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CMB Blackbody
• COBE FIRAS spectral measurement. yellBlackbody spectrum.
T = 2.725K giving Ωγh
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CMB Blackbody
• CMB is a (nearly) perfect blackbody characterized by a phase

space distribution function

f =
1

eE/T − 1

where the temperature T (x, n̂, t) is observed at our position x = 0

and time t0 to be nearly isotropic with a mean temperature of
T̄ = 2.725K

• Our observable then is the temperature anisotropy

Θ(n̂) ≡ T (0, n̂, t0)− T̄
T̄

• Given that physical processes essentially put a band limit on this
function it is useful to decompose it into a complete set of
harmonic coefficients



Spherical Harmonics
• Laplace Eigenfunctions

∇2Y m
` = −[l(l + 1)]Y m

`

• Orthogonal and complete∫
dn̂Y m∗

` (n̂)Y m
` (n̂) = δ``′δmm′∑

`m

Y m∗
` (n̂)Y m

` (n̂′) = δ(φ− φ′)δ(cos θ − cos θ′)

Generalizable to tensors on the sphere (polarization), modes on a
curved FRW metric

• Conjugation

Y m∗
` = (−1)mY −m`



Multipole Moments
• Decompose into multipole moments

Θ(n̂) =
∑
`m

Θ`mY
m
` (n̂)

• So Θ`m is complex but Θ(n̂) real:

Θ∗(n̂) =
∑
`m

Θ∗`mY
m∗
` (n̂)

=
∑
`m

Θ∗`m(−1)mY −m` (n̂)

= Θ(n̂) =
∑
`m

Θ`mY
m
` (n̂) =

∑
`−m

Θ`−mY
−m
` (n̂)

so m and −m are not independent

Θ∗`m = (−1)mΘ`−m



N -pt correlation
• Since the fluctuations are random and zero mean we are interested

in characterizing the N -point correlation

〈Θ(n̂1) . . .Θ(n̂n)〉 =
∑
`1...`n

∑
m1...mn

〈Θ`1m1 . . .Θ`nmn〉Y m1
`1

(n̂1) . . . Y mn
`n

(n̂n)

• Statistical isotropy implies that we should get the same result in a
rotated frame

R[Y m
` (n̂)] =

∑
m′

D`
m′m(α, β, γ)Y

m′

` (n̂)

where α, β and γ are the Euler angles of the rotation and D is the
Wigner function (note Y m

` is a D function)

〈Θ`1m1 . . .Θ`nmn〉 =
∑

m′
1...m

′
n

〈Θ`1m′
1
. . .Θ`nm′

n
〉D`1

m1m′
1
. . . D`n

mnm′
n



N -pt correlation
• For any N -point function, combine rotation matrices (group

multiplication; angular momentum addition) and orthogonality∑
m

(−1)m2−mD`1
m1m

D`1
−m2−m = δm1m2

• The simplest case is the 2pt function:

〈Θ`1m1Θ`2m2〉 = δ`1`2δm1−m2(−1)m1C`1

where C` is the power spectrum. Check

=
∑
m′

1m
′
2

δ`1`2δm′
1−m′

2
(−1)m

′
1C`1D

`1
m1m′

1
D`2
m2m′

2

= δ`1`2C`1
∑
m′

1

(−1)m
′
1D`1

m1m′
1
D`2
m2−m′

1
= δ`1`2δm1−m2(−1)m1C`1



N -pt correlation
• Using the reality of the field

〈Θ∗`1m1
Θ`2m2〉 = δ`1`2δm1m2C`1 .

• If the statistics were Gaussian then all the N -point functions would
be defined in terms of the products of two-point contractions, e.g.

〈Θ`1m1Θ`2m2Θ`3m3Θ`4m4〉 = δ`1`2δm1m2δ`3`4δm3m4C`1C`3 + perm.

