KIPMU

Set 1: CMB Statistics
 Wayne Hu

CMB Blackbody

- COBE FIRAS spectral measurement. yellBlackbody spectrum. $T=2.725 \mathrm{~K}$ giving $\Omega_{\gamma} h^{2}=2.471 \times 10^{-5}$

GHz

CMB Blackbody

- CMB is a (nearly) perfect blackbody characterized by a phase space distribution function

$$
f=\frac{1}{e^{E / T}-1}
$$

where the temperature $T(\mathbf{x}, \hat{\mathbf{n}}, t)$ is observed at our position $\mathbf{x}=0$ and time t_{0} to be nearly isotropic with a mean temperature of $\bar{T}=2.725 \mathrm{~K}$

- Our observable then is the temperature anisotropy

$$
\Theta(\hat{\mathbf{n}}) \equiv \frac{T\left(0, \hat{\mathbf{n}}, t_{0}\right)-\bar{T}}{\bar{T}}
$$

- Given that physical processes essentially put a band limit on this function it is useful to decompose it into a complete set of harmonic coefficients

Spherical Harmonics

- Laplace Eigenfunctions

$$
\nabla^{2} Y_{\ell}^{m}=-[l(l+1)] Y_{\ell}^{m}
$$

- Orthogonal and complete

$$
\begin{aligned}
\int d \hat{\mathbf{n}} Y_{\ell}^{m *}(\hat{\mathbf{n}}) Y_{\ell}^{m}(\hat{\mathbf{n}}) & =\delta_{\ell \ell^{\prime}} \delta_{m m^{\prime}} \\
\sum_{\ell m} Y_{\ell}^{m *}(\hat{\mathbf{n}}) Y_{\ell}^{m}\left(\hat{\mathbf{n}}^{\prime}\right) & =\delta\left(\phi-\phi^{\prime}\right) \delta\left(\cos \theta-\cos \theta^{\prime}\right)
\end{aligned}
$$

Generalizable to tensors on the sphere (polarization), modes on a curved FRW metric

- Conjugation

$$
Y_{\ell}^{m *}=(-1)^{m} Y_{\ell}^{-m}
$$

Multipole Moments

- Decompose into multipole moments

$$
\Theta(\hat{\mathbf{n}})=\sum_{\ell m} \Theta_{\ell m} Y_{\ell}^{m}(\hat{\mathbf{n}})
$$

- So $\Theta_{\ell m}$ is complex but $\Theta(\hat{\mathbf{n}})$ real:

$$
\begin{aligned}
\Theta^{*}(\hat{\mathbf{n}}) & =\sum_{\ell m} \Theta_{\ell m}^{*} Y_{\ell}^{m *}(\hat{\mathbf{n}}) \\
& =\sum_{\ell m} \Theta_{\ell m}^{*}(-1)^{m} Y_{\ell}^{-m}(\hat{\mathbf{n}}) \\
& =\Theta(\hat{\mathbf{n}})=\sum_{\ell m} \Theta_{\ell m} Y_{\ell}^{m}(\hat{\mathbf{n}})=\sum_{\ell-m} \Theta_{\ell-m} Y_{\ell}^{-m}(\hat{\mathbf{n}})
\end{aligned}
$$

so m and $-m$ are not independent

$$
\Theta_{\ell m}^{*}=(-1)^{m} \Theta_{\ell-m}
$$

N-pt correlation

- Since the fluctuations are random and zero mean we are interested in characterizing the N-point correlation

$$
\left\langle\Theta\left(\hat{\mathbf{n}}_{1}\right) \ldots \Theta\left(\hat{\mathbf{n}}_{n}\right)\right\rangle=\sum_{\ell_{1} \ldots \ell_{n}} \sum_{m_{1} \ldots m_{n}}\left\langle\Theta_{\ell_{1} m_{1}} \ldots \Theta_{\ell_{n} m_{n}}\right\rangle Y_{\ell_{1}}^{m_{1}}\left(\hat{\mathbf{n}}_{1}\right) \ldots Y_{\ell_{n}}^{m_{n}}\left(\hat{\mathbf{n}}_{n}\right)
$$

