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Set 1: CMB Statistics
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CMB Blackbody

e COBE FIRAS spectral measurement. yellBlackbody spectrum.
T = 2.725K giving Q,h? = 2.471 x 107°
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CMB Blackbody

e CMB is a (nearly) perfect blackbody characterized by a phase
space distribution function

1
f:eE/T—l

where the temperature 7'(x, nn, t) is observed at our position x = (
and time t; to be nearly 1sotropic with a mean temperature of

1= 2.725K

e Our observable then is the temperature anisotropy

T(07 ﬁa tO) - T
T

e Given that physical processes essentially put a band limit on this

O(h)

function it i1s useful to decompose it into a complete set of
harmonic coefficients



Spherical Harmonics

e Laplace Eigenfunctions
VA = (Il + 1)]Y;"
e Orthogonal and complete
/ dnY;™ (n)Y;" (n) = 0 dnm

> Y (R)Y () = 6(¢ — ¢')d(cos § — cos )
m

Generalizable to tensors on the sphere (polarization), modes on a
curved FRW metric

e Conjugation

Y = ()Y



Multipole Moments

e Decompose into multipole moments
O(h) = » Oy, (1)
m
e So Oy, is complex but O(n) real:

O*(h) = » 63,V (n)
m

so m and —m are not independent

O = (=1)"Or



N -pt correlation

e Since the fluctuations are random and zero mean we are interested
in characterizing the /V-point correlation

O©M1)...00) = > Y (Onm - Opm, )Y (1) ... Y™ ()

El...en mia...Mn,

e Statistical 1sotropy implies that we should get the same result in a
rotated frame

RIY;"(0)] =Y Dy(a, 8,7)Y," (0)

where o, 5 and v are the Euler angles of the rotation and D is the
Wigner function (note Y, 1s a D function)
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N -pt correlation

e For any N-point function, combine rotation matrices (group
multiplication; angular momentum addition) and orthogonality

Z( 1)m2 me)ilmDe—lmg —m — 5m1m2

m

e The simplest case 1s the 2pt function:

<@£1m1 ®€2m2> — 55132 5m1 —ma2 (_ 1)m1 Cﬁl
where (Y 1s the power spectrum. Check

_ E m (1 Lo
— 5@1625’”’1/ —m ) 10 Dm ml DQO/Q

mm2

— 55152051 Z( 1)m1 Dfrllel fobg—m’l — 551526m1—m2(_1)m1 051

/
my



N -pt correlation
e Using the reality of the field

<@Zlm1 @€2m2> — 551525?%1?%2051 -

e If the statistics were Gaussian then all the NV-point functions would
be defined in terms of the products of two-point contractions, €.g.

<@€1m1 @€2m2 @€3m3@€4m4> — 5€1£Q5m1m25£3£45m3m4061 053 + perm.

e More generally we can define the 1sotropy condition beyond
Gaussianity, e.g. the bispectrum

0y by /4
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CMB Temperature Fluctuations

e Angular Power Spectrum
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Why KQCg/Qﬂ'?

e Variance of the temperature fluctuation field

OM)OM)) = > ¥ (OO, )Y ()Y (0)

m 0'm/’

D Coy YMR)Y™(h)
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via the angle addition formula for spherical harmonics

e For some range A/ ~ / the contribution to the variance is

20 + 1 02
()~ —C
Ar T ot

e Conventional to use ¢(¢ + 1)/2x for reasons below

(O(n)O(N))rrae2 = AL




Cosmic Variance

e We only have access to our sky, not the ensemble average

e There are 2/ + 1 m-modes of given £ mode, so average

A

1
Co=——Y 0, Ou,
Y zm: tm ¢
o (Cy) = C, but now there is a cosmic variance

,  {((Co—C)(Cr—Cy))  (CCy) — C?

o C? S
e For Gaussian statistics
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Cosmic Variance

e Note that the distribution of C, is that of a sum of squares of
Gaussian variates

e Distributed as a x? of 2¢ + 1 degrees of freedom

e Approaches a Gaussian for 2¢ + 1 — oo (central limit theorem)
e Anomalously low quadrupole is not that unlikely

e 0¢, 1s a useful quantification of errors at high ¢

e Suppose Cy depends on a set of cosmological parameters c; then
we can estimate errors of ¢; measurements by error propagation

oC,
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Idealized Statistical Errors

e Take a noisy estimator of the multipoles in the map

é)ﬁm — @Em + me

and take the noise to be statistically 1sotropic
NN
<NEmN€’m’> — 5%’5mm’ ¢

e Construct an unbiased estimator of the power spectrum ((jg)

