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CMBology
• Universe is currently bathed in 2.725K blackbody radiation which

composes the majority of the radiation density of the universe

mm-cm wavelength, 100 GHz photons near peak

400 photon cm−3

• Radiation is extremely isotropic: aside from the 10−3 temperature
variations due to the Doppler shift of our own motion, fluctuations
in the temperature are at the 10−5 level.

• Fluctuations are the imprint of the origin of structure

• Fluctuations are polarized at the 10% level reflecting scattering
processes by which they last interacted with matter

• Place CMB in cosmological context
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FRW Cosmology
• FRW cosmology = homogeneous and isotropic on large scales

• Universe observed to be nearly isotropic (e.g. CMB, radio point
sources, galaxy surveys)

• Copernican principle: must be isotropic to all observers (all
locations)

• Implies homogeneity; also galaxy redshift surveys (LCRS, 2dF,
SDSS) have seen the “end of greatness”, large scale homogeneity
directly

• FRW cosmology (homogeneity, isotropy & Einstein equations)
generically implies the expansion of the universe, except for
special unstable cases



FRW Geometry
• Spatial geometry is that of a constant curvature (positive, negative,

zero) surface

• Metric tells us how to measure distances on this surface

• Consider the closed geometry of a sphere of radius R and suppress
one dimension

dD

D

dα

DAdα

D A
=

Rsin
(D

/R)

dΣ



Angular Diameter Distance
• Spatial distance: restore 3rd dimension with the usual spherical

polar angles

dΣ2 = dD2 +D2
Adα

2

= dD2 +D2
A(dθ2 + sin2 θdφ2)

• DA is called the angular diameter distance since DAdα

corresponds to the transverse separation or size as opposed to the
Euclidean Ddα, i.e. is the apparent distance to an object through
the gravitational lens of the background geometry

• In a positively curved geometry DA < D and objects are further
than they appear

• In a negatively curved universe R is imaginary and
R sin(D/R) = i|R| sin(D/i|R|) = |R| sinh(D/|R|) – and
DA > D objects are closer than they appear



Volume Element
• Metric also defines the volume element

dV = (dD)(DAdθ)(DA sin θdφ)

= D2
AdDdΩ

• Most of classical cosmology boils down to these three quantities,
(comoving) distance, (comoving) angular diameter distance, and
volume element

• For example, distance to a high redshift supernova, angular size of
the horizon at last scattering, number density of clusters...



Comoving Coordinates
• Remaining degree of freedom (preserving homogeneity and

isotropy) is an overall scale factor that relates the geometry (fixed
by the radius of curvature R) to physical coordinates – a function
of time only

dσ2 = a2(t)dΣ2

our conventions are that the scale factor today a(t0) ≡ 1

• Similarly physical distances are given by d(t) = a(t)D,
dA(t) = a(t)DA.

• Distances in capital case are comoving i.e. they comove with the
expansion and do not change with time – simplest coordinates to
work out geometrical effects



Redshift
• Wavelength of light “stretches” with the scale factor, so that it is

convenient to define a shift-to-the-red or redshift as the scale factor
increases

λ(a) = a(t)Λ

λ(1)

λ(a)
=

1

a
≡ (1 + z)

δλ

λ
= −δν

ν
= z

• Given known frequency of emission ν(a), redshift can be precisely
measured (modulo Doppler shifts from peculiar velocities) –
interpreting the redshift as a Doppler shift, objects receed in an
expanding universe - v = zc



Time and Conformal Time
• As in special relativity, time comes in with the opposite signature

in measuring space-time separation

• Proper time

dτ 2 = dt2 − dσ2

= dt2 − a2(t)dΣ2

≡ a2(t) (dη2 − dΣ2)

• Special relativity: physics invariant under the set of linear
coordinate transformations (Lorentz transformation) that preserve
lengths (dτ 2)

• General relativity: physics invariant under a general coordinate
transformation that preserves lengths



A GR Aside
• We will generally skirt around General Relativity but knowledge

of the language will be useful

• Proper time defines the metric gµν

dτ 2 ≡ gµνdx
µdxν

• Usually we will use comoving coordinates and conformal time as
the “x” ’s unless otherwise specified – metric for other choices are
related by a(t) – e.g. in spherical coordinates µ ∈ η, θ, φ,D

gµν = a2


1 0 0 0

0 −D2
A 0 0

0 0 −D2
A sin2 θ 0

0 0 0 −1





Photon Cartography
• Classical cosmology is photon cartography – mapping out the

expansion by tracking the distance a photon travels as a function of
scale factor or redshift

• Taking out the scale factor in the time coordinate dη = dt/a

defines conformal time – useful in that photons travelling radially
from observer then obey

∆D = ∆η =

∫
dt

a

so that time and distance may be interchanged



Horizon
• Distance travelled by a photon in the whole lifetime of the universe

defines the horizon

• Since dτ = 0, the horizon is simply the conformal time elapsed

Dhorizon(t) =

∫ t

0

dt′

a
= η(t)

• Since the horizon always grows with time, there is always a point
in time before which two observers separated by a distance D
could not have been in causal contact

• Horizon problem: why is the universe homogeneous and isotropic
on large scales, near the current horizon – problem deepens for
objects seen at early times, e.g. CMB



Hubble Parameter
• Useful to define the expansion rate or Hubble parameter

H(t) ≡ 1

a

da

dt

since dynamics (Einstein equations) will give this directly as
H(a) ≡ H(t(a))

• Time becomes

t =

∫
dt =

∫
da

aH(a)

• Conformal time becomes

η =

∫
dt

a
=

∫
da

a2H(a)



Distance-Redshift Relation
• All distance redshift relations based on comoving distance D(z)

D(a) =

∫
dD =

∫ 1

a

da′

a2H(a)

(da = −(1 + z)−2dz = −a2dz)

D(z) = −
∫ 0

z

dz′

H(z′)
=

∫ z

0

dz′

H(z′)

• Note limiting case is the Hubble law

lim
z→0

D(z) = z/H(z = 0) ≡ z/H0

redshift (recession velocity) increases linearly with distance

• Hubble constant usually quoted as H0 = 100h km s−1 Mpc−1,
observationally h ∼ 0.7; in natural units H0 = (2997.9)−1h Mpc−1

defines an inverse length scale



Distance-Redshift Relation
• Example: object of known physical size λ = a(t)Λ (“standard

ruler”) subtending an (observed) angle on the sky α

α =
Λ

DA(z)
=

λ

aR sin(D(z)/R)

=
λ

R sin(D(z)/R)
(1 + z) ≡ λ

dA(z)

• Example: object of known luminosity L (“standard candle”) with a
measured flux S. Comoving surface area 4πD2

A, frequency/energy
(1 + z), time-dilation or arrival rate of photons (crests) (1 + z):

S =
L

4πD2
A

1

(1 + z)2

≡ L

4πd2
L

(dL = (1 + z)DA = (1 + z)2dA)



Relative Measures
• If absolute calibration of standards unknown, then absolute

distance (or Hubble constant) unknown

dA(z) = λ/α(z); dL(z) =
√
L/4πS(z)

• Ratio at two different redshifts drops out the unknown standards
λ, L and measures evolution of the distance-redshift relation
H0D(z):

dA,L(z2)

dA,L(z1)
≈ H0

z1

dA,L(z2) [z1 � 1]

• Alternately, distances & curvature are measured in units of h−1

Mpc.



Fundamental Observable
• Fundamental dependence (aside from (1 + z) factors)

H0DA(z) = H0R sin(D(z)/R)

= R̃ sin(H0D(z)/R̃), R̃ = H0R

H0D(z) =

∫
da

a2

H0

H(a)

• Maps out the kinematics of the expansion

• Current best standard ruler: acoustic oscillations; current best
standard candle supernovae type Ia

• Adding in the dynamics of the expansion, measurements of D(z)

indicate a flat universe whose expansion is accelerating



Evolution of Scale Factor
• FRW cosmology is fully specified if the function a(t) is given

• General relativity relates the scale factor with the matter content of
universe.

• Build the Einstein tensor Gµ
ν out of the metric and use Einstein

equation

Gµ
ν = −8πGT µν

G0
0 = − 3

a2

[(
ȧ

a

)2

+
1

R2

]

Gi
j = − 1

a2

[
2
ä

a
−
(
ȧ

a

)2

+
1

R2

]
δij



Einstein Equations
• Isotropy demands that the stress-energy tensor take the form

T 0
0 = ρ

T ij = −pδij

where ρ is the energy density and p is the pressure

• So Einstein equations become(
ȧ

a

)2

+
1

R2
=

8πG

3
a2ρ

2
ä

a
−
(
ȧ

a

)2

+
1

R2
= −8πGa2p

or
ä

a
−
(
ȧ

a

)2

= −4πG

3
a2(ρ+ 3p)



Friedman Equations
• More usual to see Einstein equations expressed in time not

conformal time

ȧ

a
=
da

dη

1

a
=
da

dt
= aH(a)

ä

a
−
(
ȧ

a

)2

=
d

dη

(
ȧ

a

)
= a

d

dt

(
da

dt

)
= a

d2a

dt2

• Friedmann equations:

H2(a) +
1

a2R2
=

8πG

3
ρ

1

a

d2a

dt2
= −4πG

3
(ρ+ 3p)

• Convenient fiction to describe curvature as an energy density
component ρK = −3/(8πGa2R2) ∝ a−2 that does not accelerate
the expansion, pK = −ρK/3



Critical Density
• Friedmann equation for H then reads

H2(a) =
8πG

3
(ρ+ ρK) ≡ 8πG

3
ρc

defining a critical density today ρc in terms of the expansion rate

• In particular, its value today is given by the Hubble constant as

ρc(z = 0) = 3H2
0/8πG = 1.8788× 10−29h2g cm−3

• Energy density today is given as a fraction of critical
Ω ≡ ρ/ρc|z=0. Radius of curvature then given by
R−2 = H2

0 (Ω− 1)

• If Ω ≈ 1, ρ ≈ ρc, then ρK � ρc or H0R� 1, universe is flat
across the Hubble distance. Ω < 1 negatively curved; Ω > 1

positively curved



Newtonian Interpretation
• Consider a test particle of mass m in expanding spherical region of

radius r and total mass M . Energy conservation

E =
1

2
mv2 − GMm

r
= const

1

2

(
dr

dt

)2

− GM

r
= const

1

2

(
1

r

dr

dt

)2

− GM

r3
=

const

r2

H2 =
8πGρ

3
− const

a2

• Constant determines whether the system is bound and in the
Friedmann equation is associated with curvature – not general
since neglects pressure



Conservation Law
• Second Friedmann equation, or acceleration equation, simply

expresses energy conservation (why: stress energy is automatically
conserved in GR via Bianchi identity)

dρV + pdV = 0

dρa3 + pda3 = 0

ρ̇a3 + 3
ȧ

a
ρa3 + 3

ȧ

a
pa3 = 0

ρ̇

ρ
= −3(1 + w)

ȧ

a
w ≡ p/ρ

• If w = const. then the energy density depends on the scale factor
as ρ ∝ a−3(1+w).