• More generally we can define the isotropy condition beyond
Gaussianity, e.g. the bispectrum

〈Θ`1m1 . . .Θ`3m3〉 =

(
`1 `2 `3

m1 m2 m3

)
B`1`2`3



CMB Temperature Fluctuations
• Angular Power Spectrum

Low l Anomalies
•	 Low quadrupole, octupole; C(θ); alignment; hemispheres; TT vs TE
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Why `2C`/2π?
• Variance of the temperature fluctuation field

〈Θ(n̂)Θ(n̂)〉 =
∑
`m

∑
`′m′

〈Θ`mΘ∗`′m′〉Y m
` (n̂)Y m′∗

`′ (n̂)

=
∑
`

C`
∑
m

Y m
` (n̂)Y m∗

` (n̂)

=
∑
`

2`+ 1

4π
C`

via the angle addition formula for spherical harmonics

• For some range ∆` ≈ ` the contribution to the variance is

〈Θ(n̂)Θ(n̂)〉`±∆`/2 ≈ ∆`
2`+ 1

4π
C` ≈

`2

2π
C`

• Conventional to use `(`+ 1)/2π for reasons below



Cosmic Variance
• We only have access to our sky, not the ensemble average

• There are 2`+ 1 m-modes of given ` mode, so average

Ĉ` =
1

2`+ 1

∑
m

Θ∗`mΘ`m

• 〈Ĉ`〉 = C` but now there is a cosmic variance

σ2
C`

=
〈(Ĉ` − C`)(Ĉ` − C`)〉

C2
`

=
〈Ĉ`Ĉ`〉 − C2

`

C2
`

• For Gaussian statistics

σ2
C`

=
1

(2`+ 1)2C2
`

〈
∑
mm′

Θ∗`mΘ`mΘ∗`m′Θ`m′〉 − 1

=
1

(2`+ 1)2

∑
mm′

(δmm′ + δm−m′) =
2

2`+ 1



Cosmic Variance
• Note that the distribution of Ĉ` is that of a sum of squares of

Gaussian variates

• Distributed as a χ2 of 2`+ 1 degrees of freedom

• Approaches a Gaussian for 2`+ 1→∞ (central limit theorem)

• Anomalously low quadrupole is not that unlikely

• σC`
is a useful quantification of errors at high `

• Suppose C` depends on a set of cosmological parameters ci then
we can estimate errors of ci measurements by error propagation

Fij = Cov−1(ci, cj) =
∑
``′

∂C`
∂ci

Cov−1(C`,C`′)
∂C`′

∂cj

=
∑
`

(2`+ 1)

2C2
`

∂C`
∂ci

∂C`
∂cj



Idealized Statistical Errors
• Take a noisy estimator of the multipoles in the map

Θ̂`m = Θ`m +N`m

and take the noise to be statistically isotropic

〈N∗`mN`′m′〉 = δ``′δmm′CNN
`

• Construct an unbiased estimator of the power spectrum 〈Ĉ`〉 = C`

Ĉ` =
1

2`+ 1

l∑
m=−l

Θ̂∗`mΘ̂`m − CNN
`

• Covariance in estimator

Cov(C`, C`′) =
2

2`+ 1
(C` + CNN

` )2δ``′



Incomplete Sky
• On a small section of sky, the number of independent modes of a

given ` is no longer 2`+ 1

• As in Fourier analysis, there are two limitations: the lowest ` mode
that can be measured is the wavelength that fits in angular patch θ

`min =
2π

θ
;

modes separated by ∆` < `min cannot be measured independently

• Estimates of C` covary on a scale imposed by ∆` < `min

• Crude approximation: account only for the loss of independent
modes by rescaling the errors rather than introducing covariance

Cov(C`, C`′) =
2

(2`+ 1)fsky

(C` + CNN
` )2δ``′



Stokes Parameters
• Specific intensity is related to quadratic combinations of the field.

• Define the intensity matrix (time averaged over oscillations)
〈EE†〉

• Hermitian matrix can be decomposed into Pauli matrices

P =
〈
EE†

〉
=

1

2
(Iσ0 +Qσ3 + U σ1 − V σ2) ,

where

σ0 =

(
1 0

0 1

)
,σ1 =

(
0 1

1 0

)
,σ2 =

(
0 −i
i 0

)
,σ3 =

(
1 0

0 −1

)

• Stokes parameters recovered as Tr(σiP)



Stokes Parameters
• Consider a general plane wave solution

E(t, z) = E1(t, z)ê1 + E2(t, z)ê2

E1(t, z) = A1e
iφ1ei(kz−ωt)

E2(t, z) = A2e
iφ2ei(kz−ωt)

• Explicitly:

I = 〈E1E
∗
1 + E2E

∗
2〉 = A2

1 + A2
2

Q = 〈E1E
∗
1 − E2E

∗
2〉 = A2

1 − A2
2

U = 〈E1E
∗
2 + E2E

∗
1〉 = 2A1A2 cos(φ2 − φ1)

V = −i 〈E1E
∗
2 − E2E

∗
1〉 = 2A1A2 sin(φ2 − φ1)

so that the Stokes parameters define the state up to an
unobservable overall phase of the wave



Detection
.

g1

ε1 ε2

g2

OMT

Q U Vφ

• This suggests that
abstractly there are two
different ways to detect
polarization: separate
and difference orthogonal
modes (bolometers I , Q)
or correlate the separated
components (U , V ).

• In the correlator example the natural output would be U but one
can recover V by introducing a phase lag φ = π/2 on one arm, and
Q by having the OMT pick out directions rotated by π/4.

• Likewise, in the bolometer example, one can rotate the polarizer
and also introduce a coherent front end to change V to U .



Detection
• Techniques also differ in the systematics that can convert

unpolarized sky to fake polarization

• Differencing detectors are sensitive to relative gain fluctuations

• Correlation detectors are sensitive to cross coupling between the
arms

• More generally, the intended block diagram and systematic
problems map components of the polarization matrix onto others
and are kept track of through “Jones” or instrumental response
matrices Edet = JEin

Pdet = JPinJ
†

where the end result is either a differencing or a correlation of the
Pdet.



Polarization
• Radiation field involves a directed quantity, the electric field

vector, which defines the polarization

• Consider a general plane wave solution

E(t, z) = E1(t, z)ê1 + E2(t, z)ê2

E1(t, z) = ReA1e
iφ1ei(kz−ωt)

E2(t, z) = ReA2e
iφ2ei(kz−ωt)

or at z = 0 the field vector traces out an ellipse

E(t, 0) = A1 cos(ωt− φ1)ê1 + A2 cos(ωt− φ2)ê2

with principal axes defined by

E(t, 0) = A′1 cos(ωt)ê′1 − A′2 sin(ωt)ê′2

so as to trace out a clockwise rotation for A′1, A
′
2 > 0



Polarization
.

e1

e'1e'2

e2

χ

E(t)

• Define polarization angle

ê′1 = cosχê1 + sinχê2

ê′2 = − sinχê1 + cosχê2

• Match

E(t, 0) = A′1 cosωt[cosχê1 + sinχê2]

− A′2 cosωt[− sinχê1 + cosχê2]

= A1[cosφ1 cosωt+ sinφ1 sinωt]ê1

+ A2[cosφ2 cosωt+ sinφ2 sinωt]ê2



Polarization
• Define relative strength of two principal states

A′1 = E0 cos β A′2 = E0 sin β

• Characterize the polarization by two angles

A1 cosφ1 = E0 cos β cosχ, A1 sinφ1 = E0 sin β sinχ,

A2 cosφ2 = E0 cos β sinχ, A2 sinφ2 = −E0 sin β cosχ

Or Stokes parameters by

I = E2
0 , Q = E2

0 cos 2β cos 2χ

U = E2
0 cos 2β sin 2χ , V = E2

0 sin 2β

• So I2 = Q2 + U2 + V 2, double angles reflect the spin 2 field or
headless vector nature of polarization



Polarization
Special cases

• If β = 0, π/2, π then only one principal axis, ellipse collapses to a
line and V = 0→ linear polarization oriented at angle χ

If χ = 0, π/2, π then I = ±Q and U = 0

If χ = π/4, 3π/4... then I = ±U and Q = 0 - so U is Q in a
frame rotated by 45 degrees

• If β = π/4, 3π/4, then principal components have equal strength
and E field rotates on a circle: I = ±V and Q = U = 0→
circular polarization

• U/Q = tan 2χ defines angle of linear polarization and
V/I = sin 2β defines degree of circular polarization



Natural Light
• A monochromatic plane wave is completely polarized
I2 = Q2 + U2 + V 2

• Polarization matrix is like a density matrix in quantum mechanics
and allows for pure (coherent) states and mixed states

• Suppose the total Etot field is composed of different (frequency)
components

Etot =
∑
i

Ei

• Then components decorrelate in time average〈
EtotE

†
tot

〉
=
∑
ij

〈
EiE

†
j

〉
=
∑
i

〈
EiE

†
i

〉



Natural Light
• So Stokes parameters of incoherent contributions add

I =
∑
i

Ii Q =
∑
i

Qi U =
∑
i

Ui V =
∑
i

Vi

and since individual Q, U and V can have either sign:
I2 ≥ Q2 + U2 + V 2, all 4 Stokes parameters needed



Linear Polarization
• Q ∝ 〈E1E

∗
1〉 − 〈E2E

∗
2〉, U ∝ 〈E1E

∗
2〉+ 〈E2E

∗
1〉.