!
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E O Opn — CVN

C,= —
A1~
e Covariance 1n estimator
2
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Incomplete Sky

e On a small section of sky, the number of independent modes of a
given { is no longer 2¢ + 1

e As in Fourier analysis, there are two limitations: the lowest £ mode
that can be measured is the wavelength that fits in angular patch 6

—_ 27-‘-.

gmin — )
v
modes separated by A¢ < /,,;, cannot be measured independently

e Estimates of C, covary on a scale imposed by Al < £in

e Crude approximation: account only for the loss of independent
modes by rescaling the errors rather than introducing covariance

2

COV(C@, Cgl) = (2£+ 1)fk
SKy

(Cp+ CY) o0




Stokes Parameters

e Specific intensity 1s related to quadratic combinations of the field.

e Define the intensity matrix (time averaged over oscillations)
(EET)

e Hermitian matrix can be decomposed into Pauli matrices

1
P:<EET>:§(IUO+Q03+U‘71_VU2)’

where

1 0 0 1 0 —2 1 0
O) = ,O1 = , 092 = , O3 =
0 1 1 0 : 0 0 —1

e Stokes parameters recovered as Tr(o;P)



Stokes Parameters

e Consider a general plane wave solution

E(ta Z) — El (ta Z)él + EQ(ta Z)é2
Ei(t,z) = A el eilkz—wt)
Es(t, z) = Ase™? el(kz—wt)

e Explicitly:

[ = (BB} + B:E3) = A} + A2

Q = (E\E} — EyE3) = Al — A;

U= (B\Ej + B2 Ef) = 2A, Ay cos(¢a — 1)

V = —i(E\E} — ExEY) = 24, Ay sin(¢s — ¢1)

so that the Stokes parameters define the state up to an
unobservable overall phase of the wave



Detection

e This suggests that T

€ €
abstractly there are two U omt 2

different ways to detect

polarization: separate

and difference orthogonal 81 82
modes (bolometers /, ()

or correlate the separated i
components (U, V). % Q S% ‘ v ‘ ,X\ ‘
O/

R
)

e In the correlator example the natural output would be U but one
can recover V' by introducing a phase lag ¢ = /2 on one arm, and
() by having the OMT pick out directions rotated by 7 /4.

e Likewise, in the bolometer example, one can rotate the polarizer
and also introduce a coherent front end to change V' to U.



Detection

e Techniques also differ in the systematics that can convert
unpolarized sky to fake polarization

e Differencing detectors are sensitive to relative gain fluctuations

e Correlation detectors are sensitive to cross coupling between the
arms

e More generally, the intended block diagram and systematic
problems map components of the polarization matrix onto others
and are kept track of through “Jones” or instrumental response
matrices Eq. = JE;,

Pdet — J]-Dan]L

where the end result 1s either a differencing or a correlation of the
Pdet-



Polarization

e Radiation field involves a directed quantity, the electric field
vector, which defines the polarization

e Consider a general plane wave solution
E(ta Z) — El (ta Z)él =+ EQ(t7 Z)éQ

Ei(t, z) = ReA;e1eibz—wt)

Es(t, z) = ReAye?2eilkz—wt)
or at z = 0 the field vector traces out an ellipse

E(t, O) E— Al COS(Cdt — le)él —+ AQ COS(CUt — ng)ég
with principal axes defined by
E(t,0) = A} cos(wt)é] — A} sin(wt)é,

so as to trace out a clockwise rotation for A7, A;, > 0



Polarization

e Define polarization angle

~/ ~ . A
€; = COs x€1 + Sl x€s

A

/ . A A
€, = — SIn Y€1 + COoS X €2

e Match

E(t,0) = A] coswt[cos y€; + sin yé,]
— A, cos wt|— sin y€; + cos x€s)
= Ai[cos ¢y cos wt + sin ¢ sin wt|e;

+ As|cos ¢ cos wt + sin ¢g sin wit|és




Polarization
e Define relative strength of two principal states
Al = Eycos A, = Eysinf3
e Characterize the polarization by two angles
Ajcos ¢y = Eycos fcosy, Ajqsin¢; = Eysin 8 sin vy,
Ay cos ¢y = Eycos fsin vy, Ay sin g = —FEjy sin 5 cos
Or Stokes parameters by
[ =E;, Q= Ejcos23cos2y
U= E5cos2Bsin2y, V = Ejsin2f

o So I? = (Q* + U? + V#, double angles reflect the spin 2 field or
headless vector nature of polarization



