Astro 321

Set 2: Thermal History
 Wayne Hu

Macro vs Micro Description

- In the first set of notes, we used a macroscopic description.
- Gravity only cares about bulk properties: energy density, momentum density, pressure, anisotropic stress - stress tensor
- Matter and radiation is composed of particles whose properties can be described by their phase space distribution or occupation function
- Macroscopic properties are integrals or moments of the phase space distribution
- Particle interactions involve the evolution of the phase space distribution
- Rapid interactions drive distribution to thermal equilibrium but must compete with the expansion rate of universe
- Freeze out, the origin of species

Brief Thermal History

Fitting in a Box

- Counting momentum states with momentum q and de Broglie wavelength

$$
\lambda=\frac{h}{q}=\frac{2 \pi \hbar}{q}
$$

- In a discrete volume L^{3} there is a discrete set of states that satisfy
 periodic boundary conditions
- We will hereafter set $\hbar=c=1$
- As in Fourier analysis

$$
e^{2 \pi i x / \lambda}=e^{i q x}=e^{i q(x+L)} \rightarrow e^{i q L}=1
$$

Fitting in a Box

- Periodicity yields a discrete set of allowed states

$$
\begin{aligned}
L q & =2 \pi m_{i}, \quad m_{i}=1,2,3 \ldots \\
q_{i} & =\frac{2 \pi}{L} m_{i}
\end{aligned}
$$

- In each of 3 directions

$$
\sum_{m_{x i} m_{y j} m_{z k}} \rightarrow \int d^{3} m
$$

- The differential number of allowed momenta in the volume

$$
d^{3} m=\left(\frac{L}{2 \pi}\right)^{3} d^{3} q
$$

Density of States

- The total number of states allows for a number of internal degrees of freedom, e.g. spin, quantified by the degeneracy factor g
- Total density of states:

$$
\frac{d N_{s}}{V}=\frac{g}{V} d^{3} m=\frac{g}{(2 \pi)^{3}} d^{3} q
$$

- If all states were occupied by a single particle, then particle density

$$
n_{s}=\frac{N_{s}}{V}=\frac{1}{V} \int d N_{s}=\int \frac{g}{(2 \pi)^{3}} d^{3} q
$$

Distribution Function

- The distribution function f quantifies the occupation of the allowed momentum states

$$
n=\frac{N}{V}=\frac{1}{V} \int f d N_{s}=\int \frac{g}{(2 \pi)^{3}} f d^{3} q
$$

- f, aka phase space occupation number, also quantifies the density of particles per unit phase space $d N /(\Delta x)^{3}(\Delta q)^{3}$
- For photons, the spin degeneracy $g=2$ accounting for the 2 polarization states
- Energy $E(q)=\left(q^{2}+m^{2}\right)^{1 / 2}$
- Momentum \rightarrow frequency $q=2 \pi / \lambda=2 \pi \nu=\omega=E$ (where $m=0$ and $\lambda \nu=c=1$)

Bulk Properties

- Integrals over the distribution function define the bulk properties of the collection of particles
- Number density

$$
n(\mathbf{x}, t) \equiv \frac{N}{V}=g \int \frac{d^{3} q}{(2 \pi)^{3}} f
$$

- Energy density

$$
\rho(\mathbf{x}, t)=g \int \frac{d^{3} q}{(2 \pi)^{3}} E(q) f
$$

where $E^{2}=q^{2}+m^{2}$

- Momentum density

$$
(\rho+p) \mathbf{v}(\mathbf{x}, t)=g \int \frac{d^{3} q}{(2 \pi)^{3}} \mathbf{q} f
$$

Bulk Properties

- Pressure: particles bouncing off a surface of area A in a volume spanned by L_{x} : per momentum state

$$
\begin{aligned}
p_{q}= & \frac{F}{A}=\frac{N_{\mathrm{part}}}{A} \frac{\Delta q}{\Delta t} \\
& \left(\Delta q=2\left|q_{x}\right|, \quad \Delta t=2 L_{x} / v_{x},\right) \\
= & \frac{N_{\mathrm{part}}}{V}\left|q_{x}\right|\left|v_{x}\right|=\frac{N_{\mathrm{part}}}{V} \frac{|q||v|}{3} \\
& (v=\gamma m v / \gamma m=q / E) \\
= & \frac{N_{\mathrm{part}}}{V} \frac{q^{2}}{3 E}
\end{aligned}
$$

Bulk Properties

- So that summed over occupied momenta states

$$
p(\mathbf{x}, t)=g \int \frac{d^{3} q}{(2 \pi)^{3}} \frac{|q|^{2}}{3 E(q)} f
$$