- Statistical isotropy implies that we should get the same result in a rotated frame

$$
R\left[Y_{\ell}^{m}(\hat{\mathbf{n}})\right]=\sum_{m^{\prime}} D_{m^{\prime} m}^{\ell}(\alpha, \beta, \gamma) Y_{\ell}^{m^{\prime}}(\hat{\mathbf{n}})
$$

where α, β and γ are the Euler angles of the rotation and D is the Wigner function (note Y_{ℓ}^{m} is a D function)

$$
\left\langle\Theta_{\ell_{1} m_{1}} \ldots \Theta_{\ell_{n} m_{n}}\right\rangle=\sum_{m_{1}^{\prime} \ldots m_{n}^{\prime}}\left\langle\Theta_{\ell_{1} m_{1}^{\prime}} \ldots \Theta_{\ell_{n} m_{n}^{\prime}}\right\rangle D_{m_{1} m_{1}^{\prime}}^{\ell_{1}} \ldots D_{m_{n} m_{n}^{\prime}}^{\ell_{n}}
$$

N-pt correlation

- For any N-point function, combine rotation matrices (group multiplication; angular momentum addition) and orthogonality

$$
\sum_{m}(-1)^{m_{2}-m} D_{m_{1} m}^{\ell_{1}} D_{-m_{2}-m}^{\ell_{1}}=\delta_{m_{1} m_{2}}
$$

- The simplest case is the 2 pt function:

$$
\left\langle\Theta_{\ell_{1} m_{1}} \Theta_{\ell_{2} m_{2}}\right\rangle=\delta_{\ell_{1} \ell_{2}} \delta_{m_{1}-m_{2}}(-1)^{m_{1}} C_{\ell_{1}}
$$

where C_{ℓ} is the power spectrum. Check

$$
\begin{aligned}
& =\sum_{m_{1}^{\prime} m_{2}^{\prime}} \delta_{\ell_{1} \ell_{2}} \delta_{m_{1}^{\prime}-m_{2}^{\prime}}(-1)^{m_{1}^{\prime}} C_{\ell_{1}} D_{m_{1} m_{1}^{\prime}}^{\ell_{1}} D_{m_{2} m_{2}^{\prime}}^{\ell_{2}} \\
& =\delta_{\ell_{1} \ell_{2}} C_{\ell_{1}} \sum_{m_{1}^{\prime}}(-1)^{m_{1}^{\prime}} D_{m_{1} m_{1}^{\prime}}^{\ell_{1}} D_{m_{2}-m_{1}^{\prime}}^{\ell_{2}}=\delta_{\ell_{1} \ell_{2}} \delta_{m_{1}-m_{2}}(-1)^{m_{1}} C_{\ell_{1}}
\end{aligned}
$$

N-pt correlation

- Using the reality of the field

$$
\left\langle\Theta_{\ell_{1} m_{1}}^{*} \Theta_{\ell_{2} m_{2}}\right\rangle=\delta_{\ell_{1} \ell_{2}} \delta_{m_{1} m_{2}} C_{\ell_{1}}
$$

- If the statistics were Gaussian then all the N-point functions would be defined in terms of the products of two-point contractions, e.g.
$\left\langle\Theta_{\ell_{1} m_{1}} \Theta_{\ell_{2} m_{2}} \Theta_{\ell_{3} m_{3}} \Theta_{\ell_{4} m_{4}}\right\rangle=\delta_{\ell_{1} \ell_{2}} \delta_{m_{1} m_{2}} \delta_{\ell_{3} \ell_{4}} \delta_{m_{3} m_{4}} C_{\ell_{1}} C_{\ell_{3}}+$ perm.
- More generally we can define the isotropy condition beyond Gaussianity, e.g. the bispectrum

$$
\left\langle\Theta_{\ell_{1} m_{1}} \ldots \Theta_{\ell_{3} m_{3}}\right\rangle=\left(\begin{array}{ccc}
\ell_{1} & \ell_{2} & \ell_{3} \\
m_{1} & m_{2} & m_{3}
\end{array}\right) B_{\ell_{1} \ell_{2} \ell_{3}}
$$