Multicomponent Universe
• The total energy density can be composed of a sum of components

with differing equations of state

ρ(a) =
∑
i

ρi(a) =
∑
i

ρi(a = 1)a−3(1+wi), Ωi ≡ ρi/ρc|a=1

• Important cases: nonrelativistic matter ρm = mnm ∝ a−3,
wm = 0; relativistic radiation ρr = Enr ∝ νnr ∝ a−4, wr = 1/3;
“curvature” ρK ∝ a−2, wK = −1/3; constant energy density or
cosmological constant ρΛ ∝ a0, wΛ = −1

• Or generally with wc = pc/ρc = (p+ pK)/(ρ+ ρK)

ρc(a) = ρc(a = 1)e−
∫
d ln a 3(1+wc(a))

H2(a) = H2
0e
−

∫
d ln a 3(1+wc(a))



Acceleration Equation
• Time derivative of (first) Friedman equation

2
1

a

da

dt

[
1

a

d2a

dt2
−H2(a)

]
=

8πG

3

dρc
dt[

1

a

d2a

dt2
− 8πG

3
ρc

]
=

4πG

3
[−3(1 + wc)ρc]

1

a

d2a

dt2
= −4πG

3
[(1 + 3wc)ρc]

= −4πG

3
(ρ+ ρK + 3p+ 3pK)

= −4πG

3
(1 + 3w)ρ

• Acceleration equation says that universe decelerates if w > −1/3



Expansion Required
• Friedmann equations “predict” the expansion of the universe.

Non-expanding conditions da/dt = 0 and d2a/dt2 = 0 require

ρ = −ρK ρ = −3p

i.e. a positive curvature and a total equation of state
w ≡ p/ρ = −1/3

• Since matter is known to exist, one can in principle achieve this
with

ρ = ρm + ρΛ = −ρK = −3p = 3ρΛ

ρΛ = −1

3
ρK ρm = −2

3
ρK

Einstein introduced ρΛ for exactly this reason – “biggest blunder”;
but note that this balance is unstable: ρm can be perturbed but ρΛ, a
true constant cannot



Dark Energy
• Distance redshift relation depends on energy density components

H0D(z) =

∫
da

a2

H0

H(a)

=

∫
da

a2
e
∫
d ln a 3

2
(1+wc(a))

• Distant supernova Ia as standard candles imply that wc < −1/3 so
that the expansion is accelerating

• Consistent with a cosmological constant that is
ΩΛ = ρΛ/ρcrit= 2/3 of the total energy density

• Coincidence problem: different components of matter scale
differently with a. Why are (at least) two components comparable
today? – Anthropic?



Dark Matter
• Since Zwicky in the 1930’s non-luminous or dark matter has been

known to dominate over luminous matter in stars (and hot gas)

• Arguments are basically from a balance of gravitational force
against “pressure” from internal motions: rotation velocity in
galactic disks, velocity dispersion of galaxies in clusters, gas
pressure in clusters, radiation pressure in CMB

• Assuming that the object is somehow typical in its non-luminous
to luminous density, these measures are converted to an overall
dark matter density through a “mass-to-light ratio”

• From galaxy surveys the luminosity density in solar units is

ρL = 2± 0.7× 108hL�Mpc−3

(h’s: distances in h−1 Mpc; luminosity inferred from flux
L ∝ Sd2 ∝ h−2; inverse volume ∝ h3)



Dark Matter
• Critical density in solar units is ρc = 2.7754× 1011h2M�Mpc−3

so that the critical mass-to-light ratio in solar units is(
M

L

)
≈ 1400h

• Flat rotation curves: GM/r2 ≈ v2/r→M ≈ v2r/G, so the
observed flat rotation curve implies M ∝ r out to 30h−1 kpc,
beyond the light. Implies M/L > 30h and perhaps more – closure
if flat out to ∼ 1 Mpc.

• Similar argument holds in clusters of galaxies where velocity
dispersion replaces circular velocity and centripetal force is
replaced by a “pressure gradient” T/m = σ2 and
p = ρT/m = ρσ2– generalization of hydrostatic equilibrium:
Zwicky got M/L ≈ 300h.



Hydrostatic Equilibrium
• Evidence for dark matter in X-ray clusters also comes from direct

hydrostatic equilibrium inference from the gas: balance radial
pressure gradient with gravitational potential gradient

• Infinitesimal volume of area dA and thickness dr at radius r and
interior mass M(r): pressure difference supports the gas

[pg(r)− pg(r + dr)]dA =
GmM

r2
=
GρgM

r2
dV

dpg
dr

= −ρg
dΦ

dr

with pg = ρgTg/m becomes

GM

r
= −Tg

m

(
d ln ρg
d ln r

+
d lnTg
d ln r

)
• ρg from X-ray luminosity; Tg sometimes taken as isothermal



Gravitational Lensing
• Mass can be directly measured in the gravitational lensing of

sources behind the cluster

• Strong lensing (giant arcs) probes central region of clusters

• Weak lensing (1-10% ) elliptical distortion to galaxy image probes
outer regions of cluster and total mass

• All techniques agree on the necessity of dark matter and are
roughly consistent with a dark matter density Ωm ∼ 0.2− 0.4

• Ωm + ΩΛ ≈ 1 from matter density + dark energy

• CMB provides a test of DA 6= D through the standard rulers of the
acoustic peaks and shows that the universe is close to flat Ω ≈ 1

• Consistency has lead to the standard model for the cosmological
matter budget
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Thermal & Diffusive Equilibrium
• A gas in thermal & diffusive contact with a reservoir at

temperature T

• Probability of system being in state of energy Ei and number Ni

(Gibbs Factor)

P (Ei, Ni) ∝ exp[−(Ei − µNi)/T ]

where µ is the chemical potential (defines the free energy “cost”
for adding a particle at fixed temperature and volume)

• Chemical potential appears when particles are conserved

• CMB photons can carry chemical potential if creation and
annihilation processes inefficient, as they are after t ∼ 1yr.



Distribution Function
• Mean occupation of the state in thermal equilibrium

f ≡
∑
NiP (Ei, Ni)∑
P (Ei, Ni)

where the total energy is related to the particle energy as
Ei = NiE (ignoring zero pt)

• Density of (energy) states in phase space makes the net spatial
density of particles

n = g

∫
d3p

(2π)3
f

where g is the number of spin states



Fermi-Dirac Distribution
• For fermions, the occupancy can only be Ni = 0, 1

f =
P (E, 1)

P (0, 0) + P (E, 1)

=
e−(E−µ)/T

1 + e−(E−µ)/T

=
1

e(E−µ)/T + 1

• In the non-relativistic limit

E = (p2 +m2)1/2 ≈ m+
1

2

p2

m

and m� T so the distribution is Maxwell-Boltzmann

f = e−(m−µ)/T e−p
2/2mT = e−(m−µ)/T e−mv

2/2T



Bose-Einstein Distribution
• For bosons each state can have multiple occupation,

f =

d
dµ/T

∑∞
N=0(e−(E−µ)/T )N∑∞

N=0(e−(E−µ)/T )N
with

∞∑
N=0

xN =
1

1− x

=
1

e(E−µ)/T − 1

• Again, non relativistic distribution is Maxwell-Boltzmann

f = e−(m−µ)/T e−p
2/2mT = e−(m−µ)/T e−mv

2/2T

with a spatial number density

n = ge−(m−µ)/T

∫
d3p

(2π)3
e−p

2/2mT

= ge−(m−µ)/T

(
mT

2π

)3/2



Recombination
• Maxwell-Boltzmann distribution determines the equilibrium

distribution for reactions, e.g. big-band nucleosynthesis,
recombination:

p+ e− ↔ H + γ

npne
nH
≈ e−B/T

(
meT

2π

)3/2

e(µp+µe−µH)/T

where B = mp +me −mH = 13.6eV is the binding energy,
gp = ge = 1

2
gH = 2, and µp + µe = µH in equilibrium

• Define ionization fraction

np = ne = xenb

nH = ntot − nb = (1− xe)nb



Recombination
• Saha Equation

nenp
nHnb

=
x2
e

1− xe

=
1

nb

(
meT

2π

)3/2

e−B/T

• Naive guess of T∗ = B wrong due to the low baryon-photon ratio
– T∗ ≈ 0.3eV so recombination at z∗ ≈ 1000

• But the photon-baryon ratio is very low

ηbγ ≡ nb/nγ ≈ 3× 10−8Ωbh
2



Recombination
• Eliminate in favor of ηbγ and B/T through

nγ = 0.244T 3 ,
me

B
= 3.76× 104

• Big coefficient

xe
2

1− xe
= 3.16× 1015

(
B

T

)3/2

e−B/T

T = 1/3eV→ xe = 0.7, T = 0.3eV→ xe = 0.2

• Further delayed by inability to maintain equilibrium since net is
through 2γ process and redshifting out of line



Astro 282
Acoustic Kinematics



Temperature Fluctuations
• Observe blackbody radiation with a temperature that differs at

10−5 coming from the surface of last scattering, with distribution
function (specific intensity Iν = 4πν3f(ν) each polarization)

f(ν) = [exp(2πν/T (n̂))− 1]−1

• Decompose the temperature perturbation in spherical harmonics

T (n̂) =
∑
`m

T`mY`m(n̂)

• For Gaussian random fluctuations, the statistical properties of the
temperature field are determined by the power spectrum

〈T ∗`mT`′m′〉 = δ``′δmm′C`

where the δ-function comes from statistical isotropy



Spatial vs Angular Power
• Take the radiation distribution at last scattering to also be

described by an isotropic temperature field T (x) and
recombination to be instantaneous

T (n̂) =

∫
dD T (x)δ(D −D∗)

where D is the comoving distance and D∗ denotes recombination.