- Pressure is just one of the quadratic in q moments, in particular the isotropic one
- The remaining 5 components are the anisotropic stress (vanishes in the background)

$$
\pi_{j}^{i}(\mathbf{x}, t)=g \int \frac{d^{3} q}{(2 \pi)^{3}} \frac{3 q^{i} q_{j}-q^{2} \delta^{i}{ }_{j}}{3 E(q)} f
$$

- We shall see that these are related to the 5 quadrupole moments of the angular distribution

Bulk Properties

- These are more generally the components of the stress-energy tensor

$$
T_{\nu}^{\mu}=g \int \frac{d^{3} q}{(2 \pi)^{3}} \frac{q^{\mu} q_{\nu}}{E(q)} f
$$

- 0-0: energy density
- 0-i: momentum density
- $i-i$: pressure
- $i \neq j$: anisotropic stress
- In the FRW background cosmology, isotropy requires that there be only a net energy density and pressure

Observable Properties

- Only get to measure luminous properties of the universe. For photons mass $m=0, g=2$ (units: $J m^{-3}$)

$$
\rho(\mathbf{x}, t)=2 \int \frac{d^{3} q}{(2 \pi)^{3}} q f=2 \int d q d \Omega\left(\frac{q}{2 \pi}\right)^{3} f
$$

- Spectral energy density (per unit frequency
$q=h \nu=\hbar 2 \pi \nu=2 \pi \nu$, solid angle)

$$
u_{\nu}=\frac{d \rho}{d \nu d \Omega}=2(2 \pi) \nu^{3} f
$$

- Photons travelling at speed of light so that $u_{\nu}=I_{\nu}=4 \pi \nu^{3} f$ the specific intensity or brightness, energy flux across a surface, units of $\mathrm{W} \mathrm{m}^{-2} \mathrm{~Hz}^{-1} \mathrm{sr}^{-1}$ (SI); ergs s ${ }^{-1} \mathrm{~cm}^{-2} \mathrm{~Hz}^{-1} \mathrm{Sr}^{-1}$ (cgs)

Diffuse Extragalactic Light

- νI_{ν} peaks in the microwave mm-cm region: CMB black body $T=2.725 \pm 0.002 K$ or $n_{\gamma}=410 \mathrm{~cm}^{-3}, \Omega_{\gamma}=2.47 \times 10^{-5} h^{-2}$.

Observable Properties

- Integrate over frequencies for total intensity

$$
I=\int d \nu I_{\nu}=\int d \ln \nu I_{\nu}
$$

νI_{ν} often plotted since it shows peak under a log plot; I and νI_{ν} have units of $\mathrm{W} \mathrm{m}{ }^{-2} \mathrm{sr}^{-1}$ and is independent of choice of frequency unit

- Flux density (specific flux): integrate over the solid angle of a radiation source, units of $\mathrm{W} \mathrm{m}^{-2} \mathrm{~Hz}^{-1}$ or Jansky $=10^{-26} \mathrm{~W} \mathrm{~m}^{-2}$ Hz^{-1}

$$
F_{\nu}=\int_{\text {source }} I_{\nu} d \Omega
$$

a.k.a. spectral energy distribution

Observable Properties

- Flux integrate over frequency, units of $\mathrm{W} \mathrm{m}^{-2}$

$$
F=\int d \ln \nu \nu F_{\nu}
$$

- Flux in a frequency band S_{b} measured in terms of magnitudes (optical), set to some standard zero point per band

$$
m_{b}-m_{\text {norm }}=2.5 \log _{10}\left(F_{\text {norm }} / F_{b}\right) \approx \ln \left(F_{\text {norm }} / F_{b}\right)
$$

- Luminosity: integrate over area assuming isotropic emission or beaming factor, units of W

$$
L=4 \pi d_{L}^{2} F
$$

Liouville Equation

- Liouville theorem states that the phase space distribution function is conserved along a trajectory in the absence of particle interactions

$$
\frac{D f}{D t}=\left[\frac{\partial}{\partial t}+\frac{d \mathbf{q}}{d t} \frac{\partial}{\partial \mathbf{q}}+\frac{d \mathbf{x}}{d t} \frac{\partial}{\partial \mathbf{x}}\right] f=0
$$

subtlety in expanding universe is that the de Broglie wavelength of particles changes with the expansion so that

$$
q \propto a^{-1}
$$

- Homogeneous and isotropic limit

$$
\frac{\partial f}{\partial t}+\frac{d q}{d t} \frac{\partial f}{\partial q}=\frac{\partial f}{\partial t}-H(a) \frac{\partial f}{\partial \ln q}=0
$$