CMB Temperature Fluctuations

- Angular Power Spectrum

Why $\ell^{2} C_{\ell} / 2 \pi$?

- Variance of the temperature fluctuation field

$$
\begin{aligned}
\langle\Theta(\hat{\mathbf{n}}) \Theta(\hat{\mathbf{n}})\rangle & =\sum_{\ell m} \sum_{\ell^{\prime} m^{\prime}}\left\langle\Theta_{\ell m} \Theta_{\ell^{\prime} m^{\prime}}^{*}\right\rangle Y_{\ell}^{m}(\hat{\mathbf{n}}) Y_{\ell^{\prime}}^{m^{\prime} *}(\hat{\mathbf{n}}) \\
& =\sum_{\ell} C_{\ell} \sum_{m} Y_{\ell}^{m}(\hat{\mathbf{n}}) Y_{\ell}^{m *}(\hat{\mathbf{n}}) \\
& =\sum_{\ell} \frac{2 \ell+1}{4 \pi} C_{\ell}
\end{aligned}
$$

via the angle addition formula for spherical harmonics

- For some range $\Delta \ell \approx \ell$ the contribution to the variance is

$$
\langle\Theta(\hat{\mathbf{n}}) \Theta(\hat{\mathbf{n}})\rangle_{\ell \pm \Delta \ell / 2} \approx \Delta \ell \frac{2 \ell+1}{4 \pi} C_{\ell} \approx \frac{\ell^{2}}{2 \pi} C_{\ell}
$$

- Conventional to use $\ell(\ell+1) / 2 \pi$ for reasons below

Cosmic Variance

- We only have access to our sky, not the ensemble average
- There are $2 \ell+1 \mathrm{~m}$-modes of given ℓ mode, so average

$$
\hat{C}_{\ell}=\frac{1}{2 \ell+1} \sum_{m} \Theta_{\ell m}^{*} \Theta_{\ell m}
$$

- $\left\langle\hat{C}_{\ell}\right\rangle=C_{\ell}$ but now there is a cosmic variance

$$
\sigma_{C_{\ell}}^{2}=\frac{\left\langle\left(\hat{C}_{\ell}-C_{\ell}\right)\left(\hat{C}_{\ell}-C_{\ell}\right)\right\rangle}{C_{\ell}^{2}}=\frac{\left\langle\hat{C}_{\ell} \hat{C}_{\ell}\right\rangle-C_{\ell}^{2}}{C_{\ell}^{2}}
$$

- For Gaussian statistics

$$
\begin{aligned}
\sigma_{C_{\ell}}^{2} & =\frac{1}{(2 \ell+1)^{2} C_{\ell}^{2}}\left\langle\sum_{m m^{\prime}} \Theta_{\ell m}^{*} \Theta_{\ell m} \Theta_{\ell m^{\prime}}^{*} \Theta_{\ell m^{\prime}}\right\rangle-1 \\
& =\frac{1}{(2 \ell+1)^{2}} \sum_{m m^{\prime}}\left(\delta_{m m^{\prime}}+\delta_{m-m^{\prime}}\right)=\frac{2}{2 \ell+1}
\end{aligned}
$$