Polarization

Special cases

e If 3 = 0,7/2, 7w then only one principal axis, ellipse collapses to a
line and V' = 0 — linear polarization oriented at angle

If y=0,7/2,mthen ] =+Q and U =0
If y=n/4,37/4...then ] = +U and Q) =0-soU is Q) ina
frame rotated by 45 degrees

o If 5 = 7 /4,3m/4, then principal components have equal strength

and F field rotatesonacircle: [ =+Vand @ =U =0 —
circular polarization

e U/() = tan 2y defines angle of linear polarization and
V /I = sin 25 defines degree of circular polarization



Natural Light

e A monochromatic plane wave 1s completely polarized
P=Q*+U*+V?

e Polarization matrix 1s like a density matrix in quantum mechanics
and allows for pure (coherent) states and mixed states

e Suppose the total E;; field 1s composed of different (frequency)
components

Etot — Z Ei

e Then components decorrelate in time average

(BwEle) =Y (BE])) =Y (BE])

1 )



Natural Light

e So Stokes parameters of incoherent contributions add

I=) 1 Q=) Q U= U V=)V

and since individual (), U and V' can have either sign:
I* > Q? + U? + V72, all 4 Stokes parameters needed



Linear Polarization
o ) x (E1EY) — (EuE3), U o< (E1ES) + (EyEY).
e Counterclockwise rotation of axes by 6 = 45°
By = (B, —E)/V2, Ey,=(E,+E)/V?2

o U x (EE*) — (EyES), difference of intensities at 45° or '
e More generally, P transforms as a tensor under rotations and

Q' = cos(20)Q + sin(20)U

U' = —sin(20)Q + cos(20)U

or
Q' +iU = eT[Q + iU

acquires a phase under rotation and 1s a spin +2 object



Coordinate Independent Representation

e Two directions: orientation of polarization and change in
amplitude, i.e. () and U in the basis of the Fourier wavevector

(pointing with angle ¢;) for small sections of sky are called £ and
B components

E(1) £4B(1) = — / di[Q' () 4 iU’ (f)]e "™

= —eTH / da[Q(n) £ iU (f)]e "™

e For the B-mode to not vanish, the polarization must point in a
direction not related to the wavevector - not possible for density
fluctuations in linear theory

e Generalize to all-sky: plane waves are eigenmodes of the Laplace
operator on the tensor P.



Spin Harmonics

e Laplace Eigenfunctions

VQiQYEm[O'?, Fio| = —[l(l+1) —4]Y|o3 Fioq]

e Spin s spherical harmonics: orthogonal and complete

/dﬂs}/em( ) Yvém( )— 5@6’5mm’

an )sYem(B') = 6(¢ — ¢)d(cos 0 — cos ¢')

where the ordinary spherical harmonics are Yy,,, = oY

e (Given 1n terms of the rotation matrix

2€—|—1
47

snm(ﬁg) — (_1) (0450)



Statistical Representation

e All-sky decomposition

Q1) +iU(R)] = > [Epm £ iBom]2Yim(0)

m

e Power spectra

<EZmE€m> — 5@8’5mm’ EEE

<BZmB€m> — 5@6’5mm’ KBB
e Cross correlation
<@ZmE€m> — 5%’5mm’C?E

others vanish if parity 1s conserved



Thomson Scattering

e Polarization state of radiation in direction n described by the
intensity matrix ( F;(n)E?(n)), where E is the electric field vector
and the brackets denote time averaging.

e Differential cross section

do
df)

where o = 8ma?/3m, is the Thomson cross section, E' and E

3 . .
= —W]E’-E\QJT,

denote the incoming and outgoing directions of the electric field or
polarization vector.

e Summed over angle and incoming polarization

> [l

1=1,2



Polarization Generation

y E—-mode

e Heuristic:

B—mode k —>

e But photon cannot be longitudinally polarized so that scattering

. . . . Quadrupole
incoming radiation shakes J

. . . Thomson

an electron 1n direction Scattering )

. ~ <
of electric field vector E’

Linear
Polarization

N)

e Radiates photon with
polarization also in direction E’

into 90° can only pass one polarization
e Linearly polarized radiation like polarization by reflection
e Unlike reflection of sunlight, incoming radiation 1s nearly 1sotropic
e Missing from direction orthogonal to original incoming direction

e Only quadrupole anisotropy generates polarization by Thomson
scattering