Energy Density Evolution

- Integrate Liouville equation over $g \int d^{3} q /(2 \pi)^{3} E$ to form

$$
\begin{aligned}
\frac{\partial \rho}{\partial t} & =H(a) g \int \frac{d^{3} q}{(2 \pi)^{3}} E q \frac{\partial}{\partial q} f \\
& =H(a) g \int \frac{d \Omega}{(2 \pi)^{3}} \int d q q^{3} E \frac{\partial}{\partial q} f \\
& =-H(a) g \int \frac{d \Omega}{(2 \pi)^{3}} \int d q \frac{d\left(q^{3} E\right)}{d q} f \\
& =-H(a) g \int \frac{d \Omega}{(2 \pi)^{3}} \int d q\left(3 q^{2} E+q^{3} \frac{d E}{d q}\right) f \\
d & \left.d E^{2}=q^{2}+m^{2}\right) \rightarrow E d E=q d q \\
& =-3 H(a) g \int \frac{d^{3} q}{(2 \pi)^{3}}\left(E+\frac{q^{2}}{3 E}\right) f=-3 H(a)(\rho+p)
\end{aligned}
$$

as derived previously from energy conservation

Boltzmann Equation

- Boltzmann equation says that Liouville theorem must be modified to account for collisions

$$
\frac{D f}{D t}=C[f]
$$

- Heuristically

$$
C[f]=\text { particle sources }- \text { sinks }
$$

- Collision term: integrate over phase space of incoming particles, connect to outgoing state with some interaction strength

Boltzmann Equation

- Form:

$$
\begin{aligned}
C[f]= & \int d(\text { phase space })[\text { energy-momentum conservation }] \\
& \times|M|^{2}[\text { emission }- \text { absorption }]
\end{aligned}
$$

- Matrix element M, assumed T [or CP] invariant
- (Lorentz invariant) phase space element

$$
\int d(\text { phase space })=\Pi_{i} \frac{g_{i}}{(2 \pi)^{3}} \int \frac{d^{3} q_{i}}{2 E_{i}}
$$

- Energy conservation: $(2 \pi)^{4} \delta^{(4)}\left(q_{1}+q_{2}+\ldots\right)$

Boltzmann Equation

- Emission - absorption term involves the particle occupation of the various states
- For concreteness: take f to be the photon distribution function
- Interaction $\left(\gamma+\sum i \leftrightarrow \sum \mu\right)$; sums are over all incoming and outgoing other particles

- [emission-absorption] $+=$ boson; $-=$ fermion

$$
\Pi_{i} \Pi_{\mu} f_{\mu}\left(1 \pm f_{i}\right)(1 \pm f)-\Pi_{i} \Pi_{\mu}\left(1 \pm f_{\mu}\right) f_{i} f
$$

Boltzmann Equation

- Photon Emission: $f_{\mu}\left(1 \pm f_{i}\right)(1+f)$
f_{μ} : proportional to number of emitters
$\left(1 \pm f_{i}\right)$: if final state is occupied and a fermion, process blocked; if boson the process enhanced
$(1+f)$: final state factor for photons: " 1 ": spontaneous emission (remains if $f=0$); " $+f$ ": stimulated and proportional to the occupation of final photon
- Photon Absorption: $-\left(1 \pm f_{\mu}\right) f_{i} f$
$\left(1 \pm f_{\mu}\right)$: if final state is occupied and fermion, process blocked; if boson the process enhanced
f_{i} : proportional to number of absorbers
f : proportional to incoming photons

Boltzmann Equation

- If interactions are rapid they will establish an equilibrium distribution where the distribution functions no longer change $C\left[f_{\mathrm{eq}}\right]=0$
- Solve by inspection

$$
\Pi_{i} \Pi_{\mu} f_{\mu}\left(1 \pm f_{i}\right)(1 \pm f)-\Pi_{i} \Pi_{\mu}\left(1 \pm f_{\mu}\right) f_{i} f=0
$$

- Try $f_{a}=\left(e^{-E_{a} / T} \mp 1\right)^{-1}$ so that $\left(1 \pm f_{a}\right)=e^{-E_{a} / T}\left(e^{-E_{a} / T} \mp 1\right)^{-1}$

$$
e^{-\sum\left(E_{i}+E\right) / T}-e^{-\sum E_{\mu} / T}=0
$$

and energy conservation says $E+\sum E_{i}=\sum E_{\mu}$, so identity is satisified if the constant T is the same for all species