Cosmic Variance

- Note that the distribution of \hat{C}_{ℓ} is that of a sum of squares of Gaussian variates
- Distributed as a χ^{2} of $2 \ell+1$ degrees of freedom
- Approaches a Gaussian for $2 \ell+1 \rightarrow \infty$ (central limit theorem)
- Anomalously low quadrupole is not that unlikely
- $\sigma_{C_{\ell}}$ is a useful quantification of errors at high ℓ
- Suppose C_{ℓ} depends on a set of cosmological parameters c_{i} then we can estimate errors of c_{i} measurements by error propagation

$$
\begin{aligned}
F_{i j} & =\operatorname{Cov}^{-1}\left(c_{i}, c_{j}\right)=\sum_{\ell \ell^{\prime}} \frac{\partial C_{\ell}}{\partial c_{i}} \operatorname{Cov}^{-1}\left(\mathrm{C}_{\ell}, \mathrm{C}_{\ell^{\prime}}\right) \frac{\partial C_{\ell^{\prime}}}{\partial c_{j}} \\
& =\sum_{\ell} \frac{(2 \ell+1)}{2 C_{\ell}^{2}} \frac{\partial C_{\ell}}{\partial c_{i}} \frac{\partial C_{\ell}}{\partial c_{j}}
\end{aligned}
$$

Idealized Statistical Errors

- Take a noisy estimator of the multipoles in the map

$$
\hat{\Theta}_{\ell m}=\Theta_{\ell m}+N_{\ell m}
$$

and take the noise to be statistically isotropic

$$
\left\langle N_{\ell m}^{*} N_{\ell^{\prime} m^{\prime}}\right\rangle=\delta_{\ell \ell^{\prime}} \delta_{m m^{\prime}} C_{\ell}^{N N}
$$

- Construct an unbiased estimator of the power spectrum $\left\langle\hat{C}_{\ell}\right\rangle=C_{\ell}$

$$
\hat{C}_{\ell}=\frac{1}{2 \ell+1} \sum_{m=-l}^{l} \hat{\Theta}_{\ell m}^{*} \hat{\Theta}_{\ell m}-C_{\ell}^{N N}
$$

- Covariance in estimator

$$
\operatorname{Cov}\left(C_{\ell}, C_{\ell^{\prime}}\right)=\frac{2}{2 \ell+1}\left(C_{\ell}+C_{\ell}^{N N}\right)^{2} \delta_{\ell \ell^{\prime}}
$$

Incomplete Sky

- On a small section of sky, the number of independent modes of a given ℓ is no longer $2 \ell+1$
- As in Fourier analysis, there are two limitations: the lowest ℓ mode that can be measured is the wavelength that fits in angular patch θ

$$
\ell_{\min }=\frac{2 \pi}{\theta}
$$

modes separated by $\Delta \ell<\ell_{\text {min }}$ cannot be measured independently

- Estimates of C_{ℓ} covary on a scale imposed by $\Delta \ell<\ell_{\text {min }}$
- Crude approximation: account only for the loss of independent modes by rescaling the errors rather than introducing covariance

$$
\operatorname{Cov}\left(C_{\ell}, C_{\ell^{\prime}}\right)=\frac{2}{(2 \ell+1) f_{\text {sky }}}\left(C_{\ell}+C_{\ell}^{N N}\right)^{2} \delta_{\ell \ell^{\prime}}
$$

Stokes Parameters

- Specific intensity is related to quadratic combinations of the field.
- Define the intensity matrix (time averaged over oscillations) $\left\langle\mathbf{E} \mathbf{E}^{\dagger}\right\rangle$
- Hermitian matrix can be decomposed into Pauli matrices

$$
\mathbf{P}=\left\langle\mathbf{E} \mathbf{E}^{\dagger}\right\rangle=\frac{1}{2}\left(I \boldsymbol{\sigma}_{0}+Q \boldsymbol{\sigma}_{3}+U \boldsymbol{\sigma}_{1}-V \boldsymbol{\sigma}_{2}\right),
$$

where

$$
\boldsymbol{\sigma}_{0}=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right), \boldsymbol{\sigma}_{1}=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right), \boldsymbol{\sigma}_{2}=\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right), \boldsymbol{\sigma}_{3}=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)
$$

