Astro 448

Set 5: Polarization Wayne Hu

Stokes Parameters

- Specific intensity is related to quadratic combinations of the field.
- Define the intensity matrix (time averaged over oscillations) $\left\langle\mathbf{E} \mathbf{E}^{\dagger}\right\rangle$
- Hermitian matrix can be decomposed into Pauli matrices

$$
\mathbf{P}=\left\langle\mathbf{E} \mathbf{E}^{\dagger}\right\rangle=\frac{1}{2}\left(I \boldsymbol{\sigma}_{0}+Q \boldsymbol{\sigma}_{3}+U \boldsymbol{\sigma}_{1}-V \boldsymbol{\sigma}_{2}\right),
$$

where

$$
\boldsymbol{\sigma}_{0}=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right), \boldsymbol{\sigma}_{1}=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right), \boldsymbol{\sigma}_{2}=\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right), \boldsymbol{\sigma}_{3}=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)
$$

- Stokes parameters recovered as $\operatorname{Tr}\left(\sigma_{i} \mathbf{P}\right)$

Stokes Parameters

- Consider a general plane wave solution

$$
\begin{aligned}
\mathbf{E}(t, z) & =E_{1}(t, z) \hat{\mathbf{e}}_{1}+E_{2}(t, z) \hat{\mathbf{e}}_{2} \\
E_{1}(t, z) & =A_{1} e^{i \phi_{1}} e^{i(k z-\omega t)} \\
E_{2}(t, z) & =A_{2} e^{i \phi_{2}} e^{i(k z-\omega t)}
\end{aligned}
$$

- Explicitly:

$$
\begin{aligned}
I & =\left\langle E_{1} E_{1}^{*}+E_{2} E_{2}^{*}\right\rangle=A_{1}^{2}+A_{2}^{2} \\
Q & =\left\langle E_{1} E_{1}^{*}-E_{2} E_{2}^{*}\right\rangle=A_{1}^{2}-A_{2}^{2} \\
U & =\left\langle E_{1} E_{2}^{*}+E_{2} E_{1}^{*}\right\rangle=2 A_{1} A_{2} \cos \left(\phi_{2}-\phi_{1}\right) \\
V & =-i\left\langle E_{1} E_{2}^{*}-E_{2} E_{1}^{*}\right\rangle=2 A_{1} A_{2} \sin \left(\phi_{2}-\phi_{1}\right)
\end{aligned}
$$

so that the Stokes parameters define the state up to an unobservable overall phase of the wave

Detection

- This suggests that abstractly there are two different ways to detect polarization: separate and difference orthogonal modes (bolometers I, Q) or correlate the separated components (U, V).

- In the correlator example the natural output would be U but one can recover V by introducing a phase lag $\phi=\pi / 2$ on one arm, and Q by having the OMT pick out directions rotated by $\pi / 4$.
- Likewise, in the bolometer example, one can rotate the polarizer and also introduce a coherent front end to change V to U.

Detection

- Techniques also differ in the systematics that can convert unpolarized sky to fake polarization
- Differencing detectors are sensitive to relative gain fluctuations
- Correlation detectors are sensitive to cross coupling between the arms
- More generally, the intended block diagram and systematic problems map components of the polarization matrix onto others and are kept track of through "Jones" or instrumental response matrices $\mathbf{E}_{\text {det }}=\mathbf{J E} \mathbf{E}_{\text {in }}$

$$
\mathbf{P}_{\mathrm{det}}=\mathbf{J} \mathbf{P}_{\mathrm{in}} \mathbf{J}^{\dagger}
$$

where the end result is either a differencing or a correlation of the $\mathbf{P}_{\mathrm{det}}$.

Polarization

- Radiation field involves a directed quantity, the electric field vector, which defines the polarization
- Consider a general plane wave solution

$$
\begin{aligned}
\mathbf{E}(t, z) & =E_{1}(t, z) \hat{\mathbf{e}}_{1}+E_{2}(t, z) \hat{\mathbf{e}}_{2} \\
E_{1}(t, z) & =\operatorname{Re} A_{1} e^{i \phi_{1}} e^{i(k z-\omega t)} \\
E_{2}(t, z) & =\operatorname{Re} A_{2} e^{i \phi_{2}} e^{i(k z-\omega t)}
\end{aligned}
$$

or at $z=0$ the field vector traces out an ellipse

$$
\mathbf{E}(t, 0)=A_{1} \cos \left(\omega t-\phi_{1}\right) \hat{\mathbf{e}}_{1}+A_{2} \cos \left(\omega t-\phi_{2}\right) \hat{\mathbf{e}}_{2}
$$

with principal axes defined by

$$
\mathbf{E}(t, 0)=A_{1}^{\prime} \cos (\omega t) \hat{\mathbf{e}}_{1}^{\prime}-A_{2}^{\prime} \sin (\omega t) \hat{\mathbf{e}}_{2}^{\prime}
$$

so as to trace out a clockwise rotation for $A_{1}^{\prime}, A_{2}^{\prime}>0$

Polarization

- Define polarization angle

$$
\begin{aligned}
& \hat{\mathbf{e}}_{1}^{\prime}=\cos \chi \hat{\mathbf{e}}_{1}+\sin \chi \hat{\mathbf{e}}_{2} \\
& \hat{\mathbf{e}}_{2}^{\prime}=-\sin \chi \hat{\mathbf{e}}_{1}+\cos \chi \hat{\mathbf{e}}_{2}
\end{aligned}
$$