Boltzmann Equation

- If the interaction does not create or destroy particles of type f (or types $i, \mu \ldots$...) then the distribution

$$
f_{\mathrm{eq}}=\left(e^{-(E-\mu) / T} \mp 1\right)^{-1}
$$

also solves the equilibrium equation: e.g. a scattering type reaction

$$
\begin{aligned}
\gamma_{E}+i & \rightarrow \gamma_{E^{\prime}}+j \\
\sum E_{i}+(E-\mu) & =\sum E_{j}+\left(E^{\prime}-\mu\right)=0
\end{aligned}
$$

since the chemical potential μ does not depend on the photon energy, likewise if f is a fermion

- Not surprisingly, this is the Fermi-Dirac distribution for fermions and the Bose-Einstein distribution for bosons

Boltzmann Equation

- Even more generally, for a single reaction, the other species can carry chemical potentials too so long as

$$
\sum \mu_{i}+\mu=\sum \mu_{\nu}
$$

the law of mass action is satisfied

- This general rule applies to interactions that freely create or destroy the particles - e.g. $\gamma+e^{-} \rightarrow 2 \gamma+e^{-}$

$$
\mu_{e}+\mu=\mu_{e}+2 \mu \rightarrow \mu=0
$$

so that the chemical potential is driven to zero if particle number is not conserved in interaction

Maxwell Boltzmann Distribution

- For the nonrelativistic limit $E=m+\frac{1}{2} q^{2} / m, E / T \gg 1$ so both distributions go to the Maxwell-Boltzmann distribution

$$
f_{\mathrm{eq}}=\exp [-(m-\mu) / T] \exp \left(-q^{2} / 2 m T\right)
$$

- Here it is even clearer that the chemical potential μ is the normalization parameter for the number density of particles whose number is conserved.
- μ and n can be used interchangably

Poor Man's Boltzmann Equation

- Non expanding medium

$$
\frac{\partial f}{\partial t}=\Gamma\left(f-f_{\mathrm{eq}}\right)
$$

where Γ is some rate for collisions

- Add in expansion in a homogeneous medium

$$
\begin{aligned}
\frac{\partial f}{\partial t}+\frac{d q}{d t} \frac{\partial f}{\partial q} & =\Gamma\left(f-f_{\mathrm{eq}}\right) \\
\quad(& \left.q \propto a^{-1} \rightarrow \frac{1}{q} \frac{d q}{d t}=-\frac{1}{a} \frac{d a}{d t}=H\right) \\
\frac{\partial f}{\partial t}-H \frac{\partial f}{\partial \ln q} & =\Gamma\left(f-f_{\mathrm{eq}}\right)
\end{aligned}
$$

- So equilibrium will be maintained if collision rate exceeds expansion rate $\Gamma>H$

Non-Relativistic Bulk Properties

- Number density

$$
\begin{aligned}
n & =g e^{-(m-\mu) / T} \frac{4 \pi}{(2 \pi)^{3}} \int_{0}^{\infty} q^{2} d q \exp \left(-q^{2} / 2 m T\right) \\
& =g e^{-(m-\mu) / T} \frac{2^{3 / 2}}{2 \pi^{2}}(m T)^{3 / 2} \int_{0}^{\infty} x^{2} d x \exp \left(-x^{2}\right) \\
& =g\left(\frac{m T}{2 \pi}\right)^{3 / 2} e^{-(m-\mu) / T}
\end{aligned}
$$

- Energy density $E=m \rightarrow \rho=m n$
- Pressure $q^{2} / 3 E=q^{2} / 3 m \rightarrow p=n T$, ideal gas law

Ultra-Relativistic Bulk Properties

- Chemical potential $\mu=0, \zeta(3) \approx 1.202$
- Number density

$$
\begin{aligned}
n_{\text {boson }} & =g T^{3} \frac{\zeta(3)}{\pi^{2}} \quad \zeta(n+1) \equiv \frac{1}{n!} \int_{0}^{\infty} \frac{x^{n}}{e^{x}-1} \\
n_{\text {fermion }} & =\frac{3}{4} g T^{3} \frac{\zeta(3)}{\pi^{2}}
\end{aligned}
$$

- Energy density

$$
\begin{array}{r}
\rho_{\text {boson }}=g T^{4} \frac{3}{\pi^{2}} \zeta(4)=g T^{4} \frac{\pi^{2}}{30} \\
\rho_{\text {fermion }}=\frac{7}{8} g T^{4} \frac{3}{\pi^{2}} \zeta(4)=\frac{7}{8} g T^{4} \frac{\pi^{2}}{30}
\end{array}
$$

