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Inhomogeneity vs Anisotropy
• Θ is a function of position as well as direction but we only have

access to our position

• Light travels at the speed of light so the radiation we receive in
direction n̂ was (η0 − η)n̂ at conformal time η

• Inhomogeneity at a distance appears as an anisotopy to the
observer

• We need to transport the radiation from the initial conditions to the
observer

• This is done with the Boltzmann or radiative transfer equation

• In the absence of scattering, emission or absorption the Boltzmann
equation is simply

Df

Dt
= 0
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• Angular distribution
of radiation is the 3D
temperature field
projected onto a shell
- surface of last scattering

• Shell radius
is distance from the observer
to recombination: called
the last scattering surface

• Take the radiation
distribution at last scattering to also be described by an isotropic
temperature fluctuation field Θ(x)



Integral Solution to Radiative Transfer

Iν(0) Iν(τν)

0 τν' τν

Sν

• Recall (see Ast 305): formal solution for Iν = 2hν3f/c2

Iν(τν) = Iν(0)e−τν +

∫ τν

0

dτ ′νSν(τ
′
ν)e
−(τν−τ ′ν)

• Specific intensity Iν attenuated by absorption and replaced by
source function, attenuated by absorption from foreground matter

• Here Θ plays the role of specific intensity and τν − τ ′ν = τ is
optical depth to Compton scattering from x = 0 to Dn̂



Angular Power Spectrum
• Take recombination to be instantaneous: dτe−τ = dDδ(D −D∗)

and the source to be the local temperature inhomogeneity

Θ(n̂) =

∫
dDΘ(x)δ(D −D∗)

where D is the comoving distance and D∗ denotes recombination.

• Describe the temperature field by its Fourier moments

Θ(x) =

∫
d3k

(2π)3
Θ(k)eik·x

• Note that Fourier moments Θ(k) have units of volume k−3

• 2 point statistics of the real-space field are translationally and
rotationally invariant

• Described by power spectrum



Spatial Power Spectrum
• Translational invariance

〈Θ(x′)Θ(x)〉 = 〈Θ(x′ + d)Θ(x + d)〉∫
d3k

(2π)3
d3k′

(2π)3
〈Θ∗(k′)Θ(k)〉eik·x−ik

′·x′

=

∫
d3k

(2π)3
d3k′

(2π)3
〈Θ∗(k′)Θ(k)〉eik·x−ik

′·x′+i(k−k′)·d

So two point function requires δ(k− k′); rotational invariance says
coefficient depends only on magnitude of k not it’s direction

〈Θ(k)∗Θ(k′)〉 = (2π)3δ(k− k′)PT (k)

Note that δ(k− k′) has units of volume and so PT must have units
of volume



Dimensionless Power Spectrum
• Variance

σ2
Θ ≡ 〈Θ(x)Θ(x)〉 =

∫
d3k

(2π)3
PT (k)

=

∫
k2dk

2π2

∫
dΩ

4π
PT (k)

=

∫
d ln k

k3

2π2
PT (k)

• Define power per logarithmic interval

∆2
T (k) ≡ k3PT (k)

2π2

• This quantity is dimensionless.



Angular Power Spectrum
• Temperature field

Θ(n̂) =

∫
d3k

(2π)3
Θ(k)eik·D∗n̂

• Multipole moments Θ(n̂) =
∑

`m Θ`mY`m

• Expand out plane wave in spherical coordinates

eikD∗·n̂ = 4π
∑
`m

i`j`(kD∗)Y
∗
`m(k)Y`m(n̂)

• Angular moment

Θ`m =

∫
d3k

(2π)3
Θ(k)4πi`j`(kD∗)Y

∗
`m(k)



Angular Power Spectrum
• Power spectrum

〈Θ∗`mΘ`′m′〉 =

∫
d3k

(2π)3
(4π)2i`−`

′
j`(kD∗)j`′(kD∗)Y`m(k)Y ∗`′m′(k)PT (k)

= δ``′δmm′4π

∫
d ln k j2

` (kD∗)∆
2
T (k)

with
∫∞

0
j2
` (x)d lnx = 1/(2`(`+ 1)), slowly varying ∆2

T

• Angular power spectrum:

C` =
4π∆2

T (`/D∗)

2`(`+ 1)
=

2π

`(`+ 1)
∆2
T (`/D∗)

• Not surprisingly, a relationship between `2C`/2π and ∆2
T at `� 1.