• Describe the temperature field by its Fourier moments

T (x) =

∫
d3k

(2π)3
T (k)eik·x

with a power spectrum

〈T (k)∗T (k′)〉 = (2π)3δ(k− k′)PT (k)



Spatial vs Angular Power
• Note that the variance of the field

〈T (x)T (x)〉 =

∫
d3k

(2π)3
P (k)

=

∫
d ln k

k3P (k)

2π2
≡
∫
d ln k∆2

T (k)

so it is more convenient to think in the log power spectrum ∆2
T (k)

• Temperature field

T (n̂) =

∫
d3k

(2π)3
T (k)eik·D∗n̂

• Expand out plane wave in spherical coordinates

eikD∗·n̂ = 4π
∑
`m

i`j`(kD∗)Y
∗
`m(k)Y`m(n̂)



Spatial vs Angular Power
• Multipole moments

T`m =

∫
d3k

(2π)3
T (k)4πi`j`(kD∗)Y`m(k)

• Power spectrum

〈T ∗`mT`′m′〉 =

∫
d3k

(2π)3
(4π)2(i)`−`

′
j`(kD∗)j`′(kD∗)Y

∗
`m(k)Y`′m′(k)PT (k)

= δ``′δmm′4π

∫
d ln k j2

` (kD∗)∆
2
T (k)

with
∫∞

0
j2
` (x)d lnx = 1/(2`(`+ 1)), slowly varying ∆2

T

C` =
4π∆2

T (`/D∗)

2`(`+ 1)
=

2π

`(`+ 1)
∆2
T (`/D∗)

so `(`+ 1)C`/2π = ∆2
T is commonly used log power



Scale Invariant Fluctuations
• Scale invariant temperature fluctuations have ∆2

T =const

• Equal contributions to the rms temperature fluctuation per decade
in frequency k

• Observed angular fluctuations then have `(`+ 1)C`/2π = const

• Weaker assumption of scale free initial temperature fluctuations
∆2
T ∝ kn−1, where n is called the tilt.

• n = 1 is scale invariant for historical reasons.

• However fluctuations evolve from their initial conditions due to
gravitational and pressure forces



Thomson Scattering
• Thomson scattering of photons off of free electrons is the most

important CMB process with a cross section (averaged over
polarization states) of

σT =
8πα2

3m2
e

= 6.65× 10−25cm2

• Density of free electrons in a fully ionized xe = 1 universe

ne = (1− Yp/2)xenb ≈ 10−5Ωbh
2(1 + z)3cm−3 ,

where Yp ≈ 0.24 is the Helium mass fraction, creates a high
(comoving) Thomson opacity

τ̇ ≡ neσTa

where dots are conformal time η ≡
∫
dt/a derivatives and τ is the

optical depth.



Tight Coupling Approximation
• Near recombination z ≈ 103 and Ωbh

2 ≈ 0.02, the (comoving)
mean free path of a photon

λC ≡
1

τ̇
∼ 2.5Mpc

small by cosmological standards!

• On scales λ� λC photons are tightly coupled to the electrons by
Thomson scattering which in turn are tightly coupled to the
baryons by Coulomb interactions

• Specifically, their bulk velocities are defined by a single fluid
velocity vγ = vb and the photons carry no anisotropy in the rest
frame of the baryons

• → No heat conduction or viscosity (anisotropic stress) in fluid



Tight Coupling Approximation
• Near recombination z ≈ 103 and Ωbh

2 ≈ 0.02, the (comoving)
mean free path of a photon

λC ≡
1

τ̇
∼ 2.5Mpc

small by cosmological standards!

• On scales λ� λC photons are tightly coupled to the electrons by
Thomson scattering which in turn are tightly coupled to the
baryons by Coulomb interactions

• Specifically, their bulk velocities are defined by a single fluid
velocity vγ = vb and the photons carry no anisotropy in the rest
frame of the baryons

• → No heat conduction or viscosity (anisotropic stress) in fluid



Zeroth Order Approximation
• Momentum density of a fluid is (ρ+ p)v, where p is the pressure

• Neglect the momentum density of the baryons

R ≡ (ρb + pb)vb
(ργ + pγ)vγ

=
ρb + pb
ργ + pγ

=
3ρb
4ργ

≈ 0.6

(
Ωbh

2

0.02

)( a

10−3

)
since ργ ∝ T 4 is fixed by the CMB temperature T = 2.73(1 + z)K
– OK substantially before recombination

• Neglect radiation in the expansion

ρm
ρr

= 3.6

(
Ωmh

2

0.15

)( a

10−3

)



Number Continuity
• Photons are not created or destroyed. Without expansion

ṅγ +∇ · (nγvγ) = 0

but the expansion or Hubble flow causes nγ ∝ a−3 or

ṅγ + 3nγ
ȧ

a
+∇ · (nγvγ) = 0

• Linearize δnγ = nγ − n̄γ

(δnγ)
· = −3δnγ

ȧ

a
− nγ∇ · vγ(

δnγ
nγ

)·
= −∇ · vγ



Continuity Equation
• Number density nγ ∝ T 3 so define temperature fluctuation Θ

δnγ
nγ

= 3
δT

T
≡ 3Θ

• Real space continuity equation

Θ̇ = −1

3
∇ · vγ

• Fourier space

Θ̇ = −1

3
ik · vγ



Momentum Conservation
• No expansion: q̇ = F

• De Broglie wavelength stretches with the expansion

q̇ +
ȧ

a
q = F

for photons this the redshift, for non-relativistic particles
expansion drag on peculiar velocities

• Collection of particles: momentum→ momentum density
(ργ + pγ)vγ and force→ pressure gradient

[(ργ + pγ)vγ]
· = −4

ȧ

a
(ργ + pγ)vγ −∇pγ

4

3
ργv̇γ =

1

3
∇ργ

v̇γ = −∇Θ



Euler Equation
• Fourier space

v̇γ = −ikΘ

• Pressure gradients (any gradient of a scalar field) generates a
curl-free flow

• For convenience define velocity amplitude:

vγ ≡ −ivγk̂

• Euler Equation:

v̇γ = kΘ

• Continuity Equation:

Θ̇ = −1

3
kvγ



Oscillator: Take One
• Combine these to form the simple harmonic oscillator equation

Θ̈ + c2
sk

2Θ = 0

where the adiabatic sound speed is defined through

c2
s ≡

ṗγ
ρ̇γ

here c2
s = 1/3 since we are photon-dominated

• General solution:

Θ(η) = Θ(0) cos(ks) +
Θ̇(0)

kcs
sin(ks)

where the sound horizon is defined as s ≡
∫
csdη



Harmonic Extrema
• All modes are frozen in at recombination (denoted with a subscript
∗) yielding temperature perturbations of different amplitude for
different modes. For the adiabatic (curvature mode) Θ̇(0) = 0

Θ(η∗) = Θ(0) cos(ks∗)

• Modes caught in the extrema of their oscillation will have
enhanced fluctuations

kns∗ = nπ

yielding a fundamental scale or frequency, related to the inverse
sound horizon

kA = π/s∗

and a harmonic relationship to the other extrema as 1 : 2 : 3...



Peak Location
• The fundmental physical scale is translated into a fundamental

angular scale by simple projection according to the angular
diameter distance DA

θA = λA/DA

`A = kADA

• In a flat universe, the distance is simply DA = D ≡ η0 − η∗ ≈ η0,
the horizon distance, and kA = π/s∗ =

√
3π/η∗ so

θA ≈
η∗
η0

• In a matter-dominated universe η ∝ a1/2 so θA ≈ 1/30 ≈ 2◦ or

`A ≈ 200



Curvature
• In a curved universe, the apparent or angular diameter distance is

no longer the conformal distance DA = R sin(D/R) 6= D

• Objects in a closed universe are further than they appear!
gravitational lensing of the background...

• Curvature scale of the universe must be substantially larger than
current horizon

• Flat universe indicates critical density and implies missing energy
given local measures of the matter density “dark energy”

• D also depends on dark energy density ΩDE and equation of state
w = pDE/ρDE.

• Expansion rate at recombination or matter-radiation ratio enters
into calculation of kA.



Doppler Effect
• Bulk motion of fluid changes the observed temperature via

Doppler shifts (
∆T

T

)
dop

= n̂ · vγ

• Averaged over directions(
∆T

T

)
rms

=
vγ√

3

• Acoustic solution

vγ√
3

= −
√

3

k
Θ̇ =

√
3

k
kcs Θ(0)sin(ks)

= Θ(0)sin(ks)



Doppler Peaks?
• Doppler effect for the photon dominated system is of equal

amplitude and π/2 out of phase: extrema of temperature are
turning points of velocity

• Effects add in quadrature:(
∆T

T

)2

= Θ2(0)[cos2(ks) + sin2(ks)] = Θ2(0)

• No peaks in k spectrum! However the Doppler effect carries an
angular dependence that changes its projection on the sky
n̂ · vγ ∝ n̂ · k̂
• Coordinates where ẑ ‖ k̂

Y10Y`0 → Y`±1 0

recoupling j′`Y`0: no peaks in Doppler effect
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Restoring Gravity: Continuity
• Take a simple photon dominated system with gravity

• Continuity altered since a gravitational potential represents a
stretching of the spatial fabric that dilutes number densities –
formally a spatial curvature perturbation

• Think of this as a perturbation to the scale factor a→ a(1 + Φ) so
that the cosmogical redshift is generalized to

ȧ

a
→ ȧ

a
+ Φ̇

(δnγ)
· = −3δnγ

ȧ

a
− 3nγΦ̇− nγ∇ · vγ

so that the continuity equation becomes

Θ̇ = −1

3
kvγ − Φ̇



Restoring Gravity: Euler
• Gravitational force in momentum conservation F = −m∇Ψ

generalized to momentum density modifies the Euler equation to

v̇γ = k(Θ + Ψ)

• General relativity says that Φ and Ψ are the relativistic analogues
of the Newtonian potential and that Φ ≈ −Ψ.

• In our matter-dominated approximation, Φ represents matter
density fluctuations through the cosmological Poisson equation

k2Φ = 4πGa2ρm∆m

where the difference comes from the use of comoving coordinates
for k (a2 factor), the removal of the background density into the
background expansion (ρm∆m) and finally a coordinate subtlety
that enters into the definition of ∆m



Constant Potentials
• In the matter dominated epoch potentials are constant because

infall generates velocities as vm ∼ kηΨ

• Velocity divergence generates density perturbations as
∆m ∼ −kηvm ∼ −(kη)2Ψ

• And density perturbations generate potential fluctuations as
Φ ∼ ∆m/(kη)2 ∼ −Ψ, keeping them constant. Note that because
of the expansion, density perturbations must grow to keep
potentials constant.

• Here we have used the Friedman equation H2 = 8πGρm/3 and
η =

∫
d ln a/(aH) ∼ 1/(aH)

• More generally, if stress perturbations are negligible compared
with density perturbations ( δp� δρ ) then potential will remain
roughly constant – more specifically a variant called the Bardeen
or comoving curvature ζ is constant



Oscillator: Take Two
• Combine these to form the simple harmonic oscillator equation

Θ̈ + c2
sk

2Θ = −k
2

3
Ψ− Φ̈

• In a CDM dominated expansion Φ̇ = Ψ̇ = 0. Also for photon
domination c2

s = 1/3 so the oscillator equation becomes

Θ̈ + Ψ̈ + c2
sk

2(Θ + Ψ) = 0

• Solution is just an offset version of the original

[Θ + Ψ](η) = [Θ + Ψ](0) cos(ks)

• Θ + Ψ is also the observed temperature fluctuation since photons
lose energy climbing out of gravitational potentials at
recombination



Effective Temperature
• Photons climb out of potential wells at last scattering

• Lose energy to gravitational redshifts

• Observed or effective temperature

Θ + Ψ

• Effective temperature oscillates around zero with amplitude given
by the initial conditions

• Note: initial conditions are set when the perturbation is outside of
horizon, need inflation or other modification to matter-radiation
FRW universe.