- Pressure $q^{2} / 3 E=E / 3 \rightarrow p=\rho / 3, w_{r}=1 / 3$

Entropy Density

- First law of thermodynamics

$$
d S=\frac{1}{T}(d \rho(T) V+p(T) d V)
$$

so that

$$
\begin{array}{r}
\left.\frac{\partial S}{\partial V}\right|_{T}=\frac{1}{T}[\rho(T)+p(T)] \\
\left.\frac{\partial S}{\partial T}\right|_{V}=\frac{V}{T} \frac{d \rho}{d T}
\end{array}
$$

- Since $S(V, T) \propto V$ is extensive

$$
S=\frac{V}{T}[\rho(T)+p(T)] \quad \sigma=S / V=\frac{1}{T}[\rho(T)+p(T)]
$$

Entropy Density

- Integrability condition $d S / d V d T=d S / d T d V$ relates the evolution of entropy density

$$
\begin{aligned}
\frac{d \sigma}{d T} & =\frac{1}{T} \frac{d \rho}{d T} \\
\frac{d \sigma}{d t} & =\frac{1}{T} \frac{d \rho}{d t}=\frac{1}{T}[-3(\rho+p)] \frac{d \ln a}{d t} \\
\frac{d \ln \sigma}{d t} & =-3 \frac{d \ln a}{d t} \quad \sigma \propto a^{-3}
\end{aligned}
$$

comoving entropy density is conserved in thermal equilibrium

- For ultra relativisitic bosons $s_{\text {boson }}=3.602 n_{\text {boson }}$; for fermions factor of $7 / 8$ from energy density.

$$
g_{*}=\sum_{\text {bosons }} g_{b}+\frac{7}{8} \sum g_{f}
$$

Neutrino Freezeout

- Neutrino equilibrium maintained by weak interactions, e.g. $e^{+}+e^{-} \leftrightarrow \nu+\bar{\nu}$
- Weak interaction cross section $T_{10}=T / 10^{10} K \sim T / 1 \mathrm{MeV}$

$$
\sigma_{w} \sim G_{F}^{2} E_{\nu}^{2} \approx 4 \times 10^{-44} T_{10}^{2} \mathrm{~cm}^{2}
$$

- Rate $\Gamma=n_{\nu} \sigma_{w}=H$ at $T_{10} \sim 3$ or $t \sim 0.2 \mathrm{~s}$
- After neutrino freezeout, electrons and positrons annihilate dumping their entropy into the photons
- Before $g_{*}: \gamma, e^{+}, e^{-}=2+\frac{7}{8}(2+2)=\frac{11}{2}$
- After $g_{*}: \gamma=2$; so conservation of entropy gives

$$
\left.g_{*} T^{3}\right|_{\text {initial }}=\left.g_{*} T^{3}\right|_{\text {final }} \quad T_{\nu}=\left(\frac{4}{11}\right)^{1 / 3} T_{\gamma}
$$

Relic Neutrinos

- Relic number density (zero chemical potential; now required by oscillations \& BBN)

$$
n_{\nu}=n_{\gamma} \frac{3}{4} \frac{4}{11}=112 \mathrm{~cm}^{-3}
$$

- Relic energy density assuming one species with finite m_{ν} : $\rho_{\nu}=m_{\nu} n_{\nu}$

$$
\begin{aligned}
\rho_{\nu} & =112 \frac{m_{\nu}}{\mathrm{eV}} \mathrm{eV} \mathrm{~cm}^{-3} \quad \rho_{c}=1.05 \times 10^{4} h^{2} \mathrm{eVcm}^{-3} \\
\Omega_{\nu} h^{2} & =\frac{m_{\nu}}{93.7 \mathrm{eV}}
\end{aligned}
$$

- Candidate for dark matter? an eV mass neutrino goes non relativistic around $z \sim 1000$ and retains a substantial velocity dispersion σ_{ν}.

Hot Dark Matter

- Momenta for a nonrelativistic species redshifts like temperature for a relativistic one, so average momentum is still given by

$$
\begin{aligned}
\langle q\rangle & =3 T_{\nu}=m \sigma_{\nu} \\
\sigma_{\nu} & =3\left(\frac{m_{\nu}}{1 \mathrm{eV}}\right)^{-1}\left(\frac{T_{\nu}}{1 \mathrm{eV}}\right)=3\left(\frac{m_{\nu}}{1 \mathrm{eV}}\right)^{-1}\left(\frac{T_{\nu}}{10^{4} \mathrm{~K}}\right) \\
& =6 \times 10^{-4}\left(\frac{m_{\nu}}{1 \mathrm{eV}}\right)^{-1}=200 \mathrm{~km} / \mathrm{s}\left(\frac{m_{\nu}}{1 \mathrm{eV}}\right)^{-1}
\end{aligned}
$$