- Match

$$
\begin{aligned}
\mathbf{E}(t, 0)= & A_{1}^{\prime} \cos \omega t\left[\cos \chi \hat{\mathbf{e}}_{1}+\sin \chi \hat{\mathbf{e}}_{2}\right] \\
& -A_{2}^{\prime} \cos \omega t\left[-\sin \chi \hat{\mathbf{e}}_{1}+\cos \chi \hat{\mathbf{e}}_{2}\right] \\
= & A_{1}\left[\cos \phi_{1} \cos \omega t+\sin \phi_{1} \sin \omega t\right] \hat{\mathbf{e}}_{1} \\
& +A_{2}\left[\cos \phi_{2} \cos \omega t+\sin \phi_{2} \sin \omega t\right] \hat{\mathbf{e}}_{2}
\end{aligned}
$$

Polarization

- Define relative strength of two principal states

$$
A_{1}^{\prime}=E_{0} \cos \beta \quad A_{2}^{\prime}=E_{0} \sin \beta
$$

- Characterize the polarization by two angles

$$
\begin{array}{ll}
A_{1} \cos \phi_{1}=E_{0} \cos \beta \cos \chi, & A_{1} \sin \phi_{1}=E_{0} \sin \beta \sin \chi \\
A_{2} \cos \phi_{2}=E_{0} \cos \beta \sin \chi, & A_{2} \sin \phi_{2}=-E_{0} \sin \beta \cos \chi
\end{array}
$$

Or Stokes parameters by

$$
\begin{aligned}
I & =E_{0}^{2}, \quad Q=E_{0}^{2} \cos 2 \beta \cos 2 \chi \\
U & =E_{0}^{2} \cos 2 \beta \sin 2 \chi, \quad V=E_{0}^{2} \sin 2 \beta
\end{aligned}
$$

- So $I^{2}=Q^{2}+U^{2}+V^{2}$, double angles reflect the spin 2 field or headless vector nature of polarization

Polarization

Special cases

- If $\beta=0, \pi / 2, \pi$ then only one principal axis, ellipse collapses to a line and $V=0 \rightarrow$ linear polarization oriented at angle χ

$$
\begin{aligned}
& \text { If } \chi=0, \pi / 2, \pi \text { then } I= \pm Q \text { and } U=0 \\
& \text { If } \chi=\pi / 4,3 \pi / 4 \ldots \text { then } I= \pm U \text { and } Q=0-\text { so } U \text { is } Q \text { in a } \\
& \text { frame rotated by } 45 \text { degrees }
\end{aligned}
$$

- If $\beta=\pi / 4,3 \pi / 4$, then principal components have equal strength and E field rotates on a circle: $I= \pm V$ and $Q=U=0 \rightarrow$ circular polarization
- $U / Q=\tan 2 \chi$ defines angle of linear polarization and $V / I=\sin 2 \beta$ defines degree of circular polarization

Natural Light

- A monochromatic plane wave is completely polarized $I^{2}=Q^{2}+U^{2}+V^{2}$
- Polarization matrix is like a density matrix in quantum mechanics and allows for pure (coherent) states and mixed states
- Suppose the total $\mathbf{E}_{\text {tot }}$ field is composed of different (frequency) components

$$
\mathbf{E}_{\mathrm{tot}}=\sum_{i} \mathbf{E}_{i}
$$

- Then components decorrelate in time average

$$
\left\langle\mathbf{E}_{\mathrm{tot}} \mathbf{E}_{\mathrm{tot}}^{\dagger}\right\rangle=\sum_{i j}\left\langle\mathbf{E}_{i} \mathbf{E}_{j}^{\dagger}\right\rangle=\sum_{i}\left\langle\mathbf{E}_{i} \mathbf{E}_{i}^{\dagger}\right\rangle
$$

Natural Light

- So Stokes parameters of incoherent contributions add

$$
I=\sum_{i} I_{i} \quad Q=\sum_{i} Q_{i} \quad U=\sum_{i} U_{i} \quad V=\sum_{i} V_{i}
$$

and since individual Q, U and V can have either sign:
$I^{2} \geq Q^{2}+U^{2}+V^{2}$, all 4 Stokes parameters needed

Linear Polarization

- $Q \propto\left\langle E_{1} E_{1}^{*}\right\rangle-\left\langle E_{2} E_{2}^{*}\right\rangle, U \propto\left\langle E_{1} E_{2}^{*}\right\rangle+\left\langle E_{2} E_{1}^{*}\right\rangle$.
- Counterclockwise rotation of axes by $\theta=45^{\circ}$

$$
E_{1}=\left(E_{1}^{\prime}-E_{2}^{\prime}\right) / \sqrt{2}, \quad E_{2}=\left(E_{1}^{\prime}+E_{2}^{\prime}\right) / \sqrt{2}
$$

- $U \propto\left\langle E_{1}^{\prime} E_{1}^{\prime *}\right\rangle-\left\langle E_{2}^{\prime} E_{2}^{\prime *}\right\rangle$, difference of intensities at 45° or Q^{\prime}
- More generally, \mathbf{P} transforms as a tensor under rotations and

$$
\begin{aligned}
& Q^{\prime}=\cos (2 \theta) Q+\sin (2 \theta) U \\
& U^{\prime}=-\sin (2 \theta) Q+\cos (2 \theta) U
\end{aligned}
$$

or

$$
Q^{\prime} \pm i U^{\prime}=e^{\mp 2 i \theta}[Q \pm i U]
$$

acquires a phase under rotation and is a spin ± 2 object

Coordinate Independent Representation

- Two directions: orientation of polarization and change in amplitude, i.e. Q and U in the basis of the Fourier wavevector (pointing with angle ϕ_{l}) for small sections of sky are called E and B components

$$
\begin{aligned}
E(\mathbf{l}) \pm i B(\mathbf{l}) & =-\int d \hat{\mathbf{n}}\left[Q^{\prime}(\hat{\mathbf{n}}) \pm i U^{\prime}(\hat{\mathbf{n}})\right] e^{-i \mathbf{l} \cdot \hat{\mathbf{n}}} \\
& =-e^{\mp 2 i \phi_{l}} \int d \hat{\mathbf{n}}[Q(\hat{\mathbf{n}}) \pm i U(\hat{\mathbf{n}})] e^{-i \mathbf{l} \cdot \hat{\mathbf{n}}}
\end{aligned}
$$

- For the B-mode to not vanish, the polarization must point in a direction not related to the wavevector - not possible for density fluctuations in linear theory
- Generalize to all-sky: plane waves are eigenmodes of the Laplace operator on the tensor \mathbf{P}.