• GR says that initial temperature is given by initial potential



Sachs-Wolfe Effect and the Magic 1/3
• A gravitational potential is a perturbation to the temporal

coordinate [formally a gauge transformation]

δt

t
= Ψ

• Convert this to a perturbation in the scale factor,

t =

∫
da

aH
∝
∫

da

aρ1/2
∝ a3(1+w)/2

where w ≡ p/ρ so that during matter domination

δa

a
=

2

3

δt

t

• CMB temperature is cooling as T ∝ a−1 so

Θ + Ψ ≡ δT

T
+ Ψ = −δa

a
+ Ψ =

1

3
Ψ



Baryon Loading
• Baryons add extra mass to the photon-baryon fluid

• Controlling parameter is the momentum density ratio:

R ≡ pb + ρb
pγ + ργ

≈ 30Ωbh
2
( a

10−3

)
of order unity at recombination

• Momentum density of the joint system is conserved

(ργ + pγ)vγ + (ρb + pb)vb ≈ (pγ + pγ + ρb + ργ)vγ

= (1 +R)(ργ + pγ)vγb

where the controlling parameter is the momentum density ratio:

R ≡ pb + ρb
pγ + ργ

≈ 30Ωbh
2
( a

10−3

)
of order unity at recombination



New Euler Equation
• Momentum density ratio enters as

[(1 +R)(ργ + pγ)vγb]
· = −4

ȧ

a
(1 +R)(ργ + pγ)vγb

−∇pγ − (1 +R)(ργ + pγ)∇Ψ

same as before except for (1 +R) terms so

[(1 +R)vγb]
· = kΘ + (1 +R)kΨ

• Photon continuity remains the same

Θ̇ = −k
3
vγb − Φ̇

• Modification of oscillator equation

[(1 +R)Θ̇]· +
1

3
k2Θ = −1

3
k2(1 +R)Ψ− [(1 +R)Φ̇]·



Oscillator: Take Three
• Combine these to form the not-quite-so simple harmonic oscillator

equation

c2
s

d

dη
(c−2
s Θ̇) + c2

sk
2Θ = −k

2

3
Ψ− c2

s

d

dη
(c−2
s Φ̇)

where c2
s ≡ ṗγb/ρ̇γb

c2
s =

1

3

1

1 +R

• In a CDM dominated expansion Φ̇ = Ψ̇ = 0 and the adiabatic
approximation Ṙ/R� ω = kcs

[Θ + (1 +R)Ψ](η) = [Θ + (1 +R)Ψ](0) cos(ks)



Baryon Peak Phenomenology
• Photon-baryon ratio enters in three ways

• Overall larger amplitude:

[Θ + (1 +R)Ψ](0) =
1

3
(1 + 3R)Ψ(0)

• Even-odd peak modulation of effective temperature

[Θ + Ψ]peaks = [±(1 + 3R)− 3R]
1

3
Ψ(0)

[Θ + Ψ]1 − [Θ + Ψ]2 = [−6R]
1

3
Ψ(0)

• Shifting of the sound horizon down or `A up

`A ∝
√

1 +R

• Actual effects smaller since R evolves



Photon Baryon Ratio Evolution
• Oscillator equation has time evolving mass

c2
s

d

dη
(c−2
s Θ̇) + c2

sk
2Θ = 0

• Effective mass is is meff = 3c−2
s = (1 +R)

• Adiabatic invariant

E

ω
=

1

2
meffωA

2 =
1

2
3c−2
s kcsA

2 ∝ A2(1 +R)1/2 = const.

• Amplitude of oscillation A ∝ (1 +R)−1/4 decays adiabatically as
the photon-baryon ratio changes



Oscillator: Take Three and a Half
• The not-quite-so simple harmonic oscillator equation is a forced

harmonic oscillator

c2
s

d

dη
(c−2
s Θ̇) + c2

sk
2Θ = −k

2

3
Ψ− c2

s

d

dη
(c−2
s Φ)

changes in the gravitational potentials alter the form of the
acoustic oscillations

• If the forcing term has a temporal structure that is related to the
frequency of the oscillation, this becomes a driven harmonic
oscillator

• Term involving Ψ is the ordinary gravitational force

• Term involving Φ involves the Φ̇ term in the continuity equation as
a (curvature) perturbation to the scale factor



Potential Decay
• Matter-to-radiation ratio

ρm
ρr
≈ 24Ωmh

2
( a

10−3

)
of order unity at recombination in a low Ωm universe

• Radiation is not stress free and so impedes the growth of structure

k2Φ = 4πGa2ρr∆r

∆r ∼ 4Θ oscillates around a constant value, ρr ∝ a−4 so the
Netwonian curvature decays.

• General rule: potential decays if the dominant energy component
has substantial stress fluctuations, i.e. below the generalized sound
horizon or Jeans scale



Radiation Driving
• Decay is timed precisely to drive the oscillator - close to fully

coherent

[Θ + Ψ](η) = [Θ + Ψ](0) + ∆Ψ−∆Φ

=
1

3
Ψ(0)− 2Ψ(0) =

5

3
Ψ(0)

• 5× the amplitude of the Sachs-Wolfe effect!

• Coherent approximation is exact for a photon-baryon fluid but
reality is reduced to ∼ 4× because of neutrino contribution to
radiation

• Actual initial conditions are Θ + Ψ = Ψ/2 for radiation
domination but comparison to matter dominated SW correct



External Potential Approach
• Solution to homogeneous equation

(1 +R)−1/4cos(ks) , (1 +R)−1/4sin(ks)

• Give the general solution for an external potential by propagating
impulsive forces

(1 +R)1/4Θ(η) = Θ(0)cos(ks) +

√
3

k

[
Θ̇(0) +

1

4
Ṙ(0)Θ(0)

]
sin ks

+

√
3

k

∫ η

0

dη′(1 +R′)3/4sin[ks− ks′]F (η′)

where

F = −Φ̈− Ṙ

1 +R
Φ̇− k2

3
Ψ

• Useful if general form of potential evolution is known



Damping
• Tight coupling equations assume a perfect fluid: no viscosity, no

heat conduction

• Fluid imperfections are related to the mean free path of the
photons in the baryons

λC = τ̇−1 where τ̇ = neσTa

is the conformal opacity to Thompson scattering

• Dissipation is related to the diffusion length: random walk
approximation

λD =
√
NλC =

√
η/λC λC =

√
ηλC

the geometric mean between the horizon and mean free path

• λD/η∗ ∼ few %, so expect the peaks :> 3 to be affected by
dissipation



Equations of Motion
• Continuity

Θ̇ = −k
3
vγ − Φ̇ , δ̇b = −kvb − 3Φ̇

where the photon equation remains unchanged and the baryons
follow number conservation with ρb = mbnb

• Euler

v̇γ = k(Θ + Ψ)− k

6
πγ − τ̇(vγ − vb)

v̇b = − ȧ
a
vb + kΨ + τ̇(vγ − vb)/R

where the photons gain an anisotropic stress term πγ from radiation
viscosity and a momentum exchange term with the baryons and
are compensated by the opposite term in the baryon Euler equation



Viscosity
• Viscosity is generated from radiation streaming from hot to cold

regions

• Expect

πγ ∼ vγ
k

τ̇

generated by streaming, suppressed by scattering in a wavelength
of the fluctuation. Radiative transfer says

πγ ≈ 2Avvγ
k

τ̇

where Av = 16/15

v̇γ = k(Θ + Ψ)− k

3
Av
k

τ̇
vγ



Oscillator: Penultimate Take
• Adiabatic approximation ( ω � ȧ/a)

Θ̇ ≈ −k
3
vγ

• Oscillator equation contains a Θ̇ damping term

c2
s

d

dη
(c−2
s Θ̇) +

k2c2
s

τ̇
AvΘ̇ + k2c2

sΘ = −k
2

3
Ψ− c2

s

d

dη
(c−2
s Φ̇)

• Heat conduction term similar in that it is proportional to vγ and is
suppressed by scattering k/τ̇ . Expansion of Euler equations to
leading order in k/τ̇ gives

Ah =
R2

1 +R

since the effects are only significant if the baryons are dynamically
important



Oscillator: Final Take
• Final oscillator equation

c2
s

d

dη
(c−2
s Θ̇) +

k2c2
s

τ̇
[Av + Ah]Θ̇ + k2c2

sΘ = −k
2

3
Ψ− c2

s

d

dη
(c−2
s Φ̇)

• Solve in the adiabatic approximation

Θ ∝ exp(i

∫
ωdη)

−ω2 +
k2c2

s

τ̇
(Av + Ah)iω + k2c2

s = 0 (1)



Dispersion Relation
• Solve

ω2 = k2c2
s

[
1 + i

ω

τ̇
(Av + Ah)

]
ω = ±kcs

[
1 +

i

2

ω

τ̇
(Av + Ah)

]
= ±kcs

[
1± i

2

kcs
τ̇

(Av + Ah)

]
• Exponentiate

exp(i

∫
ωdη) = e±iks exp[−k2

∫
dη

1

2

c2
s

τ̇
(Av + Ah)]

= e±iks exp[−(k/kD)2] (2)

• Damping is exponential under the scale kD



Diffusion Scale
• Diffusion wavenumber

k−2
D =

∫
dη

1

τ̇

1

6(1 +R)

(
16

15
+

R2

(1 +R)

)
• Limiting forms

lim
R→0

k−2
D =

1

6

16

15

∫
dη

1

τ̇

lim
R→∞

k−2
D =

1

6

∫
dη

1

τ̇

• Geometric mean between horizon and mean free path as expected
from a random walk

λD =
2π

kD
∼ 2π√

6
(ητ̇−1)1/2
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Gaussian Statistics
• Statistical isotropy says two-point correlation depends only on the

power spectrum

Θ(n̂) =
∑
`m

Θ`mY`m(n̂)

〈Θ∗`mΘ`′m′〉 = δ``′δmm′C
ΘΘ
`

• Reality of field says Θ`m = (−1)mΘ`(−m)

• For a Gaussian random field, power spectrum defines all higher
order statistics, e.g.