- on order the rotation velocity of galactic halos and higher at higher redshift - small objects can't form: top down structure formation not observed - must not constitute the bulk of the dark matter

Cold Dark Matter

- Problem with neutrinos is they decouple while relativistic and hence have a comparable number density to photons - for a reasonable energy density, the mass must be small

- The equilibrium distribution for a non-relativistic species declines exponentially beyond the mass threshold

$$
n=g\left(\frac{m T}{2 \pi}\right)^{3 / 2} e^{-m / T}
$$

- Exponential will eventually win soon after $T<m$, suppressing annihilation rates

WIMP Miracle

- Freezeout when annihilation rate equal expansion rate $\Gamma \propto \sigma_{A}$, increasing annihilation cross section decreases abundance

$$
\begin{aligned}
\Gamma & =n\left\langle\sigma_{A} v\right\rangle=H \\
H & \propto T^{2} \sim m^{2} \\
\rho_{\text {freeze }} & =m n \propto \frac{m^{3}}{\left\langle\sigma_{A} v\right\rangle} \\
\rho_{c} & =\rho_{\text {freeze }}\left(T / T_{0}\right)^{-3} \propto \frac{1}{\left\langle\sigma_{A} v\right\rangle}
\end{aligned}
$$

independently of the mass of the CDM particle

- Plug in some typical numbers for supersymmetric candidates or WIMPs (weakly interacting massive particles) of $\left\langle\sigma_{A} v\right\rangle \approx 10^{-36}$ cm^{2} and restore the proportionality constant $\Omega_{c} h^{2}$ is of the right order of magnitude (~ 0.1) !

Axions

- Alternate solution: keep light particle but not created in thermal equilibrium
- Example: axion dark matter - particle that solves the strong CP problem
- Inflation sets initial conditions, fluctuation from potential minimum
- Once Hubble scale smaller than the mass scale, field unfreezes
- Coherent oscillations of the axion field - condensate state. Can be very light $m \ll 1 \mathrm{eV}$ and yet remain cold.
- Same reason a quintessence dark energy candidate must be lighter than the Hubble scale today

Big Bang Nucleosynthesis

- Integrating the Boltzmann equation for nuclear processes during first few minutes leads to synthesis and freezeout of light elements

Big Bang Nucleosynthesis

- Most of light element synthesis can be understood through nuclear statistical equilibrium and reaction rates
- Equilibrium abundance of species with mass number A and charge Z (Z protons and $A-Z$ neutrons)

$$
n_{A}=g_{A}\left(\frac{m_{A} T}{2 \pi}\right)^{3 / 2} e^{\left(\mu_{A}-m_{A}\right) / T}
$$

- In chemical equilibrium with protons and neutrons

$$
\begin{gathered}
\mu_{A}=Z \mu_{p}+(A-Z) \mu_{n} \\
n_{A}=g_{A}\left(\frac{m_{A} T}{2 \pi}\right)^{3 / 2} e^{-m_{A} / T} e^{\left(Z \mu_{p}+(A-Z) \mu_{n}\right) / T}
\end{gathered}
$$

Big Bang Nucleosynthesis

- Eliminate chemical potentials with n_{p}, n_{n}

$$
\begin{aligned}
& e^{\mu_{p} / T}= \frac{n_{p}}{g_{p}}\left(\frac{2 \pi}{m_{p} T}\right)^{3 / 2} e^{m_{p} / T} \\
& e^{\mu_{n} / T}= \frac{n_{n}}{g_{n}}\left(\frac{2 \pi}{m_{n} T}\right)^{3 / 2} e^{m_{n} / T} \\
& n_{A}= g_{A} g_{p}^{-Z} g_{n}^{Z-A}\left(\frac{m_{A} T}{2 \pi}\right)^{3 / 2}\left(\frac{2 \pi}{m_{p} T}\right)^{3 Z / 2}\left(\frac{2 \pi}{m_{n} T}\right)^{3(A-Z) / 2} \\
& \times e^{-m_{A} / T} e^{\left(Z \mu_{p}+(A-Z) \mu_{n}\right) / T} n_{p}^{Z} n_{n}^{A-Z} \\
& \quad\left(g_{p}=g_{n}=2 ; m_{p} \approx m_{n}=m_{b}=m_{A} / A\right) \\
&\left(B_{A}=Z m_{p}+(A-Z) m_{n}-m_{A}\right) \\
&= g_{A} 2^{-A}\left(\frac{2 \pi}{m_{b} T}\right)^{3(A-1) / 2} A^{3 / 2} n_{p}^{Z} n_{n}^{A-Z} e^{B_{A} / T}
\end{aligned}
$$