By convention use `(`+ 1) to make relationship exact



Generalized Source
• More generally, we know the Y m

` ’s are a complete angular basis
and plane waves are complete spatial basis

• General distribution can be decomposed into

Y m
` (n̂) exp(ik · x)

• The observer at the origin sees this distribution in projection

Y m
` (n̂)eikD∗·n̂ = 4π

∑
`′m′

i`
′
j`′(kD∗)Y

m′∗
`′ (k)Y m′

`′ (n̂)Y m
` (n̂)

• We extract the observed multipoles by the addition of angular
momentum Y m′

`′ (n̂)Y m
` (n̂)→ Y M

L (n̂)

• Radial functions become linear sums over j` with the recoupling
(Clebsch-Gordan) coefficients

• Formal integral solution to the radiative transfer equation



Boltzmann Equation
• General integral solution for radiative transfer as long as the

angular distribution at emission is known

• Formalize further the evolution of angular moments in the
cosmological context:

Df

Dt
= ḟ + q̇ · ∂f

∂q
+ ẋ · ∂f

∂x
= 0

• Momentum q = qn̂, where n̂ is a directional unit vector and in a
flat universe q̇ = q̇n̂

• Particle velocity ẋ = q/E

ḟ + q̇
∂f

∂q
+

q

E
· ∂f
∂x

= 0



Boltzmann Moments
• Multipole moments in direction correspond to integrals over q

• First two moments are just energy and momentum conservation

• Stress energy tensor (kept general for finite mass particle)

T µν = g

∫
d3q

(2π)3

qµqν

E
f

• Energy density and pressure

ρ(x, t) ≡ g

∫
d3q

(2π)3
Ef, p(x, t) ≡ g

∫
d3q

(2π)3

|q|2

3E
f

• Momentum density and anisotropic stress

(ρ+ p)v ≡ g

∫
d3q

(2π)3
qf, pδij + πij ≡ g

∫
d3q

(2π)3

qiqj
E
f



Gravitational Change of Momentum
• Momentum term: carries two contributions

• Consider the perturbed FRW line element to take the form

dτ 2 = a2[(1 + 2Ψ)dη2 − (1 + 2Φ)(dD2 +D2
AdΩ)]

where |Φ| � 1 and |Ψ| � 1 and DA = R sin(D/R) is the angular
diameter distance

.

blueshift redshift

• Just as the background scale factor
changes the de Broglie wavelength
of particles, a perturbation to the
scale factor (or spatial curvature)

a(x) = a(1 + Φ)



Gravitational Change of Momentum
• So Φ gives a time dependence to the momentum through

ȧ(x) = ȧ(1 + Φ) + aΦ̇

ȧ(x)

a(x)
≈ ȧ

a
+

Φ̇

1 + Φ
≈ ȧ

a
+ Φ̇

• Contribution from the spatial metric (independent of direction)

q̇ = −
(
ȧ

a
+ Φ̇

)
q

• Second term comes from Ψ which plays the role of the
gravitational potential

• Non-relativistic: gravitational force changes momentum

q̇ = F = −m∇Ψ → q̇ = n̂ · q̇ = −m(n̂ · ∇Ψ)



Gravitational Change of Momentum
• Ultra-Relativistic: time dilation implies shift of frequency or

gravitational redshift and hence momentum

∆q

q
= −∆Ψ

Rate of change from moving through a Ψ gradient is

q̇

q
= −ẋ · ∇Ψ = −n̂ · ∇Ψ

• In both relativistic and non-relativistic cases

q̇ = −E(n̂ · ∇Ψ)

• Combining the two momentum terms

q̇ = −
(
ȧ

a
+ Φ̇

)
q − (n̂ · ∇Ψ)E



Energy or Continuity Equation
• Integrate Boltzmann equation over E

g

∫
d3q

(2π)3
E

(
ḟ + q̇

∂f

∂q
+

q

E
· ∂f
∂x

= 0

)
• Time term

g

∫
d3q

(2π)3
Eḟ = ρ̇

• Momentum terms

g

∫
d3q

(2π)3
q̇E

∂f

∂q
= g

∫
d3q

(2π)3

[
−
(
ȧ

a
+ Φ̇

)
q − (n̂ · ∇Ψ)E

]
E
∂f

∂q

second term vanishes by symmetry integrating over momenta
direction



Energy or Continuity Equation
• First term remains

g

∫
d3q

(2π)3
q̇E

∂f

∂q
= −

(
ȧ

a
+ Φ̇

)
g

∫
d3q

(2π)3
qE

∂f

∂q

• Integrate by parts

g

∫
d3q

(2π)3
qE

∂f

∂q
= g

∫
dΩqdqq

2

(2π)3
qE

∂f

∂q
= −g

∫
dΩqdq

(2π)3

(
d

dq
q3E

)
f

= −g
∫
dΩqdq

(2π)3
(3q2E + q3dE

dq
)f

= −g
∫
dΩqdq

(2π)3
(3q2E +

q4

E
)f = −3(ρ+ p)

using d(E2 = q2 +m2)→ EdE = qdq



Energy or Continuity Equation
• So

g

∫
d3q

(2π)3
qE

∂f

∂q
=

(
ȧ

a
+ Φ̇

)
3(ρ+ p)