Spin Harmonics

- Laplace Eigenfunctions

$$
\nabla_{ \pm 2}^{2} Y_{\ell m}\left[\boldsymbol{\sigma}_{3} \mp i \boldsymbol{\sigma}_{1}\right]=-[l(l+1)-4]_{ \pm 2} Y_{\ell m}\left[\boldsymbol{\sigma}_{3} \mp i \boldsymbol{\sigma}_{1}\right]
$$

- Spin s spherical harmonics: orthogonal and complete

$$
\begin{aligned}
\int d \hat{\mathbf{n}}_{s} Y_{\ell m}^{*}(\hat{\mathbf{n}})_{s} Y_{\ell m}(\hat{\mathbf{n}}) & =\delta_{\ell \ell^{\prime}} \delta_{m m^{\prime}} \\
\sum_{\ell m}{ }_{s} Y_{\ell m}^{*}(\hat{\mathbf{n}})_{s} Y_{\ell m}\left(\hat{\mathbf{n}}^{\prime}\right) & =\delta\left(\phi-\phi^{\prime}\right) \delta\left(\cos \theta-\cos \theta^{\prime}\right)
\end{aligned}
$$

where the ordinary spherical harmonics are $Y_{\ell m}={ }_{0} Y_{\ell m}$

- Given in terms of the rotation matrix

$$
{ }_{s} Y_{\ell m}(\beta \alpha)=(-1)^{m} \sqrt{\frac{2 \ell+1}{4 \pi}} D_{-m s}^{\ell}(\alpha \beta 0)
$$

Statistical Representation

- All-sky decomposition

$$
[Q(\hat{\mathbf{n}}) \pm i U(\hat{\mathbf{n}})]=\sum_{\ell m}\left[E_{\ell m} \pm i B_{\ell m}\right]_{ \pm 2} Y_{\ell m}(\hat{\mathbf{n}})
$$

- Power spectra

$$
\begin{aligned}
& \left\langle E_{\ell m}^{*} E_{\ell m}\right\rangle=\delta_{\ell \ell^{\prime}} \delta_{m m^{\prime}} C_{\ell}^{E E} \\
& \left\langle B_{\ell m}^{*} B_{\ell m}\right\rangle=\delta_{\ell \ell^{\prime}} \delta_{m m^{\prime}} C_{\ell}^{B B}
\end{aligned}
$$

- Cross correlation

$$
\left\langle E_{\ell m}^{*} E_{\ell m}\right\rangle=\delta_{\ell \ell^{\prime}} \delta_{m m^{\prime}} C_{\ell}^{\Theta E}
$$

others vanish if parity is conserved

Thomson Scattering

- Polarization state of radiation in direction $\hat{\mathbf{n}}$ described by the intensity matrix $\left\langle E_{i}(\hat{\mathbf{n}}) E_{j}^{*}(\hat{\mathbf{n}})\right\rangle$, where \mathbf{E} is the electric field vector and the brackets denote time averaging.
- Differential cross section

$$
\frac{d \sigma}{d \Omega}=\frac{3}{8 \pi}\left|\hat{\mathbf{E}}^{\prime} \cdot \hat{\mathbf{E}}\right|^{2} \sigma_{T},
$$

where $\sigma_{T}=8 \pi \alpha^{2} / 3 m_{e}$ is the Thomson cross section, $\hat{\mathbf{E}}^{\prime}$ and $\hat{\mathbf{E}}$ denote the incoming and outgoing directions of the electric field or polarization vector.

- Summed over angle and incoming polarization

$$
\sum_{i=1,2} \int d \hat{\mathbf{n}}^{\prime} \frac{d \sigma}{d \Omega}=\sigma_{T}
$$

Polarization Generation

- Heuristic: incoming radiation shakes an electron in direction of electric field vector $\hat{\mathbf{E}}^{\prime}$
- Radiates photon with
 polarization also in direction $\hat{\mathbf{E}}^{\prime}$
- But photon cannot be longitudinally polarized so that scattering into 90° can only pass one polarization
- Linearly polarized radiation like polarization by reflection
- Unlike reflection of sunlight, incoming radiation is nearly isotropic
- Missing from direction orthogonal to original incoming direction
- Only quadrupole anisotropy generates polarization by Thomson scattering

Acoustic Polarization

- Break down of tight-coupling leads to quadrupole anisotropy of

$$
\pi_{\gamma} \approx \frac{k}{\dot{\tau}} v_{\gamma}
$$

- Scaling $k_{D}=\left(\dot{\tau} / \eta_{*}\right)^{1 / 2} \rightarrow \dot{\tau}=k_{D}^{2} \eta_{*}$
- Know: $k_{D} s_{*} \approx k_{D} \eta_{*} \approx 10$
- So:

$$
\begin{aligned}
\pi_{\gamma} & \approx \frac{k}{k_{D}} \frac{1}{10} v_{\gamma} \\
\Delta_{P} & \approx \frac{\ell}{\ell_{D}} \frac{1}{10} \Delta_{T}
\end{aligned}
$$