Big Bang Nucleosynthesis

- Convenient to define abundance fraction

$$
\begin{aligned}
X_{A} \equiv & A \frac{n_{A}}{n_{b}}=A g_{A} 2^{-A}\left(\frac{2 \pi}{m_{b} T}\right)^{3(A-1) / 2} A^{3 / 2} n_{p}^{Z} n_{n}^{A-Z} n_{b}^{-1} e^{B_{A} / T} \\
= & A g_{A} 2^{-A}\left(\frac{2 \pi n_{b}^{2 / 3}}{m_{b} T}\right)^{3(A-1) / 2} A^{3 / 2} e^{B_{A} / T} X_{p}^{Z} X_{n}^{A-Z} \\
& \left(n_{\gamma}=\frac{2}{\pi^{2}} T^{3} \zeta(3) \quad \eta_{b \gamma} \equiv n_{b} / n_{\gamma}\right) \\
= & A^{5 / 2} g_{A} 2^{-A}\left[\left(\frac{2 \pi T}{m_{b}}\right)^{3 / 2} \frac{2 \zeta(3) \eta_{b \gamma}}{\pi^{2}}\right]^{A-1} e^{B_{A} / T} X_{p}^{Z} X_{n}^{A-Z}
\end{aligned}
$$

Deuterium

- Deuterium $A=2, Z=1, g_{2}=3, B_{2}=2.225 \mathrm{MeV}$

$$
X_{2}=\frac{3}{\pi^{2}}\left(\frac{4 \pi T}{m_{b}}\right)^{3 / 2} \eta_{b \gamma} \zeta(3) e^{B_{2} / T} X_{p} X_{n}
$$

- Deuterium
"bottleneck" is mainly
due to the low baryon-photon number of the universe
$\eta_{b \gamma} \sim 10^{-9}$, secondarily due to the low binding energy B_{2}

Deuterium

- $X_{2} / X_{p} X_{n} \approx \mathcal{O}(1)$ at $T \approx 100 \mathrm{keV}$ or $10^{9} \mathrm{~K}$, much lower than the binding energy B_{2}
- Most of the deuterium formed then goes through to helium via $\mathrm{D}+\mathrm{D} \rightarrow{ }^{3} \mathrm{He}+p,{ }^{3} \mathrm{He}+\mathrm{D} \rightarrow{ }^{4} \mathrm{He}+n$
- Deuterium freezes out as number abundance becomes too small to maintain reactions $n_{D}=$ const. independent of n_{b}
- The deuterium freezeout fraction $n_{D} / n_{b} \propto \eta_{b \gamma}^{-1} \propto\left(\Omega_{b} h^{2}\right)^{-1}$ and so is fairly sensitive to the baryon density.
- Observations of the ratio in quasar absorption systems give $\Omega_{b} h^{2} \approx 0.02$

Helium

- Essentially all neutrons around during nucleosynthesis end up in Helium
- In equilibrium, the neutron-to-proton ratio is determined by the mass difference $Q=m_{n}-m_{p}=1.293 \mathrm{MeV}$

$$
\frac{n_{n}}{n_{p}}=\exp [-Q / T]
$$

bbnnp.png

Helium

- Equilibrium is maintained through weak interactions, e.g. $n \leftrightarrow p+e^{-}+\bar{\nu}, \nu+n \leftrightarrow p+e^{-}, e^{+}+n \leftrightarrow p+\bar{\nu}$ with rate

$$
\frac{\Gamma}{H} \approx \frac{T}{0.8 \mathrm{MeV}}
$$

- Freezeout fraction

$$
\frac{n_{n}}{n_{p}}=\exp [-1.293 / 0.8] \approx 0.2
$$

- Finite lifetime of neutrons brings this to $\sim 1 / 7$ by $10^{9} \mathrm{~K}$
- Helium mass fraction

$$
\begin{aligned}
Y_{\mathrm{He}} & =\frac{4 n_{H e}}{n_{b}}=\frac{4\left(n_{n} / 2\right)}{n_{n}+n_{p}} \\
& =\frac{2 n_{n} / n_{p}}{1+n_{n} / n_{p}} \approx \frac{2 / 7}{8 / 7} \approx \frac{1}{4}
\end{aligned}
$$

Helium

- Depends mainly on the expansion rate during BBN - measure number of relativistic species
- Traces of ${ }^{7} \mathrm{Li}$ as well. Measured abundances in reasonable agreement with deuterium measure $\Omega_{b} h^{2}=0.02$ but the detailed interpretation is still up for debate

Light Elements

Burles, Nollett, Turner (1999)

Baryogenesis

- What explains the small, but non-zero, baryon-to-photon ratio?

