Power Spectrum

Evolve a set of k-modes from the initial epoch to recombination $a_{*}=10^{-3}$. Choose your modes to be spaced logarithmically from $k \eta_{0}=0.1$ to $k \eta_{*}=50$, so that you capture the long wavelength behavior. Choose the number of modes so that you capture the oscillatory structure at the highest k while not wasting computation time.

- Plot the three-dimensional \log power spectrum $\Delta_{\Theta+\Psi}^{2}(k)$ of the effective temperature $\Theta+\Psi$ against k; take initial conditions where $\Delta_{\zeta}^{2}=25 \times 10^{-10}$ or renormalize your output appropriately.
- Make a rough translation to angular frequency by taking $\ell=k \eta_{0}$ and plot the crude angular power spectrum $\Delta_{\Theta+\Psi}^{2}(\ell)$
- Increase $\Omega_{b} h^{2}$ by 20% and explain the change in the peak structure.
- Increase h by 20% and explain the change in the peak structure.

Extra Credit 1

As we learned in class the angular power spectrum does not really have zeros in it. Above we have have neglected projection effects and contributions from the Doppler effect. In reality

$$
\begin{equation*}
C_{\ell}=\frac{2}{\pi} \int d \ln k \Delta_{\Theta_{\ell}}^{2}(k) \tag{1}
\end{equation*}
$$

where the log-power contributed to ℓ is given through

$$
\begin{equation*}
\Theta_{\ell} \equiv[\Theta+\Psi]\left(\eta_{*}\right)(2 \ell+1) j_{\ell}(k \Delta \eta)+v_{\gamma}\left(\eta_{*}\right)\left[\ell j_{\ell-1}(k \Delta \eta)-(\ell+1) j_{\ell+1}(k \Delta \eta)\right] \tag{2}
\end{equation*}
$$

where $\Delta \eta=\eta_{0}-\eta_{*}$. This is the integral method of calculating CMB anisotropies. Spline the table of k-modes above, calculate the integral and plot $\ell(\ell+1) C_{\ell} / 2 \pi$. You may find the code for fast j_{ℓ} generation by Arthur Kosowsky (see web site) helpful.

Extra Credit 2

Plot out the power spectrum $\Delta_{\pi_{\gamma}}^{2}(\ell)$ under the crude projection approximation $\ell=k \eta_{0}$. Discuss the implications for polarization