- Stokes parameters recovered as $\operatorname{Tr}\left(\sigma_{i} \mathbf{P}\right)$

Stokes Parameters

- Consider a general plane wave solution

$$
\begin{aligned}
\mathbf{E}(t, z) & =E_{1}(t, z) \hat{\mathbf{e}}_{1}+E_{2}(t, z) \hat{\mathbf{e}}_{2} \\
E_{1}(t, z) & =A_{1} e^{i \phi_{1}} e^{i(k z-\omega t)} \\
E_{2}(t, z) & =A_{2} e^{i \phi_{2}} e^{i(k z-\omega t)}
\end{aligned}
$$

- Explicitly:

$$
\begin{aligned}
I & =\left\langle E_{1} E_{1}^{*}+E_{2} E_{2}^{*}\right\rangle=A_{1}^{2}+A_{2}^{2} \\
Q & =\left\langle E_{1} E_{1}^{*}-E_{2} E_{2}^{*}\right\rangle=A_{1}^{2}-A_{2}^{2} \\
U & =\left\langle E_{1} E_{2}^{*}+E_{2} E_{1}^{*}\right\rangle=2 A_{1} A_{2} \cos \left(\phi_{2}-\phi_{1}\right) \\
V & =-i\left\langle E_{1} E_{2}^{*}-E_{2} E_{1}^{*}\right\rangle=2 A_{1} A_{2} \sin \left(\phi_{2}-\phi_{1}\right)
\end{aligned}
$$

so that the Stokes parameters define the state up to an unobservable overall phase of the wave

Detection

- This suggests that abstractly there are two different ways to detect polarization: separate and difference orthogonal modes (bolometers I, Q) or correlate the separated components (U, V).

- In the correlator example the natural output would be U but one can recover V by introducing a phase lag $\phi=\pi / 2$ on one arm, and Q by having the OMT pick out directions rotated by $\pi / 4$.
- Likewise, in the bolometer example, one can rotate the polarizer and also introduce a coherent front end to change V to U.

Detection

- Techniques also differ in the systematics that can convert unpolarized sky to fake polarization
- Differencing detectors are sensitive to relative gain fluctuations
- Correlation detectors are sensitive to cross coupling between the arms
- More generally, the intended block diagram and systematic problems map components of the polarization matrix onto others and are kept track of through "Jones" or instrumental response matrices $\mathbf{E}_{\text {det }}=\mathbf{J E} \mathbf{E}_{\text {in }}$

$$
\mathbf{P}_{\mathrm{det}}=\mathbf{J} \mathbf{P}_{\mathrm{in}} \mathbf{J}^{\dagger}
$$

where the end result is either a differencing or a correlation of the $\mathbf{P}_{\mathrm{det}}$.

Polarization

- Radiation field involves a directed quantity, the electric field vector, which defines the polarization
- Consider a general plane wave solution

$$
\begin{aligned}
\mathbf{E}(t, z) & =E_{1}(t, z) \hat{\mathbf{e}}_{1}+E_{2}(t, z) \hat{\mathbf{e}}_{2} \\
E_{1}(t, z) & =\operatorname{Re} A_{1} e^{i \phi_{1}} e^{i(k z-\omega t)} \\
E_{2}(t, z) & =\operatorname{Re} A_{2} e^{i \phi_{2}} e^{i(k z-\omega t)}
\end{aligned}
$$

or at $z=0$ the field vector traces out an ellipse

$$
\mathbf{E}(t, 0)=A_{1} \cos \left(\omega t-\phi_{1}\right) \hat{\mathbf{e}}_{1}+A_{2} \cos \left(\omega t-\phi_{2}\right) \hat{\mathbf{e}}_{2}
$$