Acoustic Polarization

- Gradient of velocity is along direction of wavevector, so polarization is pure E-mode
- Velocity is 90° out of phase with temperature - turning points of oscillator are zero points of velocity:

$$
\Theta+\Psi \propto \cos (k s) ; \quad v_{\gamma} \propto \sin (k s)
$$

- Polarization peaks are at troughs of temperature power

Cross Correlation

- Cross correlation of temperature and polarization

$$
(\Theta+\Psi)\left(v_{\gamma}\right) \propto \cos (k s) \sin (k s) \propto \sin (2 k s)
$$

- Oscillation at twice the frequency
- Correlation: radial or tangential around hot spots
- Partial correlation: easier to measure if polarization data is noisy, harder to measure if polarization data is high S / N or if bands do not resolve oscillations
- Good check for systematics and foregrounds
- Comparison of temperature and polarization is proof against features in initial conditions mimicking acoustic features

Polarization Power

Angular Moments

- Define the angularly dependent Stokes perturbation

$$
\Theta(\mathbf{x}, \hat{\mathbf{n}}, \eta), \quad Q(\mathbf{x}, \hat{\mathbf{n}}, \eta), \quad U(\mathbf{x}, \hat{\mathbf{n}}, \eta)
$$

- Decompose into normal modes: plane waves for spatial part and spherical harmonics for angular part

$$
\begin{aligned}
G_{\ell}^{m}(\mathbf{k}, \mathbf{x}, \hat{\mathbf{n}}) & \equiv(-i)^{\ell} \sqrt{\frac{4 \pi}{2 \ell+1}} Y_{\ell}^{m}(\hat{\mathbf{n}}) \exp (i \mathbf{k} \cdot \mathbf{x}) \\
{ }_{ \pm 2} G_{\ell}^{m}(\mathbf{k}, \mathbf{x}, \hat{\mathbf{n}}) & \equiv(-i)^{\ell} \sqrt{\frac{4 \pi}{2 \ell+1}} \pm 2 Y_{\ell}^{m}(\hat{\mathbf{n}}) \exp (i \mathbf{k} \cdot \mathbf{x})
\end{aligned}
$$

- In a spatially curved universe generalize the plane wave part

Normal Modes

- Temperature and polarization fields

$$
\begin{aligned}
\Theta(\mathbf{x}, \hat{\mathbf{n}}, \eta) & =\int \frac{d^{3} k}{(2 \pi)^{3}} \sum_{\ell m} \Theta_{\ell}^{(m)} G_{\ell}^{m} \\
{[Q \pm i U](\mathbf{x}, \hat{\mathbf{n}}, \eta) } & =\int \frac{d^{3} k}{(2 \pi)^{3}} \sum_{\ell m}\left[E_{\ell}^{(m)} \pm i B_{\ell}^{(m)}\right]_{ \pm 2} G_{\ell}^{m}
\end{aligned}
$$

- For each \mathbf{k} mode, work in coordinates where $\mathbf{k} \| \mathbf{z}$ and so $m=0$ represents scalar modes, $m= \pm 1$ vector modes, $m= \pm 2$ tensor modes, $|m|>2$ vanishes. Since modes add incoherently and $Q \pm i U$ is invariant up to a phase, rotation back to a fixed coordinate system is trivial.

Liouville Equation

- In absence of scattering, the phase space distribution of photons in each polarization state a is conserved along the propagation path
- Rewrite variables in terms of the photon propagation direction $\mathbf{q}=q \hat{\mathbf{n}}$, so $f_{a}(\mathbf{x}, \hat{\mathbf{n}}, q, \eta)$ and
$\frac{d}{d \eta} f_{a}(\mathbf{x}, \hat{\mathbf{n}}, q, \eta)=0$

$$
=\left(\frac{\partial}{\partial \eta}+\frac{d \mathbf{x}}{d \eta} \cdot \frac{\partial}{\partial \mathbf{x}}+\frac{d \hat{\mathbf{n}}}{d \eta} \cdot \frac{\partial}{\partial \hat{\mathbf{n}}}+\frac{d q}{d \eta} \cdot \frac{\partial}{\partial q}\right) f_{a}
$$

- For simplicity, assume spatially flat universe $K=0$ then $d \hat{\mathbf{n}} / d \eta=0$ and $d \mathbf{x}=\hat{\mathbf{n}} d \eta$

$$
\dot{f}_{a}+\hat{\mathbf{n}} \cdot \nabla f_{a}+\dot{q} \frac{\partial}{\partial q} f_{a}=0
$$

Scalar, Vector, Tensor

- Normalization of modes is chosen so that the lowest angular mode for scalars, vectors and tensors are normalized in the same way as the mode function

$$
\begin{aligned}
G_{0}^{0} & =Q^{(0)} \quad G_{1}^{0}=n^{i} Q_{i}^{(0)} \quad G_{2}^{0} \propto n^{i} n^{j} Q_{i j}^{(0)} \\
G_{1}^{ \pm 1} & =n^{i} Q_{i}^{(\pm 1)} \quad G_{2}^{ \pm 1} \propto n^{i} n^{j} Q_{i j}^{(\pm 1)} \\
G_{2}^{ \pm 2} & =n^{i} n^{j} Q_{i j}^{(\pm 2)}
\end{aligned}
$$

where recall

$$
\begin{aligned}
Q^{(0)} & =\exp (i \mathbf{k} \cdot \mathbf{x}) \\
Q_{i}^{(\pm 1)} & =\frac{-i}{\sqrt{2}}\left(\hat{\mathbf{e}}_{1} \pm i \hat{\mathbf{e}}_{2}\right)_{i} \exp (i \mathbf{k} \cdot \mathbf{x}) \\
Q_{i j}^{(\pm 2)} & =-\sqrt{\frac{3}{8}}\left(\hat{\mathbf{e}}_{1} \pm i \hat{\mathbf{e}}_{2}\right)_{i}\left(\hat{\mathbf{e}}_{1} \pm i \hat{\mathbf{e}}_{2}\right)_{j} \exp (i \mathbf{k} \cdot \mathbf{x})
\end{aligned}
$$