〈Θ`1m1Θ`2m2Θ`3m3Θ`4m4〉

= (−1)m1+m2δ`1`3δm1(−m3)δ`2`4δm2(−m4)C
ΘΘ
`1
CΘΘ
`2

+ all pairs



Idealized Statistical Errors
• Take a noisy estimator of the multipoles in the map

Θ̂`m = Θ`m +N`m

and take the noise to be statistically isotropic

〈N∗`mN`′m′〉 = δ``′δmm′C
NN
`

• Construct an unbiased estimator of the power spectrum
〈ĈΘΘ

` 〉 = CΘΘ
`

ĈΘΘ
` =

1

2`+ 1

l∑
m=−l

Θ̂∗`mΘ̂`m − CNN
`

• Variance in estimator

〈ĈΘΘ
` ĈΘΘ

` 〉 − 〈ĈΘΘ
` 〉2 =

2

2`+ 1
(CΘΘ

` + CNN
` )2



Cosmic and Noise Variance
• RMS in estimator is simply the total power spectrum reduced by√

2/Nmodes where Nmodes is the number of m-mode measurements

• Even a perfect experiment where CNN
` = 0 has statistical variance

due to the Gaussian random realizations of the field. This cosmic
variance is the result of having only one realization to measure.

• Noise variance is often approximated as white detector noise.
Removing the beam to place the measurement on the sky

NΘΘ
` =

(
T

dT

)2

e`(`+1)σ2

=

(
T

dT

)2

e`(`+1)FWHM2/8 ln 2

where dT can be thought of as a noise level per steradian of the
temperature measurement, σ is the Gaussian beam width, FWHM
is the full width at half maximum of the beam



Idealized Parameter Forecasts
• A crude propagation of errors is often useful for estimation

purposes.

• Suppose Cαβ describes the covariance matrix of the estimators for
a given parameter set πα.

• Define F = C−1 [formalized as the Fisher matrix later]. Making
an infinitesimal transformation to a new set of parameters pµ

Fµν =
∑
αβ

∂πα
∂pµ

Fαβ
∂πβ
∂pν

• In our case πα are the C` the covariance is diagonal and pµ are
cosmological parameters

Fµν =
∑
`

2`+ 1

2(CΘΘ
` + CNN

` )2

∂CΘΘ
`

∂pµ

∂CΘΘ
`

∂pν



Idealized Parameter Forecasts
• Polarization handled in same way (requires covariance)

• Fisher matrix represents a local approximation to the
transformation of the covariance and hence is only accurate for
well constrained directions in parameter space

• Derivatives evaluated by finite difference

• Fisher matrix identifies parameter degeneracies but only the local
direction – i.e. all errors are ellipses not bananas



Beyond Idealizations: Time Ordered
Data

• For the data analyst the starting point is a string of “time ordered”
data coming out of the instrument (post removal of systematic
errors!)

• Begin with a model of the time ordered data as

dt = PtiΘi + nt

where i denotes pixelized positions indexed by i, dt is the data in a
time ordered stream indexed by t. Number of time ordered data
will be of the order 1010 for a satellite! number of pixels 106− 107.

• The noise nt is drawn from a distribution with a known power
spectrum

〈ntnt′〉 = Cd,tt′



Pointing Matrix
• The pointing matrix P is the mapping between pixel space and the

time ordered data

• Simplest incarnation: row with all zeros except one column which
just says what point in the sky the telescope is pointing at that time

P =



0 0 1 . . . 0

1 0 0 . . . 0

0 1 0 . . . 0

. . . . . . . . . . . . . . .

0 0 1 . . . 0


• More generally encorporates differencing, beam, rotation (for

polarization)



Maximum Likelihood Mapmaking
• What is the best estimator of the underlying map Θi

• Likelihood function: the probability of getting the data given the
theory L ≡ P [data|theory]. In this case, the theory is the set of
parameters Θi.

LΘ(dt) =
1

(2π)Nt/2
√

detCd

exp

[
−1

2
(dt − PtiΘi)C

−1
d,tt′ (dt′ − Pt′jΘj)

]
.

• Bayes theorem says that P [Θi|dt], the probability that the
temperatures are equal to Θi given the data, is proportional to the
likelihood function times a prior P (Θi), taken to be uniform

P [Θi|dt] ∝ P [dt|Θi] ≡ LΘ(dt)



Maximum Likelihood Mapmaking
• Maximizing the likelihood of Θi is simple since the log-likelihood

is quadratic.

• Differentiating the argument of the exponential with respect to Θi

and setting to zero leads immediately to the estimator

Θ̂i = CN,ijPjtC
−1
d,tt′dt′ ,

where CN ≡ (PtrC−1
d P)−1 is the covariance of the estimator

• Given the large dimension of the time ordered data, direct matrix
manipulation is unfeasible. A key simplifying assumption is the
stationarity of the noise, that Cd,tt′ depends only on t− t′

(temporal statistical homogeneity)



Foregrounds
• Maximum likelihood mapmaking can be applied to the time

streams of multiple observations frequencies Nν and hence obtain
multiple maps

• A cleaned CMB map can be obtained by modeling the maps as

Θ̂ν
i = Aνi Θi + nνi + f νi

where Aνi = 1 if all the maps are at the same resolution (otherwise,
embed the beam as in the pointing matrix; f νi is the noise
contributed by the foregrounds

• Again, a map making problem. Given a covariance matrix for
foregrounds noise (a prior from other data), same solution.
Alternately, can derive weights from stats of the recovered maps

• 5 foregrounds: synchrotron, free-free, radio pt sources, at low
frequencies and dust and IR pt sources at high frequencies.



Power Spectrum
• The next step in the chain of inference is the power spectrum

extraction. Here the correlation between pixels is modelled
through the power spectrum

CS,ij ≡ 〈ΘiΘj〉 =
∑
`

∆2
T,`W`,ij

• Here W`, the window function, is derived by writing down the
expansion of Θ(n̂) in harmonic space, including smoothing by the
beam and pixelization

• For example in the simple case of a gaussian beam of width σ it is
proportional to the Legendre polynomial P`(n̂i · n̂j) for the pixel
separation multiplied by b2

` ∝ e−`(`+1)σ2



Band Powers
• In principle the underlying theory to extract from maximum

likelihood is the power spectrum at every `

• However with a finite patch of sky, it is not possible to extract
multipoles separated by ∆` < 2π/L where L is the dimension of
the survey

• So consider instead a theory parameterization of ∆2
T,` constant in

bands of ∆` chosen to match the survey forming a set of band
powers Ba

• The likelihood of the bandpowers given the pixelized data is

LB(Θi) =
1

(2π)Np/2
√

detCΘ

exp

(
−1

2
ΘiC

−1
Θ,ijΘj

)
where CΘ = CS + CN and Np is the number of pixels in the map.



Band Power Esitmation
• As before, LB is Gaussian in the anisotropies Θi, but in this case

Θi are not the parameters to be determined; the theoretical
parameters are the Ba, upon which the covariance matrix depends.

• The likelihood function is not Gaussian in the parameters, and
there is no simple, analytic way to find the maximum likelihood
bandpowers

• Iterative approach to maximizing the likelihood: take a trial point
B

(0)
a and improve estimate based a Newton-Rhapson approach to

finding zeros

B̂a = B̂(0)
a + F̂−1

B,ab

∂ lnLB
∂Bb

= B̂(0)
a +

1

2
F̂−1
B,ab

(
ΘiC

−1
Θ,ij

∂CΘ,jk

∂Bb

C−1
Θ,klΘl − C−1

Θ,ij

∂CΘ,ji

∂Bb

)
,



Fisher Matrix
• The expectation value of the local curvature is the Fisher matrix

FB,ab ≡
〈
−∂

2 lnLB
∂Ba∂Bb

〉
=

1

2
C−1

Θ,ij

∂CΘ,jk

∂Ba

C−1
Θ,kl

∂CΘ,li

∂Bb

.

• This is a general statement: for a gaussian distribution the Fisher
matrix

Fab =
1

2
Tr[C−1C,aC

−1C,b]

• Kramer-Rao identity says that the best possible covariance matrix
on a set of parameters is C = F−1

• Thus, the iteration returns an estimate of the covariance matrix of
the estimators CB



Cosmological Parameters
• The probability distribution of the bandpowers given the

cosmological parameters ci is not Gaussian but it is often an
adequate approximation

Lc(B̂a) ≈
1

(2π)Nc/2
√

detCB

exp

[
−1

2
(B̂a −Ba)C

−1
B,ab(B̂b −Bb)

]
• Grid based approaches evaluate the likelihood in cosmological

parameter space and maximize

• Faster approaches monte carlo the exploration of the likelihood
space intelligently (“Monte Carlo Markov Chains”)

• Since the number of cosmological parameters in the working
model is Nc ∼ 10 this represents a final radical compression of
information in the original timestream which recall has up to
Nt ∼ 1010 data points.



MCMC
• Monte Carlo Markov Chain: a random walk in parameter space

• Start with a set of cosmological parameters cm, compute likelihood

• Take a random step in parameter space to cm+1 of size drawn from
a multivariate Gaussian (a guess at the parameter covariance
matrix) Cc (e.g. from the crude Fisher approximation. Compute
likelihood.

• Draw a random number between 0,1 and if the likelihood ratio
exceeds this value take the step (add to Markov chain); if not then
do not take the step (add the original point to the Markov chain).
Goto 3.



MCMC
• With a complete chain of NM elements, compute the mean of the

chain and its variance

c̄i =
1

NM

NM∑
m=1

cmi

σ2(ci) =
1

NM − 1

NM∑
m=1

(cmi − c̄i)2

• Trick is in assuring burn in (not sensitive to initial point), step size,
and convergence

• Usually requires running multiple chains. Typically tens of
thousands of elements per chain.



Radical Compression
• Started with time ordered data ∼ 1010 numbers for a satellite

experiment

• Compressed to a map assuming a CMB spectrum (and time
independent fluctuations) ∼ 107 numbers

• Compressed to a power spectrum (Gaussian statistics) independent
of m (statistical isotropy) ∼ 103 numbers

• Compressed to cosmological parameters (a cosmological model)
∼ 103

• A factor of 109 reduction in the representation. Nature is very
efficient.



Parameter Forecasts
• The Fisher matrix of the cosmological parameters becomes

Fc,ij =
∂Ba

∂ci
C−1
B,ab

∂Bb

∂cj
.

which is the error propagation formula discussed above

• The Fisher matrix can be more accurately defined for an
experiment by taking the pixel covariance and using the general
formula for the Fisher matrix of gaussian data

• Corrects for edge effects with the approximate effect of

Fij =
∑
`

(2`+ 1)fsky

2(CΘΘ
` + CNN

` )2

∂CΘΘ
`

∂ci

∂CΘΘ
`

∂cj

where the sky fraction fsky quantifies the loss of independent
modes due to the sky cut
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Stokes Parameters
• Polarization state of radiation in direction n̂ described by the

intensity matrix
〈
Ei(n̂)E∗j (n̂)

〉
, where E is the electric field vector

and the brackets denote time averaging.