with principal axes defined by

$$
\mathbf{E}(t, 0)=A_{1}^{\prime} \cos (\omega t) \hat{\mathbf{e}}_{1}^{\prime}-A_{2}^{\prime} \sin (\omega t) \hat{\mathbf{e}}_{2}^{\prime}
$$

so as to trace out a clockwise rotation for $A_{1}^{\prime}, A_{2}^{\prime}>0$

Polarization

- Define polarization angle

$$
\begin{aligned}
& \hat{\mathbf{e}}_{1}^{\prime}=\cos \chi \hat{\mathbf{e}}_{1}+\sin \chi \hat{\mathbf{e}}_{2} \\
& \hat{\mathbf{e}}_{2}^{\prime}=-\sin \chi \hat{\mathbf{e}}_{1}+\cos \chi \hat{\mathbf{e}}_{2}
\end{aligned}
$$

- Match

$$
\begin{aligned}
\mathbf{E}(t, 0)= & A_{1}^{\prime} \cos \omega t\left[\cos \chi \hat{\mathbf{e}}_{1}+\sin \chi \hat{\mathbf{e}}_{2}\right] \\
& -A_{2}^{\prime} \cos \omega t\left[-\sin \chi \hat{\mathbf{e}}_{1}+\cos \chi \hat{\mathbf{e}}_{2}\right] \\
= & A_{1}\left[\cos \phi_{1} \cos \omega t+\sin \phi_{1} \sin \omega t\right] \hat{\mathbf{e}}_{1} \\
& +A_{2}\left[\cos \phi_{2} \cos \omega t+\sin \phi_{2} \sin \omega t\right] \hat{\mathbf{e}}_{2}
\end{aligned}
$$

Polarization

- Define relative strength of two principal states

$$
A_{1}^{\prime}=E_{0} \cos \beta \quad A_{2}^{\prime}=E_{0} \sin \beta
$$

- Characterize the polarization by two angles

$$
\begin{array}{ll}
A_{1} \cos \phi_{1}=E_{0} \cos \beta \cos \chi, & A_{1} \sin \phi_{1}=E_{0} \sin \beta \sin \chi \\
A_{2} \cos \phi_{2}=E_{0} \cos \beta \sin \chi, & A_{2} \sin \phi_{2}=-E_{0} \sin \beta \cos \chi
\end{array}
$$

Or Stokes parameters by

$$
\begin{aligned}
I & =E_{0}^{2}, \quad Q=E_{0}^{2} \cos 2 \beta \cos 2 \chi \\
U & =E_{0}^{2} \cos 2 \beta \sin 2 \chi, \quad V=E_{0}^{2} \sin 2 \beta
\end{aligned}
$$

- So $I^{2}=Q^{2}+U^{2}+V^{2}$, double angles reflect the spin 2 field or headless vector nature of polarization

Polarization

Special cases

- If $\beta=0, \pi / 2, \pi$ then only one principal axis, ellipse collapses to a line and $V=0 \rightarrow$ linear polarization oriented at angle χ

$$
\begin{aligned}
& \text { If } \chi=0, \pi / 2, \pi \text { then } I= \pm Q \text { and } U=0 \\
& \text { If } \chi=\pi / 4,3 \pi / 4 \ldots \text { then } I= \pm U \text { and } Q=0-\text { so } U \text { is } Q \text { in a } \\
& \text { frame rotated by } 45 \text { degrees }
\end{aligned}
$$

- If $\beta=\pi / 4,3 \pi / 4$, then principal components have equal strength and E field rotates on a circle: $I= \pm V$ and $Q=U=0 \rightarrow$ circular polarization
- $U / Q=\tan 2 \chi$ defines angle of linear polarization and $V / I=\sin 2 \beta$ defines degree of circular polarization