Geometrical Projection

- Main content of Liouville equation is purely geometrical and describes the projection of inhomogeneities into anisotropies
- Spatial gradient term hits plane wave:

$$
\hat{\mathbf{n}} \cdot \nabla e^{i \mathbf{k} \cdot \mathbf{x}}=i \hat{\mathbf{n}} \cdot \mathbf{k} e^{i \mathbf{k} \cdot \mathbf{x}}=i \sqrt{\frac{4 \pi}{3}} k Y_{1}^{0}(\hat{\mathbf{n}}) e^{i \mathbf{k} \cdot \mathbf{x}}
$$

- Dipole term adds to angular dependence through the addition of angular momentum
$\sqrt{\frac{4 \pi}{3}} Y_{1}^{0} Y_{\ell}^{m}=\frac{\kappa_{\ell}^{m}}{\sqrt{(2 \ell+1)(2 \ell-1)}} Y_{\ell-1}^{m}+\frac{\kappa_{\ell+1}^{m}}{\sqrt{(2 \ell+1)(2 \ell+3)}} Y_{\ell+1}^{m}$
where $\kappa_{\ell}^{m}=\sqrt{\ell^{2}-m^{2}}$ is given by Clebsch-Gordon coefficients.

Temperature Hierarchy

- Absorb recoupling of angular momentum into evolution equation for normal modes

$$
\dot{\Theta}_{\ell}^{(m)}=k\left[\frac{\kappa_{\ell}^{m}}{2 \ell+1} \Theta_{\ell-1}^{(m)}-\frac{\kappa_{\ell+1}^{m}}{2 \ell+3} \Theta_{\ell+1}^{(m)}\right]-\dot{\tau} \Theta_{\ell}^{(m)}+S_{\ell}^{(m)}
$$

where $S_{\ell}^{(m)}$ are the gravitational (and later scattering sources; added scattering suppression of anisotropy)

- An originally isotropic $\ell=0$ temperature perturbation will eventually become a high order anisotropy by "free streaming" or simple projection
- Original CMB codes solved the full hierarchy equations out to the ℓ of interest.

Integral Solution

- Hierarchy equation simply represents geometric projection, exactly as we have seen before in the projection of temperature perturbations on the last scattering surface
- In general, the solution describes the decomposition of the source $S_{\ell}^{(m)}$ with its local angular dependence as seen at a distance $\mathrm{x}=D \hat{\mathbf{n}}$.
- Proceed by decomposing the angular dependence of the plane wave

$$
e^{i \mathbf{k} \cdot \mathbf{x}}=\sum_{\ell}(-i)^{\ell} \sqrt{4 \pi(2 \ell+1)} j_{\ell}(k D) Y_{\ell}^{0}(\hat{\mathbf{n}})
$$

- Recouple to the local angular dependence of G_{ℓ}^{m}

$$
G_{\ell_{s}}^{m}=\sum_{\ell}(-i)^{\ell} \sqrt{4 \pi(2 \ell+1)} \alpha_{\ell_{s} \ell}^{(m)}(k D) Y_{\ell}^{m}(\hat{\mathbf{n}})
$$

Integral Solution

- Projection kernels:

$$
\begin{array}{lll}
\ell_{s}=0, & m=0 & \alpha_{0 \ell}^{(0)} \equiv j_{\ell} \\
\ell_{s}=1, & m=0 & \alpha_{1 \ell}^{(0)} \equiv j_{\ell}^{\prime}
\end{array}
$$

- Integral solution:

$$
\frac{\Theta_{\ell}^{(m)}\left(k, \eta_{0}\right)}{2 \ell+1}=\int_{0}^{\eta_{0}} d \eta e^{-\tau} \sum_{\ell_{s}} S_{\ell_{s}}^{(m)} \alpha_{\ell_{s} \ell}^{(m)}\left(k\left(\eta_{0}-\eta\right)\right)
$$

- Power spectrum:

$$
C_{\ell}=\frac{2}{\pi} \int \frac{d k}{k} \sum_{m} \frac{k^{3}\left\langle\Theta_{\ell}^{(m) *} \Theta_{\ell}^{(m)}\right\rangle}{(2 \ell+1)^{2}}
$$

- Solving for C_{ℓ} reduces to solving for the behavior of a handful of sources

Polarization Hierarchy

- In the same way, the coupling of a gradient or dipole angular momentum to the spin harmonics leads to the polarization hierarchy:

$$
\begin{aligned}
& \dot{E}_{\ell}^{(m)}=k\left[\frac{{ }_{2} \kappa_{\ell}^{m}}{2 \ell-1} E_{\ell-1}^{(m)}-\frac{2 m}{\ell(\ell+1)} B_{\ell}^{(m)}-\frac{{ }_{2} \kappa_{\ell+1}^{m}}{2 \ell+3} E_{\ell+1}^{(m)}\right]-\dot{\tau} E_{\ell}^{(m)}+\mathcal{E}_{\ell}^{(m)} \\
& \dot{B}_{\ell}^{(m)}=k\left[\frac{{ }_{2} \kappa_{\ell}^{m}}{2 \ell-1} B_{\ell-1}^{(m)}+\frac{2 m}{\ell(\ell+1)} E_{\ell}^{(m)}-\frac{{ }_{2} \kappa_{\ell+1}^{m}}{2 \ell+3} B_{\ell+1}^{(m)}\right]-\dot{\tau} B_{\ell}^{(m)}+\mathcal{B}_{\ell}^{(m)}
\end{aligned}
$$

where ${ }_{2} \kappa_{\ell}^{m}=\sqrt{\left(\ell^{2}-m^{2}\right)\left(\ell^{2}-4\right) / \ell^{2}}$ is given by the
Clebsch-Gordon coefficients and \mathcal{E}, \mathcal{B} are the sources (scattering only).