• Counterclockwise rotation of axes by θ = 45◦

E1 = (E ′1 − E ′2)/
√

2 , E2 = (E ′1 + E ′2)/
√

2

• U ∝ 〈E ′1E
′∗
1 〉 − 〈E ′2E

′∗
2 〉, difference of intensities at 45◦ or Q′

• More generally, P transforms as a tensor under rotations and

Q′ = cos(2θ)Q+ sin(2θ)U

U ′ = − sin(2θ)Q+ cos(2θ)U

or

Q′ ± iU ′ = e∓2iθ[Q± iU ]

acquires a phase under rotation and is a spin ±2 object



Coordinate Independent Representation
• Two directions: orientation of polarization and change in

amplitude, i.e. Q and U in the basis of the Fourier wavevector
(pointing with angle φl) for small sections of sky are called E and
B components

E(l)± iB(l) = −
∫
dn̂[Q′(n̂)± iU ′(n̂)]e−il·n̂

= −e∓2iφl

∫
dn̂[Q(n̂)± iU(n̂)]e−il·n̂

• For the B-mode to not vanish, the polarization must point in a
direction not related to the wavevector - not possible for density
fluctuations in linear theory

• Generalize to all-sky: plane waves are eigenmodes of the Laplace
operator on the tensor P.



Spin Harmonics
• Laplace Eigenfunctions

∇2
±2Y`m[σ3 ∓ iσ1] = −[l(l + 1)− 4]±2Y`m[σ3 ∓ iσ1]

• Spin s spherical harmonics: orthogonal and complete∫
dn̂sY

∗
`m(n̂)sY`m(n̂) = δ``′δmm′∑

`m

sY
∗
`m(n̂)sY`m(n̂′) = δ(φ− φ′)δ(cos θ − cos θ′)

where the ordinary spherical harmonics are Y`m = 0Y`m

• Given in terms of the rotation matrix

sY`m(βα) = (−1)m
√

2`+ 1

4π
D`
−ms(αβ0)



Statistical Representation
• All-sky decomposition

[Q(n̂)± iU(n̂)] =
∑
`m

[E`m ± iB`m]±2Y`m(n̂)

• Power spectra

〈E∗`mE`m〉 = δ``′δmm′CEE
`

〈B∗`mB`m〉 = δ``′δmm′CBB
`

• Cross correlation

〈Θ∗`mE`m〉 = δ``′δmm′CΘE
`

others vanish if parity is conserved



Thomson Scattering
• Polarization state of radiation in direction n̂ described by the

intensity matrix
〈
Ei(n̂)E∗j (n̂)

〉
, where E is the electric field vector

and the brackets denote time averaging.

• Differential cross section

dσ

dΩ
=

3

8π
|Ê′ · Ê|2σT ,

where σT = 8πα2/3me is the Thomson cross section, Ê′ and Ê

denote the incoming and outgoing directions of the electric field or
polarization vector.

• Summed over angle and incoming polarization∑
i=1,2

∫
dn̂′

dσ

dΩ
= σT



Polarization Generation
. E–mode

B–modee–

Linear
Polarization

Thomson
Scattering

Quadrupole

x k

y

z

• Heuristic:
incoming radiation shakes
an electron in direction
of electric field vector Ê′

• Radiates photon with
polarization also in direction Ê′

• But photon cannot be longitudinally polarized so that scattering
into 90◦ can only pass one polarization

• Linearly polarized radiation like polarization by reflection

• Unlike reflection of sunlight, incoming radiation is nearly isotropic

• Missing from direction orthogonal to original incoming direction

• Only quadrupole anisotropy generates polarization by Thomson
scattering