• Position term: define average momentum as momentum density

∇ · g
∫

d3q

(2π)3
qf ≡ ∇ · (ρ+ p)v

• Linearized energy/continuity equation

ρ̇ = −3

(
ȧ

a
+ Φ̇

)
(ρ+ p)−∇ · (ρ+ p)v

• Local energy density changes due to: global expansion, local
change in expansion, flows of particles into/out of volume



Momentum or Navier-Stokes Equation
• Continuity equation is not closed since it involves the next higher

moment: momentum density

• Integrate Boltzmann equation over q

g

∫
d3q

(2π)3
q

(
ḟ + q̇

∂f

∂q
+

q

E
· ∂f
∂x

= 0

)
• Time term

∂

∂η
→ ∂

∂η
[(ρ+ p)v]

• Momentum term: de Broglie redshift

−[
ȧ

a
+ Φ̇]g

∫
d3q

(2π)3
qq
∂f

∂q
= 4[

ȧ

a
+ Φ̇]g

∫
d3q

(2π)3
qf

= 4

[
ȧ

a
+ Φ̇

]
(ρ+ p)v ≈ 4

ȧ

a
(ρ+ p)v



Momentum Equation
• Momentum term: gravitational potential jth component

−∂iΨ · g
∫

d3q

(2π)3
qEnjn

i∂f

∂q
≈ ∂jΨ(ρ+ p)

where angle averaged 〈ninj〉 = 1
3
δij and used relation from

homogeneous energy equation

• Spatial term: recall stress tensor divided into isotropic and
anisotropic pieces

g

∫
d3q

(2π)3

qiqj
E
f ≡ pδij + πij

• Combined momentum terms

∂

∂η
[(ρ+ p)vi] = −4

ȧ

a
(ρ+ p)vi −∇ip−∇jπij − (ρ+ p)∇iΨ



Linear Perturbation Theory
• Energy (continuity) and momentum (Navier-Stokes) equations are

linearized and hence Fourier modes obey

∂

∂η
[(ρ+ p)vi] = −4

ȧ

a
(ρ+ p)vi + ikp+ ikjπij + iki(ρ+ p)Ψ

• If the source of perturbations is from the (scalar) gravitational
potential, directional dependence of velocity and anisotropic stress
follows the direction of the plane wave, so define scalar velocity
and anisotropic stress as

v(k) = ik̂v

πij(k) =

(
−k̂ik̂j +

1

3
δij

)
pπ



Linear Perturbation Theory
• Navier-Stokes equation

∂

∂η
[(ρ+ p)v] = −4

ȧ

a
(ρ+ p)vi + kp− 2

3
kpπ + (ρ+ p)kΨ

(w = p/ρ , c2
s = δp/δρ , ρ̇/ρ = −3(1 + w)ȧ/a)

v̇ = −(1− 3w)
ȧ

a
v − ẇ

1 + w
v +

kc2
s

1 + w
δ − 2

3

w

1 + w
kπ + kΨ

• Continuity Equation

ρ̇ = −3

[
ȧ

a
+ Φ̇

]
(ρ+ p) + ik · (ρ+ p)v

ρ̇ = −3

[
ȧ

a
+ Φ̇

]
(ρ+ p)− k(ρ+ p)v

δ̇ = −3
ȧ

a
(c2
s − w)δ − (1 + w)(kv + 3Φ̇)



Poisson Equation
• Naive expectation: Φ = −Ψ and source by the sum over all

particle components

∇2Φ = −4πGa2
∑
i

δρi

k2Φ = 4πGa2
∑
i

ρiδi

where a2 comes from physical→ comoving and δρi since
background densities go into scale factor evolution



Poisson Equation
• Einstein equations put in a relativistic correction (flat universe)

k2Φ = 4πGa2
∑
i

ρi[δi + 3
ȧ

a
(1 + wi)vi/k]

k2(Φ + Ψ) = −8πGa2
∑
i

piπi

convenient to call combination

∆i ≡ δi + 3
ȧ

a
(1 + wi)vi/k



Boltzmann Hierarchy
• Momentum equation is Navier-Stokes equation and requires

knowledge of the second moments: stress tensor including the
anisotropic stress (“viscosity”)

• In general, the time derivative of a low order moment of the
Boltzmann equation is given by the spatial gradient of the next
higher order moment due to term

q

E
· ∂f
∂x

• In Fourier space ∂/∂x = ik so in the frame of k̂ each operation
consists of integrating over an additional

n̂ · k = cos θ



Boltzmann Hierarchy
. • For the CMB one

adds the Compton collision term

• Isotropization from scattering
closes the angular
moment hierarchy at ` = 2

• As medium becomes
optically thin, one continues
the moment hierarchy:
each n̂ · ∇Θ term brings
with it a dipole coupling with the
previous moment: Y 0

1 Y
m
` → Y m

`±1

• Use solution of truncated
hierarchy to define the source
functions for the integral solution