- Note that for vectors and tensors $|m|>0$ and B modes may be generated from E modes by projection. Cosmologically $\mathcal{B}_{\ell}^{(m)}=0$

Polarization Integral Solution

- Again, we can recouple the plane wave angular momentum of the source inhomogeneity to its local angular dependence directly

$$
\begin{aligned}
\frac{E_{\ell}^{(m)}\left(k, \eta_{0}\right)}{2 \ell+1} & =\int_{0}^{\eta_{0}} d \eta e^{-\tau} \mathcal{E}_{\ell_{s}}^{(m)} \epsilon_{\ell_{s} \ell}^{(m)}\left(k\left(\eta_{0}-\eta\right)\right) \\
\frac{B_{\ell}^{(m)}\left(k, \eta_{0}\right)}{2 \ell+1} & =\int_{0}^{\eta_{0}} d \eta e^{-\tau} \mathcal{E}_{\ell_{s}}^{(m)} \beta_{\ell_{s} \ell}^{(m)}\left(k\left(\eta_{0}-\eta\right)\right)
\end{aligned}
$$

- The only source to the polarization is from the quadrupole anisotropy so we only need $\ell_{s}=2$, e.g. for scalars

$$
\epsilon_{2 \ell}^{(0)}(x)=\sqrt{\frac{3}{8} \frac{(\ell+2)!}{(\ell-2)!} \frac{j_{\ell}(x)}{x^{2}}} \quad \beta_{2 \ell}^{(0)}=0
$$

Gravitational Terms

- As in our Newtonian gauge calculation, gravitational terms - now including vectors and tensors in an arbitrary gauge, come from the geodesic equation
- First define the slicing (lapse function A, shift function B^{i})

$$
\begin{aligned}
g^{00} & =-a^{-2}(1-2 A) \\
g^{0 i} & =-a^{-2} B^{i}
\end{aligned}
$$

A defines the lapse of proper time between 3-surfaces whereas B^{i} defines the threading or relationship between the 3-coordinates of the surfaces

Gravitational Terms

- This absorbs $1+3=4$ degrees of freedom in the metric, remaining 6 is in the spatial surfaces which we parameterize as

$$
g^{i j}=a^{-2}\left(\gamma^{i j}-2 H_{L} \gamma^{i j}-2 H_{T}^{i j}\right)
$$

here (1) H_{L} a perturbation to the spatial curvature; (5) $H_{T}^{i j}$ a trace-free distortion to spatial metric (which also can perturb the curvature)

- Geodesic equation gives the redshifting term

$$
\frac{\dot{q}}{q}=-\frac{\dot{a}}{a}-\frac{1}{2} n^{i} n^{j} \dot{H}_{T i j}-\dot{H}_{L}+n^{i} \dot{B}_{i}-\hat{\mathbf{n}} \cdot \nabla A
$$

which is incorporated in the conservation and gauge transformation equations

Source Terms

- Temperature source terms $S_{l}^{(m)}$ (rows $\pm|m|$; flat assumption

$$
\left(\begin{array}{lll}
\dot{\tau} \Theta_{0}^{(0)}-\dot{H}_{L}^{(0)} & \dot{\tau} v_{b}^{(0)}+\dot{B}^{(0)} & \dot{\tau} P^{(0)}-\frac{2}{3} \dot{H}_{T}^{(0)} \\
0 & \dot{\tau} v_{b}^{(\pm 1)}+\dot{B}^{(\pm 1)} & \dot{\tau} P^{(\pm 1)}-\frac{\sqrt{3}}{3} \dot{H}_{T}^{(\pm 1)} \\
0 & 0 & \dot{\tau} P^{(\pm 2)}-\dot{H}_{T}^{(\pm 2)}
\end{array}\right)
$$

where

$$
P^{(m)} \equiv \frac{1}{10}\left(\Theta_{2}^{(m)}-\sqrt{6} E_{2}^{(m)}\right)
$$

- Polarization source term

$$
\begin{aligned}
& \mathcal{E}_{\ell}^{(m)}=-\dot{\tau} \sqrt{6} P^{(m)} \delta_{\ell, 2} \\
& \mathcal{B}_{\ell}^{(m)}=0
\end{aligned}
$$

Truncated Hierarchy

- CMBFast introduced the hybrid truncated hierarchy, integral solution technique
- Formal integral solution contains sources that are not external to system but defined through the Boltzmann hierarchy itself
- Solution: recall that we used this technique in the tight coupling regime by applying a closure condition from tight coupling
- CMBFast extends this idea by solving a truncated hierarchy of equations, e.g. out to $\ell=25$ with non-reflecting boundary conditions
- For completeness, we explicitly derive the scattering source term via polarized radiative transfer in the last part of the notes

Polarized Radiative Transfer

- Define a specific intensity "vector": $\mathbf{I}_{\nu}=\left(\Theta_{\|}, \Theta_{\perp}, U, V\right)$ where $\Theta=\Theta_{\|}+\Theta_{\perp}, Q=\Theta_{\|}-\Theta_{\perp}$

$$
\frac{d \mathbf{I}_{\nu}}{d \eta}=\dot{\tau}\left(\mathbf{S}_{\nu}-\mathbf{I}_{\nu}\right)
$$