Natural Light

- A monochromatic plane wave is completely polarized $I^{2}=Q^{2}+U^{2}+V^{2}$
- Polarization matrix is like a density matrix in quantum mechanics and allows for pure (coherent) states and mixed states
- Suppose the total $\mathbf{E}_{\text {tot }}$ field is composed of different (frequency) components

$$
\mathbf{E}_{\mathrm{tot}}=\sum_{i} \mathbf{E}_{i}
$$

- Then components decorrelate in time average

$$
\left\langle\mathbf{E}_{\mathrm{tot}} \mathbf{E}_{\mathrm{tot}}^{\dagger}\right\rangle=\sum_{i j}\left\langle\mathbf{E}_{i} \mathbf{E}_{j}^{\dagger}\right\rangle=\sum_{i}\left\langle\mathbf{E}_{i} \mathbf{E}_{i}^{\dagger}\right\rangle
$$

Natural Light

- So Stokes parameters of incoherent contributions add

$$
I=\sum_{i} I_{i} \quad Q=\sum_{i} Q_{i} \quad U=\sum_{i} U_{i} \quad V=\sum_{i} V_{i}
$$

and since individual Q, U and V can have either sign:
$I^{2} \geq Q^{2}+U^{2}+V^{2}$, all 4 Stokes parameters needed

Linear Polarization

- $Q \propto\left\langle E_{1} E_{1}^{*}\right\rangle-\left\langle E_{2} E_{2}^{*}\right\rangle, U \propto\left\langle E_{1} E_{2}^{*}\right\rangle+\left\langle E_{2} E_{1}^{*}\right\rangle$.
- Counterclockwise rotation of axes by $\theta=45^{\circ}$

$$
E_{1}=\left(E_{1}^{\prime}-E_{2}^{\prime}\right) / \sqrt{2}, \quad E_{2}=\left(E_{1}^{\prime}+E_{2}^{\prime}\right) / \sqrt{2}
$$

- $U \propto\left\langle E_{1}^{\prime} E_{1}^{\prime *}\right\rangle-\left\langle E_{2}^{\prime} E_{2}^{\prime *}\right\rangle$, difference of intensities at 45° or Q^{\prime}
- More generally, \mathbf{P} transforms as a tensor under rotations and

$$
\begin{aligned}
& Q^{\prime}=\cos (2 \theta) Q+\sin (2 \theta) U \\
& U^{\prime}=-\sin (2 \theta) Q+\cos (2 \theta) U
\end{aligned}
$$

or

$$
Q^{\prime} \pm i U^{\prime}=e^{\mp 2 i \theta}[Q \pm i U]
$$

acquires a phase under rotation and is a spin ± 2 object

Coordinate Independent Representation

- Two directions: orientation of polarization and change in amplitude, i.e. Q and U in the basis of the Fourier wavevector (pointing with angle ϕ_{l}) for small sections of sky are called E and B components

$$
\begin{aligned}
E(\mathbf{l}) \pm i B(\mathbf{l}) & =-\int d \hat{\mathbf{n}}\left[Q^{\prime}(\hat{\mathbf{n}}) \pm i U^{\prime}(\hat{\mathbf{n}})\right] e^{-i \mathbf{l} \cdot \hat{\mathbf{n}}} \\
& =-e^{\mp 2 i \phi_{l}} \int d \hat{\mathbf{n}}[Q(\hat{\mathbf{n}}) \pm i U(\hat{\mathbf{n}})] e^{-i \mathbf{l} \cdot \hat{\mathbf{n}}}
\end{aligned}
$$

- For the B-mode to not vanish, the polarization must point in a direction not related to the wavevector - not possible for density fluctuations in linear theory
- Generalize to all-sky: plane waves are eigenmodes of the Laplace operator on the tensor \mathbf{P}.