• As a hermitian matrix, it can be decomposed into the Pauli basis

P = C
〈
E(n̂)E†(n̂)

〉
= Θ(n̂)σ0 +Q(n̂)σ3 + U(n̂)σ1 + V (n̂)σ2 ,

where

σ0 =

(
1 0

0 1

)
σ1 =

(
0 1

1 0

)
σ2 =

(
0 −i
i 0

)
σ3 =

(
1 0

0 −1

)

• Stokes parameters recovered as Tr(σiP)/2



Monochromatic Wave
• A pure monochromatic wave is fully polarized

E = E1e1 + E2e2

where

E1,2 = Re[A1,2e
iφ1,2ei(k·x−ωt)]

• Implies Θ2 = Q2 + U2 + V 2

• However a finite bandwidth leads to a sum of components

E =
∑
α

Eα



Partial Polarization
• A signal of finite bandwidth is only partially polarized since the

time averaging will destroy the correlation between the frequency
components 〈

EE†
〉

=
∑
α

〈
EαEα†〉

• Stokes parameters then add

Θ =
∑
α

Θα, Q =
∑
α

Qα, U =
∑
α

Uα, V =
∑
α

V α

• Result is Θ2 > Q2 + U2 + V 2 (since Q,U, V have either sign) or
partially polarized radiation - like a mixed state in quantum
mechanics)



Linear Polarization
• Q ∝ 〈E1E

∗
1〉 − 〈E2E

∗
2〉, U ∝ 〈E1E

∗
2〉+ 〈E2E

∗
1〉.

• Counterclockwise rotation of axes by θ = 45◦

E1 = (E ′1 − E ′2)/
√

2 , E2 = (E ′1 + E ′2)/
√

2

• U ∝ 〈E ′1E
′∗
1 〉 − 〈E ′2E

′∗
2 〉, difference of intensities at 45◦ or Q′

• More generally, P transforms as a tensor under rotations and

Q′ = cos(2θ)Q+ sin(2θ)U

U ′ = − sin(2θ)Q+ cos(2θ)U

• or

Q′ ± iU ′ = e∓2iθ[Q± iU ]

acquires a phase under rotation and is a spin ±2 object



Coordinate Independent Representation
• Two directions: orientation of polarization and change in

amplitude, i.e. Q and U in the basis of the Fourier wavevector
(pointing with angle φl) for small sections of sky are called E and
B components

E(l)± iB(l) = −
∫
dn̂[Q′(n̂)± iU ′(n̂)]e−il·n̂

= −e∓2iφl

∫
dn̂[Q(n̂)± iU(n̂)]e−il·n̂

• For the B-mode to not vanish, the polarization must point in a
direction not related to the wavevector - not possible for density
fluctuations in linear theory

• Generalize to all-sky: plane waves are eigenmodes of the Laplace
operator on the tensor P.



Spin Harmonics
• Laplace Eigenfunctions

∇2
±2Y`m[σ3 ∓ iσ1] = −[l(l + 1)− 4]±2Y`m[σ3 ∓ iσ1]

• Spin s spherical harmonics: orthogonal and complete∫
dn̂sY

∗
`m(n̂)sY`m(n̂) = δ``′δmm′∑

`m

sY
∗
`m(n̂)sY`m(n̂′) = δ(φ− φ′)δ(cos θ − cos θ′)

where the ordinary spherical harmonics are Y`m = 0Y`m

• Given in terms of the rotation matrix

sY`m(βα) = (−1)m
√

2`+ 1

4π
D`
−ms(αβ0)



Statistical Representation
• All-sky decomposition

[Q(n̂)± iU(n̂)] =
∑
`m

[E`m ± iB`m]±2Y`m(n̂)

• Power spectra

〈E∗`mE`m〉 = δ``′δmm′C
EE
`

〈B∗`mB`m〉 = δ``′δmm′C
BB
`

• Cross correlation

〈E∗`mE`m〉 = δ``′δmm′C
ΘE
`

others vanish if parity is conserved



Thomson Scattering
• Differential cross section

dσ

dΩ
=

3

8π
|Ê′ · Ê|2σT ,

where σT = 8πα2/3me is the Thomson cross section, Ê′ and Ê

denote the incoming and outgoing directions of the electric field or
polarization vector.

• Summed over angle and incoming polarization∑
i=1,2

∫
dn̂′

dσ

dΩ
= σT



Polarization Generation
• Heuristic: incoming radiation shakes an electron in direction of

electric field vector Ê′

• Radiates photon with polarization also in direction Ê′

• But photon cannot be longitudinally polarized so that scattering
into 90◦ can only pass one polarization

• Linearly polarized radiation like polarization by reflection

• Unlike reflection of sunlight, incoming radiation is nearly isotropic

• Missing linear polarization supplied by scattering from direction
orthogonal to original incoming direction

• Only quadrupole anisotropy generates polarization by Thomson
scattering



Acoustic Polarization
• Break down of tight-coupling leads to quadrupole anisotropy of

πγ ≈
k

τ̇
vγ

• Scaling kD = (τ̇ /η∗)
1/2 → τ̇ = k2

Dη∗

• Know: kDs∗ ≈ kDη∗ ≈ 10

• So:

πγ ≈
k

kD

1

10
vγ

∆P ≈
`

`D

1

10
∆T



Acoustic Polarization
• Gradient of velocity is along direction of wavevector, so

polarization is pure E-mode

• Velocity is 90◦ out of phase with temperature – turning points of
oscillator are zero points of velocity:

Θ + Ψ ∝ cos(ks); vγ ∝ sin(ks)

• Polarization peaks are at troughs of temperature power



Cross Correlation
• Cross correlation of temperature and polarization

(Θ + Ψ)(vγ) ∝ cos(ks) sin(ks) ∝ sin(2ks)

• Oscillation at twice the frequency

• Correlation: radial or tangential around hot spots

• Partial correlation: easier to measure if polarization data is noisy,
harder to measure if polarization data is high S/N or if bands do
not resolve oscillations

• Good check for systematics and foregrounds

• Comparison of temperature and polarization is proof against
features in initial conditions mimicking acoustic features
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Boltzmann Equation
• CMB radiation is generally described by the phase space

distribution function for each polarization state fa(x,q, η), where
x is the comoving position and q is the photon momentum

• Boltzmann equation describes the evolution of the distribution
function under gravity and collisions

• Low order moments of the Boltzmann equation are simply the
covariant conservation equations

• Higher moments provide the closure condition to the conservation
law (specification of stress tensor) and the CMB observable – fine
scale anisotropy

• Higher moments mainly describe the simple geometry of source
projection



Liouville Equation
• In absence of scattering, the phase space distribution of photons is

conserved along the propagation path

• Rewrite variables in terms of the photon propagation direction
q = qn̂, so fa(x, n̂, q, η) and

d

dη
fa(x, n̂, q, η) = 0

=

(
∂

∂η
+
dx

dη
· ∂
∂x

+
dn̂

dη
· ∂
∂n̂

+
dq

dη
· ∂
∂q

)
fa

• For simplicity, assume spatially flat universe K = 0 then
dn̂/dη = 0 and dx = n̂dη

ḟa + n̂ · ∇fa + q̇
∂

∂q
fa = 0



Correspondence to Einstein Eqn.
• Geodesic equation gives the redshifting term

q̇

q
= − ȧ

a
− 1

2
ninjḢT ij − ḢL + niḂi − n̂ · ∇A

• which is incorporated in the conservation and gauge
transformation equations

• Stress energy tensor involves integrals over the distribution
function the two polarization states

T µν =

∫
d3q

(2π)3

qµqν

E
(fa + fb)

• Components are simply the low order angular moments of the
distribution function



Angular Moments
• Define the angularly dependent temperature perturbation

Θ(x, n̂, η) =
1

4ργ

∫
q3dq

2π2
(fa + fb)− 1

and likewise for the linear polarization states Q and U

• Decompose into normal modes: plane waves for spatial part and
spherical harmonics for angular part

Gm
` (k,x, n̂) ≡ (−i)`

√
4π

2`+ 1
Y m
` (n̂) exp(ik · x)

±2G
m
` (k,x, n̂) ≡ (−i)`

√
4π

2`+ 1
±2Y

m
` (n̂) exp(ik · x)

• In a spatially curved universe generalize the plane wave part



Normal Modes
• Temperature and polarization fields

Θ(x, n̂, η) =

∫
d3k

(2π)3

∑
`m

Θ
(m)
` Gm

`

[Q± iU ](x, n̂, η) =

∫
d3k

(2π)3

∑
`m

[E
(m)
` ± iB(m)

` ]±2G
m
`

• For each k mode, work in coordinates where k ‖ z and so m = 0

represents scalar modes, m = ±1 vector modes, m = ±2 tensor
modes, |m| > 2 vanishes. Since modes add incoherently and
Q± iU is invariant up to a phase, rotation back to a fixed
coordinate system is trivial.



Scalar, Vector, Tensor
• Normalization of modes is chosen so that the lowest angular mode

for scalars, vectors and tensors are normalized in the same way as
the mode function

G0
0 = Q(0) G0

1 = niQ
(0)
i G0

2 ∝ ninjQ
(0)
ij

G±1
1 = niQ

(±1)
i G±1

2 ∝ ninjQ
(±1)
ij

G±2
2 = ninjQ

(±2)
ij

where recall

Q(0) = exp(ik · x)

Q
(±1)
i =

−i√
2

(ê1 ± iê2)iexp(ik · x)

Q
(±2)
ij = −

√
3

8
(ê1 ± iê2)i(ê1 ± iê2)jexp(ik · x)



Geometrical Projection
• Main content of Liouville equation is purely geometrical and

describes the projection of inhomogeneities into anisotropies

• Spatial gradient term hits plane wave:

n̂ · ∇eik·x = in̂ · keik·x = i

√
4π

3
kY 0

1 (n̂)eik·x

• Dipole term adds to angular dependence through the addition of
angular momentum√

4π

3
Y 0

1 Y
m
` =

κm`√
(2`+ 1)(2`− 1)

Y m
`−1 +

κm`+1√
(2`+ 1)(2`+ 3)

Y m
`+1

where κm` =
√
`2 −m2 is given by Clebsch-Gordon coefficients.



Temperature Hierarchy
• Absorb recoupling of angular momentum into evolution equation

for normal modes

Θ̇
(m)
` = k

[
κm`

2`+ 1
Θ

(m)
`−1 −

κm`+1

2`+ 3
Θ

(m)
`+1

]
− τ̇Θ

(m)
` + S

(m)
`

where S(m)
` are the gravitational (and later scattering sources;

added scattering suppression of anisotropy)

• An originally isotropic ` = 0 temperature perturbation will
eventually become a high order anisotropy by “free streaming” or
simple projection

• Original CMB codes solved the full hierarchy equations out to the
` of interest.



Integral Solution
• Hierarchy equation simply represents geometric projection,

exactly as we have seen before in the projection of temperature
perturbations on the last scattering surface

• In general, the solution describes the decomposition of the source
S

(m)
` with its local angular dependence as seen at a distance

x = Dn̂.