- Thomson collision
based on differential cross section

$$
\frac{d \sigma_{T}}{d \Omega}=\frac{3}{8 \pi}\left|\hat{\mathbf{E}}^{\prime} \cdot \hat{\mathbf{E}}\right|^{2} \sigma_{T},
$$

Polarized Radiative Transfer

- $\hat{\mathbf{E}}^{\prime}$ and $\hat{\mathbf{E}}$ denote the incoming and outgoing directions of the electric field or polarization vector.
- Thomson scattering by 90 deg: $\Theta_{\perp} \rightarrow \Theta_{\perp}$ but $\Theta_{\|}$does not scatter
- More generally if Θ is the scattering angle

$$
\mathbf{S}_{\nu}=\frac{3}{8 \pi} \int d \Omega^{\prime}\left(\begin{array}{cccc}
\cos ^{2} \Theta & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & \cos \Theta & 0 \\
0 & 0 & 0 & \cos \Theta
\end{array}\right) \mathbf{I}_{\nu}^{\prime}
$$

- But to calculate Stokes parameters in a fixed coordinate system must rotate into the scattering basis, scatter and rotate back out to the fixed coordinate system

Thomson Collision Term

- The $U \rightarrow U^{\prime}$ transfer follows by writing down the polarization vectors in the 45° rotated basis

$$
\hat{\mathbf{E}}_{1}=\frac{1}{\sqrt{2}}\left(\hat{\mathbf{E}}_{\|}+\hat{\mathbf{E}}_{\perp}\right), \quad \hat{\mathbf{E}}_{2}=\frac{1}{\sqrt{2}}\left(\hat{\mathbf{E}}_{\|}-\hat{\mathbf{E}}_{\perp}\right)
$$

- Define the temperature in this basis

$$
\begin{aligned}
\Theta_{1} & \propto\left|\hat{\mathbf{E}}_{1} \cdot \hat{\mathbf{E}}_{1}\right|^{2} \Theta_{1}^{\prime}+\left|\hat{\mathbf{E}}_{1} \cdot \hat{\mathbf{E}}_{2}\right|^{2} \Theta_{2}^{\prime} \\
& \propto \frac{1}{4}(\cos \beta+1)^{2} \Theta_{1}^{\prime}+\frac{1}{4}(\cos \beta-1)^{2} \Theta_{2}^{\prime} \\
\Theta_{2} & \propto\left|\hat{\mathbf{E}}_{2} \cdot \hat{\mathbf{E}}_{2}\right|^{2} \Theta_{2}^{\prime}+\left|\hat{\mathbf{E}}_{2} \cdot \hat{\mathbf{E}}_{1}\right|^{2} \Theta_{1}^{\prime} \\
& \propto \frac{1}{4}(\cos \beta+1)^{2} \Theta_{2}^{\prime}+\frac{1}{4}(\cos \beta-1)^{2} \Theta_{1}^{\prime} \\
\text { or } \Theta_{1}-\Theta_{2} & \propto \cos \beta\left(\Theta_{1}^{\prime}-\Theta_{2}^{\prime}\right)
\end{aligned}
$$

Scattering Matrix

- Transfer matrix of Stokes state $\mathbf{T} \equiv(\Theta, Q+i U, Q-i U)$

$$
\begin{gathered}
\mathbf{T} \propto \mathbf{S}(\beta) \mathbf{T}^{\prime} \\
\mathbf{S}(\beta)=\frac{3}{4}\left(\begin{array}{ccc}
\cos ^{2} \beta+1 & -\frac{1}{2} \sin ^{2} \beta & -\frac{1}{2} \sin ^{2} \beta \\
-\frac{1}{2} \sin ^{2} \beta & \frac{1}{2}(\cos \beta+1)^{2} & \frac{1}{2}(\cos \beta-1)^{2} \\
-\frac{1}{2} \sin ^{2} \beta & \frac{1}{2}(\cos \beta-1)^{2} & \frac{1}{2}(\cos \beta+1)^{2}
\end{array}\right)
\end{gathered}
$$

normalization factor of 3 is set by photon conservation in scattering

Scattering Matrix

- Transform to a fixed basis, by a rotation of the incoming and outgoing states $\mathbf{T}=\mathbf{R}(\psi) \mathbf{T}$ where

$$
\mathbf{R}(\psi)=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & e^{-2 i \psi} & 0 \\
0 & 0 & e^{2 i \psi}
\end{array}\right)
$$

giving the scattering matrix

$$
\mathbf{R}(-\gamma) \mathbf{S}(\beta) \mathbf{R}(\alpha)=
$$

$$
\frac{1}{2} \sqrt{\frac{4 \pi}{5}}\left(\begin{array}{ccc}
Y_{2}^{0}(\beta, \alpha)+2 \sqrt{5} Y_{0}^{0}(\beta, \alpha) & -\sqrt{\frac{3}{2}} Y_{2}^{-2}(\beta, \alpha) & -\sqrt{\frac{3}{2}} Y_{2}^{2}(\beta, \alpha) \\
-\sqrt{6}{ }_{2} Y_{2}^{0}(\beta, \alpha) e^{2 i \gamma} & 3_{2} Y_{2}^{-2}(\beta, \alpha) e^{2 i \gamma} & 3_{2} Y_{2}^{2}(\beta, \alpha) e^{2 i \gamma} \\
-\sqrt{6}-2 Y_{2}^{0}(\beta, \alpha) e^{-2 i \gamma} & 3_{-2} Y_{2}^{-2}(\beta, \alpha) e^{-2 i \gamma} & 3_{-2} Y_{2}^{2}(\beta, \alpha) e^{-2 i \gamma}
\end{array}\right)
$$

