimate



Parameter Forecasts

e For bandpowers being () itself, 1.e. estimating every ¢
approximate covariance with an increased variance:
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where the sky fraction fg, quantifies the loss of independent
modes due to the sky cut

e This 1s the form we previously derived from just thinking about the
simple estimator