• Proceed by decomposing the angular dependence of the plane
wave

eik·x =
∑
`

(−i)`
√

4π(2`+ 1)j`(kD)Y 0
` (n̂)

• Recouple to the local angular dependence of Gm
`

Gm
`s =

∑
`

(−i)`
√

4π(2`+ 1)α
(m)
`s`

(kD)Y m
` (n̂)



Integral Solution
• Projection kernels:

`s = 0, m = 0 α
(0)
0` ≡ j`

`s = 1, m = 0 α
(0)
1` ≡ j′`

• Integral solution:

Θ
(m)
` (k, η0)

2`+ 1
=

∫ η0

0

dηe−τ
∑
`s

S
(m)
`s

α
(m)
`s`

(k(η0 − η))

• Power spectrum:

C` =
2

π

∫
dk

k

∑
m

k3〈Θ(m)∗
` Θ

(m)
` 〉

(2`+ 1)2

• Solving for C` reduces to solving for the behavior of a handful of
sources



Polarization Hiearchy
• In the same way, the coupling of a gradient or dipole angular

momentum to the spin harmonics leads to the polarization
hiearchy:

Ė
(m)
` = k

[
2κ

m
`

2`− 1
E

(m)
`−1 −

2m

`(`+ 1)
B

(m)
` − 2κ

m
`+1

2`+ 3

]
− τ̇E(m)

` + E (m)
`

Ḃ
(m)
` = k

[
2κ

m
`

2`− 1
B

(m)
`−1 +

2m

`(`+ 1)
B

(m)
` − 2κ

m
`+1

2`+ 3

]
− τ̇E(m)

` + B(m)
`

where 2κ
m
` =

√
(`2 −m2)(`2 − 4)/`2 is given by the

Clebsch-Gordon coefficients and E , B are the sources (scattering
only).

• Note that for vectors and tensors |m| > 0 and B modes may be
generated from E modes by projection. Cosmologically B(m)

` = 0



Polarization Integral Solution
• Again, we can recouple the plane wave angular momentum of the

source inhomogeneity to its local angular dependence directly

E
(m)
` (k, η0)

2`+ 1
=

∫ η0

0

dηe−τE (m)
`s

ε
(m)
`s`

(k(η0 − η))

B
(m)
` (k, η0)

2`+ 1
=

∫ η0

0

dηe−τE (m)
`s

β
(m)
`s`

(k(η0 − η))

• The only source to the polarization is from the quadrupole
anisotropy so we only need `s = 2, e.g. for scalars

ε
(0)
2` (x) =

√
3

8

(`+ 2)!

(`− 2)!

j`(x)

x2
β

(0)
2` = 0



Truncated Hierarchy
• CMBFast uses the integral solution and relies on a fast j` generator

• However sources are not external to system and are defined
through the Boltzmann hierarchy itself

• Solution: recall that we used this technique in the tight coupling
regime by applying a closure condition from tight coupling

• CMBFast extends this idea by solving a truncated hierarchy of
equations, e.g. out to ` = 25 with non-reflecting boundary
conditions



Thomson Collision Term
• Full Boltzmann equation

d

dη
fa,b = C[fa, fb]

• Collision term describes the scattering out of and into a phase
space element

• Thomson collision based on differential cross section

dσ

dΩ
=

3

8π
|Ê′ · Ê|2σT ,

where Ê′ and Ê denote the incoming and outgoing directions of
the electric field or polarization vector.



Scattering Calculation
• Start in the electron rest frame and in a coordinate system fixed by

the scattering plane, spanned by incoming and outgoing directional
vectors −n̂′ · n̂ = cos β, where β is the scattering angle

• Θ‖: in-plane polarization state; Θ⊥: ⊥-plane polarization state

• Transfer probability (constant set by τ̇ )

Θ‖ ∝ cos2 βΘ′‖, Θ⊥ ∝ Θ′⊥

• and with the 45◦ axes as

Ê1 =
1√
2

(Ê‖ + Ê⊥), Ê2 =
1√
2

(Ê‖ − Ê⊥)



Stokes Parameters
• Define the temperature in this basis

Θ1 ∝ |Ê1 · Ê1|2Θ′1 + |Ê1 · Ê2|2Θ′2

∝ 1

4
(cos β + 1)2Θ′1 +

1

4
(cos β − 1)2Θ′2

Θ2 ∝ |Ê2 · Ê2|2Θ′2 + |Ê2 · Ê1|2Θ′1

∝ 1

4
(cos β + 1)2Θ′2 +

1

4
(cos β − 1)2Θ′1

or Θ1 −Θ2 ∝ cos β(Θ′1 −Θ′2)

• Define Θ, Q, U in the scattering coordinates

Θ ≡ 1

2
(Θ‖ + Θ⊥), Q ≡ 1

2
(Θ‖ −Θ⊥), U ≡ 1

2
(Θ1 −Θ2)



Scattering Matrix
• Transfer of Stokes states, e.g.

Θ =
1

2
(Θ‖ + Θ⊥) ∝ 1

4
(cos2 β + 1)Θ′ +

1

4
(cos2 β − 1)Q′

• Transfer matrix of Stokes state T ≡ (Θ, Q+ iU , Q− iU )

T ∝ S(β)T′

S(β) =
3

4


cos2 β + 1 −1

2
sin2 β −1

2
sin2 β

−1
2

sin2 β 1
2
(cos β + 1)2 1

2
(cos β − 1)2

−1
2

sin2 β 1
2
(cos β − 1)2 1

2
(cos β + 1)2


normalization factor of 3 is set by photon conservation in scattering



Scattering Matrix
• Transform to a fixed basis, by a rotation of the incoming and

outgoing states T = R(ψ)T where

R(ψ) =


1 0 0

0 e−2iψ 0

0 0 e2iψ


giving the scattering matrix

R(−γ)S(β)R(α) =

1

2

√
4π

5


Y 0
2 (β, α) + 2

√
5Y 0

0 (β, α) −
√

3
2
Y −2
2 (β, α) −

√
3
2
Y 2
2 (β, α)

−
√
6 2Y

0
2 (β, α)e

2iγ 3 2Y
−2
2 (β, α)e2iγ 3 2Y

2
2 (β, α)e

2iγ

−
√
6−2Y

0
2 (β, α)e

−2iγ 3−2Y
−2
2 (β, α)e−2iγ 3−2Y

2
2 (β, α)e

−2iγ





Addition Theorem for Spin Harmonics
• Spin harmonics are related to rotation matrices as

sY
m
` (θ, φ) =

√
2`+ 1

4π
D`−ms(φ, θ, 0)

Note: for explicit evaluation sign convention differs from usual
(e.g. Jackson) by (−1)m

• Multiplication of rotations∑
m′′

D`mm′′(α2, β2, γ2)D`m′′m(α1, β1, γ1) = D`mm′(α, β, γ)

• Implies

∑
m

s1
Y m∗
` (θ′, φ′) s2

Y m
` (θ, φ) = (−1)s1−s2

√
2`+ 1

4π s2
Y −s1` (β, α)eis2γ



Sky Basis
• Scattering into the state (rest frame)

Cin[T] = τ̇

∫
dn̂′

4π
R(−γ)S(β)R(α)T(n̂′) ,

= τ̇

∫
dn̂′

4π
(Θ′, 0, 0) +

1

10
τ̇

∫
dn̂′

2∑
m=−2

P(m)(n̂, n̂′)T(n̂′) .

where the quadrupole coupling term is P(m)(n̂, n̂′) =


Y m∗2 (n̂′)Y m2 (n̂) −

√
3
2 2Y

m∗
2 (n̂′)Y m2 (n̂) −

√
3
2 −2Y

m∗
2 (n̂′)Y m2 (n̂)

−
√
6Y m∗2 (n̂′) 2Y

m
2 (n̂) 3 2Y

m∗
2 (n̂′) 2Y

m
2 (n̂) 3−2Y

m∗
2 (n̂′) 2Y

m
2 (n̂)

−
√
6Y m∗2 (n̂′)−2Y

m
2 (n̂) 3 2Y

m∗
2 (n̂′)−2Y

m
2 (n̂) 3−2Y

m∗
2 (n̂′)−2Y

m
2 (n̂)

 ,

expression uses angle addition relation above. We call this term
CQ.



Scattering Matrix
• Full scattering matrix involves difference of scattering into and out

of state

C[T] = Cin[T]− Cout[T]

• In the electron rest frame

C[T] = τ̇

∫
dn̂′

4π
(Θ′, 0, 0)− τ̇T + CQ[T]

which describes isotropization in the rest frame. All moments have
e−τ suppression except for isotropic temperature Θ0.
Transformation into the background frame simply induces a dipole
term

C[T] = τ̇

(
n̂ · vb +

∫
dn̂′

4π
Θ′, 0, 0

)
− τ̇T + CQ[T]



Source Terms
• Temperature source terms S(m)

l (rows ±|m|; flat assumption
τ̇Θ

(0)
0 − Ḣ

(0)
L τ̇ v

(0)
b + Ḃ(0) τ̇P (0) − 2

3
Ḣ

(0)
T

0 τ̇ v
(±1)
b + Ḃ(±1) τ̇P (±1) −

√
3

3
Ḣ

(±1)
T

0 0 τ̇P (±2) − Ḣ(±2)
T


where

P (m) ≡ 1

10
(Θ

(m)
2 −

√
6E

(m)
2 )

• Polarization source term

E (m)
` = −τ̇

√
6P (m)δ`,2

B(m)
` = 0
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Reionization
• Ionization depth during reionization

τ(z) =

∫
dηneσTa =

∫
d ln a

neσT
H(a)

∝ (Ωbh
2)(Ωmh

2)−1/2(1 + z)3/2

=

(
Ωbh

2

0.02

)(
Ωmh

2

0.15

)−1/2(
1 + z

61

)3/2

• Quasars say zri ≥ 7 so τ > 0.04

• During reionization, cosmic quadrupole of ∼ 30µK from the
Sachs-Wolfe effect scatters into E-polarization

• Few percent optical depth leads to fraction of a µK signal

• Peaks at horizon scale at recombination: quadrupole source
j2(kD∗) maximal at kD∗ ≈ kη ≈ 2



Breaking degeneracies
• First objects, breaking degeneracy of initial amplitude vs optical

depth in the peak heights

C` ∝ e−2τ

only below horizon scale at reionization

• Breaks degeneracies in angular diameter distance by removing an
ambiguity for ISW-dark energy measure, helps in ΩDE − wDE
plane



Gravitational Wave
• Gravitational waves produce a quadrupolar distortion in the

temperature of the CMB like effect on a ring of test particles

• Like ISW effect, source is a metric perturbation with time
dependent amplitude

• After recombination, is a source of observable temperature
anisotropy – but is therefore confined to low order multipoles

• Generated during inflation by quandum fluctuations



Gravitational Wave Polarization
• In the tight coupling regime, quadrupole anisotropy suppressed by

scattering

πγ ≈
ḣ

τ̇

• Since gravitational waves oscillate and decay at horizon crossing,
the polarization peaks at the horizon scale at recombination not the
damping scale

• More distinct signature in the B-mode polarization since
symmetry of plane wave is broken by the transverse nature of
gravity wave polarization



Secondary Anisotropy
• CMB photons traverse the large-scale structure of the universe

from z = 1000 to the present.