Addition Theorem for Spin Harmonics

- Spin harmonics are related to rotation matrices as

$$
{ }_{s} Y_{\ell}^{m}(\theta, \phi)=\sqrt{\frac{2 \ell+1}{4 \pi}} \mathcal{D}_{-m s}^{\ell}(\phi, \theta, 0)
$$

Note: for explicit evaluation sign convention differs from usual (e.g. Jackson) by $(-1)^{m}$

- Multiplication of rotations

$$
\sum_{m^{\prime \prime}} \mathcal{D}_{m m^{\prime \prime}}^{\ell}\left(\alpha_{2}, \beta_{2}, \gamma_{2}\right) \mathcal{D}_{m^{\prime \prime} m}^{\ell}\left(\alpha_{1}, \beta_{1}, \gamma_{1}\right)=\mathcal{D}_{m m^{\prime}}^{\ell}(\alpha, \beta, \gamma)
$$

- Implies

$$
\sum_{m}{ }_{s_{1}} Y_{\ell}^{m *}\left(\theta^{\prime}, \phi^{\prime}\right){ }_{s_{2}} Y_{\ell}^{m}(\theta, \phi)=(-1)^{s_{1}-s_{2}} \sqrt{\frac{2 \ell+1}{4 \pi}}{ }_{s_{2}} Y_{\ell}^{-s_{1}}(\beta, \alpha) e^{i s_{2} \gamma}
$$

Sky Basis

- Scattering into the state (rest frame)

$$
\begin{aligned}
C_{\text {in }}[\mathbf{T}] & =\dot{\tau} \int \frac{d \hat{\mathbf{n}}^{\prime}}{4 \pi} \mathbf{R}(-\gamma) \mathbf{S}(\beta) \mathbf{R}(\alpha) \mathbf{T}\left(\hat{\mathbf{n}}^{\prime}\right) \\
& =\dot{\tau} \int \frac{d \hat{\mathbf{n}}^{\prime}}{4 \pi}\left(\Theta^{\prime}, 0,0\right)+\frac{1}{10} \dot{\tau} \int d \hat{\mathbf{n}}^{\prime} \sum_{m=-2}^{2} \mathbf{P}^{(m)}\left(\hat{\mathbf{n}}, \hat{\mathbf{n}}^{\prime}\right) \mathbf{T}\left(\hat{\mathbf{n}}^{\prime}\right)
\end{aligned}
$$

where the quadrupole coupling term is $\mathbf{P}^{(m)}\left(\hat{\mathbf{n}}, \hat{\mathbf{n}}^{\prime}\right)=$

$$
\left(\begin{array}{ccc}
Y_{2}^{m *}\left(\hat{\mathbf{n}}^{\prime}\right) Y_{2}^{m}(\hat{\mathbf{n}}) & -\sqrt{\frac{3}{2}}{ }_{2} Y_{2}^{m *}\left(\hat{\mathbf{n}}^{\prime}\right) Y_{2}^{m}(\hat{\mathbf{n}}) & -\sqrt{\frac{3}{2}}{ }_{-2} Y_{2}^{m *}\left(\hat{\mathbf{n}}^{\prime}\right) Y_{2}^{m}(\hat{\mathbf{n}}) \\
-\sqrt{6} Y_{2}^{m *}\left(\hat{\mathbf{n}}^{\prime}\right)_{2} Y_{2}^{m}(\hat{\mathbf{n}}) & 3_{2} Y_{2}^{m *}\left(\hat{\mathbf{n}}^{\prime}\right)_{2} Y_{2}^{m}(\hat{\mathbf{n}}) & 3_{-2} Y_{2}^{m *}\left(\hat{\mathbf{n}}^{\prime}\right)_{2} Y_{2}^{m}(\hat{\mathbf{n}}) \\
-\sqrt{6} Y_{2}^{m *}\left(\hat{\mathbf{n}}^{\prime}\right)_{-2} Y_{2}^{m}(\hat{\mathbf{n}}) & 3_{2} Y_{2}^{m *}\left(\hat{\mathbf{n}}^{\prime}\right)_{-2} Y_{2}^{m}(\hat{\mathbf{n}}) & 3_{-2} Y_{2}^{m *}\left(\hat{\mathbf{n}}^{\prime}\right)_{-2} Y_{2}^{m}(\hat{\mathbf{n}})
\end{array}\right)
$$

expression uses angle addition relation above. We call this term C_{Q}.

Scattering Matrix

- Full scattering matrix involves difference of scattering into and out of state

$$
C[\mathbf{T}]=C_{\mathrm{in}}[\mathbf{T}]-C_{\mathrm{out}}[\mathbf{T}]
$$

- In the electron rest frame

$$
C[\mathbf{T}]=\dot{\tau} \int \frac{d \hat{\mathbf{n}}^{\prime}}{4 \pi}\left(\Theta^{\prime}, 0,0\right)-\dot{\tau} \mathbf{T}+C_{Q}[\mathbf{T}]
$$

which describes isotropization in the rest frame. All moments have $e^{-\tau}$ suppression except for isotropic temperature Θ_{0}.
Transformation into the background frame simply induces a dipole term

$$
C[\mathbf{T}]=\dot{\tau}\left(\hat{\mathbf{n}} \cdot \mathbf{v}_{b}+\int \frac{d \hat{\mathbf{n}}^{\prime}}{4 \pi} \Theta^{\prime}, 0,0\right)-\dot{\tau} \mathbf{T}+C_{Q}[\mathbf{T}]
$$

