## Astro 321: Inflation 1

## 1 Problem 1: "Gauge Transformations" and the Bardeen- $\zeta$

Recall from class the general equations of motion in relativistic linear perturbation theory. [A flat universe is assumed throughout. Dots are conformal time derivatives and $w \equiv p / \rho$.]
The continuity/energy equation:

$$
\begin{equation*}
\dot{\delta}=-3 \frac{\dot{a}}{a}\left(c_{s}^{2}-w\right) \delta-(1+w)(k v+3 \dot{\Phi}) \tag{1}
\end{equation*}
$$

with $c_{s}^{2} \equiv \delta p / \delta \rho$, where the fluctuation $\delta p$ is not to be confused with $\delta \times p$. The Euler equation:

$$
\begin{equation*}
\dot{v}=-(1-3 w) \frac{\dot{a}}{a} v-\frac{\dot{w}}{1+w} v+\frac{k c_{s}^{2}}{1+w} \delta-\frac{2}{3} \frac{w}{1+w} k \pi+k \Psi . \tag{2}
\end{equation*}
$$

The Poisson equation:

$$
\begin{align*}
k^{2} \Phi & =4 \pi G a^{2} \rho\left[\delta+3 \frac{\dot{a}}{a}(1+w) v / k\right] \\
k^{2}(\Psi+\Phi) & =-8 \pi G a^{2} p \pi \tag{3}
\end{align*}
$$

and an redunant combo of these equations that you will find useful:

$$
\begin{equation*}
\left(\frac{\dot{a}}{a}\right) \Psi-\dot{\Phi}=4 \pi G a^{2}(\rho+p) v / k \tag{4}
\end{equation*}
$$

Although the representation of the system in these variables [called the "Newtonian gauge" or "longitudinal guage" system] is complete and best corresponds to our Newtonian intuition, it is inconvenient for both numerical and analytic work on certain problems. In particular the gravitational potentials $\Phi$ and $\Psi$ and their time evolution are not simply related to the matter fields.

Let look for a more convenient representation. You may think of this operation as purely a change of variables but for the GR cognescenti, this operation is a gauge transformation (of a time shift $v / k$ ) and the transformed matter fluctuation fields are simply the matter fluctuation fields in a "comoving" set of coordinates.

Noting the form of the Poisson equation, define a new density perturbation

$$
\begin{equation*}
\Delta \rho=\delta \rho-\dot{\rho} v / k \tag{5}
\end{equation*}
$$

- Show

$$
\begin{equation*}
\Delta \equiv \delta+3 \frac{\dot{a}}{a}(1+w) v / k \tag{6}
\end{equation*}
$$

- Rewrite the continuity equation and show that

$$
\begin{equation*}
\dot{\Delta}=-3 \frac{\dot{a}}{a}\left(C_{s}^{2}-w\right) \Delta-(1+w)(k v+3 \dot{\zeta}) \tag{7}
\end{equation*}
$$

where the transformed sound speed

$$
\begin{align*}
C_{s}^{2} & \equiv \frac{\Delta p}{\Delta \rho}  \tag{8}\\
\Delta p & \equiv \delta p-\dot{p} v / k \tag{9}
\end{align*}
$$

(again don't confuse $\Delta p$ with $\Delta \times p$ ), and the Bardeen curvature $\zeta$

$$
\begin{equation*}
\zeta \equiv \Phi-\frac{\dot{a}}{a} v / k . \tag{10}
\end{equation*}
$$

Now the potential is defined simply in terms of the matter fields $k^{2} \Phi=4 \pi G a^{2} \rho \Delta$ as you would expect from Newtonian gravity but at the price of introducing $\dot{\zeta}$ into its evolution equation.
The introduction of $\dot{\zeta}$ is in fact also useful in that it is also simply related to the matter fields.

- Show that

$$
\begin{align*}
\dot{\zeta} & =\frac{\dot{a}}{a} \xi \\
\xi & =-\frac{C_{s}^{2}}{1+w} \Delta+\frac{2}{3} \frac{w}{1+w} \pi \tag{11}
\end{align*}
$$

Hint: differentiate the definition of $\zeta$ and use the Euler equation to eliminate terms. You may find the auxiliary equation (4) and the acceleration equation for $\ddot{a}$ useful.
Since $\xi$ is then directly related to the stress fluctuations, what this says is that if stress fluctuations can be ignored, as they can always be outside the horizon, the variable $\zeta$ is a constant, independently of the nature of the matter fields. This enormously useful fact proven first by Bardeen (1980) allows us to ignore the details of many processes since once $\zeta$ is calculated you are done with perturbation theory on large scales!
For the CMB final project: this representation of the linear perturbation equations is numerically stable, unlike the original form.