• With the nearly scale-invariant adiabatic fluctuations observed in
the CMB, structures form from the bottom up, i.e. small scales
first, a.k.a. hierarchical structure formation.

• First objects reionize the universe between z ∼ 7− 30

• Main sources of secondary anisotropy

• Gravitational: Integrated Sachs-Wolfe effect (gravitational
redshift) and gravitational lensing

• Scattering: peak suppression, large-angle polarization, Doppler
effect(s), inverse Compton scattering



Transfer Function
• Transfer function transfers the initial Newtonian curvature to its

value today (linear response theory)

T (k) =
Φ(k, a = 1)

Φ(k, ainit)

Φ(knorm, ainit)

Φ(knorm, a = 1)

• Conservation of Bardeen curvature: Newtonian curvature is a
constant when stress perturbations are negligible: above the
horizon during radiation and dark energy domination, on all scales
during matter domination

• When stress fluctuations dominate, perturbations are stabilized by
the Jeans mechanism

• Hybrid Poisson equation: Newtonian curvature, comoving density
perturbation ∆ ≡ (δρ/ρ)com implies Φ decays

(k2 − 3K)Φ = 4πGρ∆ ∼ η−2∆



Transfer Function
• Matter-radiation example: Jeans scale is horizon scale and ∆

freezes into its value at horizon crossing ∆H ≈ Φinit

• Freezing of ∆ stops at ηeq

Φ ∼ (kηeq)−2∆H ∼ (kηeq)−2Φinit

• Conventionally knorm is chosen as a scale between the horizon at
matter radiation equality and dark energy domination.

• Small correction since growth with a smooth radiation component
is logarithmic not frozen

• Run CMBfast to get transfer function or use fits



Transfer Function
• Transfer function has a k−2 fall-off beyond keq ∼ η−1

eq

1

0.1

0.0001 0.001 0.01 0.1 1
0.01

T(
k)

k (h–1 Mpc)

BAO

k–2

• Additional baryon wiggles are due to acoustic oscillations at
recombination – an interesting means of measuring distances



Growth Function
• Same physics applies to the dark energy dominated universe

• Under the dark energy sound horizon, dark energy density frozen.
Potential decays at the same rate for all scales

g(a) =
Φ(knorm, a)

Φ(knorm, ainit)

• Pressure growth suppression: δ ≡ δρm/ρm ∝ ag

d2g

d ln a2
+

[
5

2
− 3

2
w(z)ΩDE(z)

]
dg

d ln a
+

3

2
[1− w(z)]ΩDE(z)g = 0 ,

where w ≡ pDE/ρDE and ΩDE ≡ ρDE/(ρm + ρDE) with initial
conditions g = 1, dg/d ln a = 0

• As ΩDE → 0 g =const. is a solution. The other solution is the
decaying mode, elimated by initial conditions



ISW effect
• Potential decay leads to gravitational redshifts through the

integrated Sachs-Wolfe effect

• Intrinsically a large effect since 2∆Φ = 6Ψinit/3

• But net redshift is integral along along line of sight

Θ`(k, η0)

2`+ 1
=

∫ η0

0

dηe−τ [2Φ̇(k, η)]j`(k(η0 − η))

= 2Φ(k, ηMD)

∫ η0

0

dηe−τ ġ(D)j`(kD)

• On small scales where k � ġ/g, can pull source out of the integral∫ η0

0

dηġ(D)j`(kD) ≈ ġ(D = `/k)
1

k

√
π

2`

evaluated at peak, where we have used
∫
dxj`(x) =

√
π/2`



ISW effect
• Power spectrum

C` =
2

π

∫
dk

k

k3〈Θ∗`(k, η0)Θ`(k, η0)〉
(2`+ 1)2

=
2π2

l3

∫
dηDġ2(η)∆2

Φ(`/D, ηMD)

• Or l2Cl/2π ∝ 1/` for scale invariant potential. This is the Limber
equation in spherical coordinates. Projection of 3D power retains
only the transverse piece. For a general dark energy model, add in
the scale dependence of growth rate on large scales.

• Cancellation of redshifts and blueshifts as the photon traverses
many crests and troughs of a small scale fluctuation during decay.
Enhancement of the ` < 10 multipoles. Difficult to extract from
cosmic variance and galaxy. Current ideas: cross correlation with
other tracers of structure



Gravitational Lensing
• Lensing is a surface brightness conserving remapping of source to

image planes by the gradient of the projected potential

φ(n̂) = 2

∫ η0

η∗

dη
(D∗ −D)

DD∗
Φ(Dn̂, η) .

such that the fields are remapped as

x(n̂)→ x(n̂ +∇φ) ,

where x ∈ {Θ, Q, U} temperature and polarization.

• Taylor expansion leads to product of fields and Fourier
mode-coupling



Flat-sky Treatment
• Talyor expand

Θ(n̂) = Θ̃(n̂ +∇φ)

= Θ̃(n̂) +∇iφ(n̂)∇iΘ̃(n̂) +
1

2
∇iφ(n̂)∇jφ(n̂)∇i∇jΘ̃(n̂) + . . .

• Fourier decomposition

φ(n̂) =

∫
d2l

(2π)2
φ(l)eil·n̂

Θ̃(n̂) =

∫
d2l

(2π)2
Θ̃(l)eil·n̂



Flat-sky Treatment
• Mode coupling of harmonics

Θ(l) =

∫
dn̂Θ(n̂)e−il·n̂

= Θ̃(l)−
∫

d2l1
(2π)2

Θ̃(l1)L(l, l1) ,

where

L(l, l1) = φ(l− l1) (l− l1) · l1

+
1

2

∫
d2l2

(2π)2
φ(l2)φ∗(l2 + l1 − l) (l2 · l1)(l2 + l1 − l) · l1 .

• Represents a coupling of harmonics separated by L ≈ 60 peak of
deflection power



Power Spectrum
• Power spectra

〈Θ∗(l)Θ(l′)〉 = (2π)2δ(l− l′) CΘΘ
l ,

〈φ∗(l)φ(l′)〉 = (2π)2δ(l− l′) Cφφ
l ,

becomes

CΘΘ
l =

(
1− l2R

)
C̃ΘΘ
l +

∫
d2l1

(2π)2
C̃ΘΘ
|l−l1|C

φφ
l1

[(l− l1) · l1]2 ,

where

R =
1

4π

∫
dl

l
l4Cφφ

l . (3)



Smoothing Power Spectrum
• If C̃ΘΘ

l slowly varying then two term cancel

C̃ΘΘ
l

∫
d2l1

(2π)2
Cφφ
l (l · l1)2 ≈ l2RC̃ΘΘ

l .

• So lensing acts to smooth features in the power spectrum.
Smoothing kernel is L ∼ 60 the peak of deflection power spectrum

• Because acoustic feature appear on a scale lA ∼ 300, smoothing is
a subtle effect in the power spectrum.

• Lensing generates power below the damping scale which directly
reflect power in deflections on the same scale



Polarization Lensing
• Polarization field harmonics lensed similarly

[Q± iU ](n̂) = −
∫

d2l

(2π)2
[E ± iB](l)e±2iφlel·n̂

so that

[Q± iU ](n̂) = [Q̃± iŨ ](n̂ +∇φ)

≈ [Q̃± iŨ ](n̂) +∇iφ(n̂)∇i[Q̃± iŨ ](n̂)

+
1

2
∇iφ(n̂)∇jφ(n̂)∇i∇j[Q̃± iŨ ](n̂)



Polarization Power Spectra
• Carrying through the algebra

CEE
l =

(
1− l2R

)
C̃EE
l +

1

2

∫
d2l1

(2π)2
[(l− l1) · l1]2Cφφ

|l−l1|

× [(C̃EE
l1

+ C̃BB
l1

) + cos(4ϕl1)(C̃
EE
l1
− C̃BB

l1
)] ,

CBB
l =

(
1− l2R

)
C̃BB
l +

1

2

∫
d2l1

(2π)2
[(l− l1) · l1]2Cφφ

|l−l1|

× [(C̃EE
l1

+ C̃BB
l1

)− cos(4ϕl1)(C̃
EE
l1
− C̃BB

l1
)] ,

CΘE
l =

(
1− l2R

)
C̃ΘE
l +

∫
d2l1

(2π)2
[(l− l1) · l1]2Cφφ

|l−l1|

× C̃ΘE
l1

cos(2ϕl1) ,

• Lensing generates B-modes out of the acoustic polaraization
E-modes contaminates gravitational wave signature if
Ei < 1016GeV.



Reconstruction from the CMB
• Correlation between Fourier moments reflect lensing potential

〈x(l)x′(l′)〉CMB = fα(l, l′)φ(l + l′) ,

where x ∈ temperature, polarization fields and fα is a fixed weight
that reflects geometry

• Each pair forms a noisy estimate of the potential or projected mass
- just like a pair of galaxy shears

• Minimum variance weight all pairs to form an estimator of the
lensing mass



Scattering Secondaries
• Optical depth during reionization

τ ≈ 0.066

(
Ωbh

2

0.02

)(
Ωmh

2

0.15

)−1/2(
1 + z

10

)3/2

• Anisotropy suppressed as e−τ . Integral solution

Θ`(k, η0)

2`+ 1
=

∫ η0

0

dηe−τS
(0)
0 j`(k(η0 − η)) + . . .

• Isotropic (lare scale) fluctuations not supressed since suppression
represents isotropization by scattering

• Quadrupole from the Sachs-Wolfe effect scatters into a large angle
polarization bump



Doppler Effects
• Velocity fields of 10−3 and optical depths of 10−2 would imply

large Doppler effect due to reionization

• Limber approximation says only fluctuations transverse to line of
sight survive

• In linear theory, transverse fluctuations have no line of sight
velocity and so Doppler effect is highly suppressed.

• Beyond linear theory: modulate the optical depth in the transverse
direction using density fluctuations or ionization fraction
fluctuations. Generate a modulated Doppler effect

• Linear fluctuations: Vishniac effect; Clusters: kinetic SZ effect;
ionization patches: inhomogeneous reionization effect



Thermal SZ Effect
• Thermal velocities also lead to Doppler effect but first order

contribution cancels because of random directions

• Residual effect is of order v2τ ≈ Te/me τ and can reach a sizeable
level for clusters with Te ≈ 10keV.

• Raleigh-Jeans decrement and Wien enhancement described by
second order collision term in Boltzmann equation: Kompaneets
equation

• Clusters are rare objects so contribution to power spectrum
suppressed, but may have been detected by CBI/BIMA: extremely
sensitive to power spectrum normalization σ8

• White noise on large-scales (l < 2000), turnover as cluster profile
is resolved