$$
\eta_{b \gamma}=n_{b} / n_{\gamma} \approx 3 \times 10^{-8} \Omega_{b} h^{2} \approx 6 \times 10^{-10}
$$

- Must be a slight excess of baryons b to anti-baryons \bar{b} that remains after annihilation
- Sakharov conditions
- Baryon number violation: some process must change the net baryon number
- CP violation: process which produces b and \bar{b} must differ in rate
- Out of equilibrium: else equilibrium distribution with vanishing chemical potential (processes exist which change baryon number) gives equal numbers for b and \bar{b}
- Expanding universe provides 3; physics must provide 1,2

Baryogenesis

- Example: out of equilibrium decay of some heavy boson X, \bar{X}
- Suppose X decays through 2 channels with baryon number b_{1} and b_{2} with branching ratio r and $1-r$ leading to a change in the baryon number per decay of

$$
r b_{1}+(1-r) b_{2}
$$

- And \bar{X} to $-b_{1}$ and $-b_{2}$ with ratio \bar{r} and $1-\bar{r}$

$$
-\bar{r} b_{1}-(1-\bar{r}) b_{2}
$$

- Net production

$$
\Delta b=(r-\bar{r})\left(b_{1}-b_{2}\right)
$$

Baryogenesis

- Condition 1: $b_{1} \neq 0, b_{2} \neq 0$
- Condition 2: $\bar{r} \neq r$
- Condition 3: out of equilibrium decay
- GUT and electroweak (instanton) baryogenesis mechanisms exist
- Active subject of research

Black Body Formation

- After $z \sim 10^{6}$, photon creating processes $\gamma+e^{-} \leftrightarrow 2 \gamma+e^{-}$ and bremmstrahlung
$e^{-}+p \leftrightarrow e^{-}+p+\gamma$
drop out of equilibrium for photon energies $E \sim T$.
- Compton scattering remains
 effective in redistributing energy via exchange with electrons
- Out of equilibrium processes like decays leave residual photon chemical potential imprint
- Observed black body spectrum places tight constraints on any that might dump energy into the CMB

Recombination

- Maxwell-Boltzmann distribution determines the equilibrium distribution for reactions, e.g. big-bang nucleosynthesis, recombination:

$$
\begin{gathered}
p+e^{-} \leftrightarrow H+\gamma \\
\frac{n_{p} n_{e}}{n_{H}} \approx e^{-B / T}\left(\frac{m_{e} T}{2 \pi}\right)^{3 / 2} e^{\left(\mu_{p}+\mu_{e}-\mu_{H}\right) / T}
\end{gathered}
$$

where $B=m_{p}+m_{e}-m_{H}=13.6 \mathrm{eV}$ is the binding energy, $g_{p}=g_{e}=\frac{1}{2} g_{H}=2$, and $\mu_{p}+\mu_{e}=\mu_{H}$ in equilibrium

- Define ionization fraction

$$
\begin{aligned}
n_{p} & =n_{e}=x_{e} n_{b} \\
n_{H} & =n_{b}-n_{p}=\left(1-x_{e}\right) n_{b}
\end{aligned}
$$

Recombination

- Saha Equation

$$
\begin{aligned}
\frac{n_{e} n_{p}}{n_{H} n_{b}} & =\frac{x_{e}^{2}}{1-x_{e}} \\
& =\frac{1}{n_{b}}\left(\frac{m_{e} T}{2 \pi}\right)^{3 / 2} e^{-B / T}
\end{aligned}
$$

- Naive guess of $T_{*}=B$ wrong due to the low baryon-photon ratio $-T_{*} \approx 0.3 \mathrm{eV}$ so recombination at $z_{*} \approx 1000$
- But the photon-baryon ratio is very low

$$
\eta_{b \gamma} \equiv n_{b} / n_{\gamma} \approx 3 \times 10^{-8} \Omega_{b} h^{2}
$$

Recombination

- Eliminate in favor of $\eta_{b \gamma}$ and B / T through

$$
n_{\gamma}=0.244 T^{3}, \quad \frac{m_{e}}{B}=3.76 \times 10^{4}
$$

- Big coefficient

$$
\begin{aligned}
\frac{x_{e}^{2}}{1-x_{e}} & =3.16 \times 10^{15}\left(\frac{B}{T}\right)^{3 / 2} e^{-B / T} \\
T=1 / 3 \mathrm{eV} \rightarrow x_{e} & =0.7, T=0.3 \mathrm{eV} \rightarrow x_{e}=0.2
\end{aligned}
$$

- Further delayed by inability to maintain equilibrium since net is through 2γ process and redshifting out of line

Recombination