Spin Harmonics

- Laplace Eigenfunctions

$$
\nabla_{ \pm 2}^{2} Y_{\ell m}\left[\boldsymbol{\sigma}_{3} \mp i \boldsymbol{\sigma}_{1}\right]=-[l(l+1)-4]_{ \pm 2} Y_{\ell m}\left[\boldsymbol{\sigma}_{3} \mp i \boldsymbol{\sigma}_{1}\right]
$$

- Spin s spherical harmonics: orthogonal and complete

$$
\begin{aligned}
\int d \hat{\mathbf{n}}_{s} Y_{\ell m}^{*}(\hat{\mathbf{n}})_{s} Y_{\ell m}(\hat{\mathbf{n}}) & =\delta_{\ell \ell^{\prime}} \delta_{m m^{\prime}} \\
\sum_{\ell m}{ }_{s} Y_{\ell m}^{*}(\hat{\mathbf{n}})_{s} Y_{\ell m}\left(\hat{\mathbf{n}}^{\prime}\right) & =\delta\left(\phi-\phi^{\prime}\right) \delta\left(\cos \theta-\cos \theta^{\prime}\right)
\end{aligned}
$$

where the ordinary spherical harmonics are $Y_{\ell m}={ }_{0} Y_{\ell m}$

- Given in terms of the rotation matrix

$$
{ }_{s} Y_{\ell m}(\beta \alpha)=(-1)^{m} \sqrt{\frac{2 \ell+1}{4 \pi}} D_{-m s}^{\ell}(\alpha \beta 0)
$$

Statistical Representation

- All-sky decomposition

$$
[Q(\hat{\mathbf{n}}) \pm i U(\hat{\mathbf{n}})]=\sum_{\ell m}\left[E_{\ell m} \pm i B_{\ell m}\right]_{ \pm 2} Y_{\ell m}(\hat{\mathbf{n}})
$$

- Power spectra

$$
\begin{aligned}
& \left\langle E_{\ell m}^{*} E_{\ell m}\right\rangle=\delta_{\ell \ell^{\prime}} \delta_{m m^{\prime}} C_{\ell}^{E E} \\
& \left\langle B_{\ell m}^{*} B_{\ell m}\right\rangle=\delta_{\ell \ell^{\prime}} \delta_{m m^{\prime}} C_{\ell}^{B B}
\end{aligned}
$$

- Cross correlation

$$
\left\langle\Theta_{\ell m}^{*} E_{\ell m}\right\rangle=\delta_{\ell \ell^{\prime}} \delta_{m m^{\prime}} C_{\ell}^{\Theta E}
$$

others vanish if parity is conserved

Thomson Scattering

- Polarization state of radiation in direction $\hat{\mathbf{n}}$ described by the intensity matrix $\left\langle E_{i}(\hat{\mathbf{n}}) E_{j}^{*}(\hat{\mathbf{n}})\right\rangle$, where \mathbf{E} is the electric field vector and the brackets denote time averaging.
- Differential cross section

$$
\frac{d \sigma}{d \Omega}=\frac{3}{8 \pi}\left|\hat{\mathbf{E}}^{\prime} \cdot \hat{\mathbf{E}}\right|^{2} \sigma_{T},
$$

where $\sigma_{T}=8 \pi \alpha^{2} / 3 m_{e}$ is the Thomson cross section, $\hat{\mathbf{E}}^{\prime}$ and $\hat{\mathbf{E}}$ denote the incoming and outgoing directions of the electric field or polarization vector.

- Summed over angle and incoming polarization

$$
\sum_{i=1,2} \int d \hat{\mathbf{n}}^{\prime} \frac{d \sigma}{d \Omega}=\sigma_{T}
$$

Polarization Generation

- Heuristic: incoming radiation shakes an electron in direction of electric field vector $\hat{\mathbf{E}}^{\prime}$
- Radiates photon with
 polarization also in direction $\hat{\mathbf{E}}^{\prime}$
- But photon cannot be longitudinally polarized so that scattering into 90° can only pass one polarization
- Linearly polarized radiation like polarization by reflection
- Unlike reflection of sunlight, incoming radiation is nearly isotropic
- Missing from direction orthogonal to original incoming direction
- Only quadrupole anisotropy generates polarization by Thomson scattering

