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Set 2: Polarization and Secondaries
Wayne Hu



Stokes Parameters

e Specific intensity is related to quadratic combinations of the
electric field.

e Define the intensity matrix (time averaged over oscillations)
(EET)

e Hermitian matrix can be decomposed into Pauli matrices

1
P=<EET>:§(IUO+Q03+U01—VU2)v

where

10 0 1 0 —1 1 0
o0 = 01 = , 02 = , 03 =
0 1 1 0 1 0 0 —1

e Stokes parameters recovered as Tr(o;P)

e Choose units of temperature for Stokes parameters [ — ©



Stokes Parameters

e Consider a general plane wave solution

E(ta Z) — El (ta Z)él + EQ(ta Z)é2
Ei(t,z) = A el eilkz—wt)
Es(t, z) = Ase™? el(kz—wt)

e Explicitly:

[ = (BB} + B:E3) = A} + A2

Q = (E\E} — EyE3) = Al — A;

U= (B\Ej + B2 Ef) = 2A, Ay cos(¢a — 1)

V = —i(E\E} — ExEY) = 24, Ay sin(¢s — ¢1)

so that the Stokes parameters define the state up to an
unobservable overall phase of the wave



Detection

e This suggests that T
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e In the correlator example the natural output would be U but one
can recover V' by introducing a phase lag ¢ = /2 on one arm, and
() by having the OMT pick out directions rotated by 7 /4.

e Likewise, in the bolometer example, one can rotate the polarizer
and also introduce a coherent front end to change V' to U.



Detection

e Techniques also differ in the systematics that can convert
unpolarized sky to fake polarization

e Differencing detectors are sensitive to relative gain fluctuations

e Correlation detectors are sensitive to cross coupling between the
arms

e More generally, the intended block diagram and systematic
problems map components of the polarization matrix onto others
and are kept track of through “Jones” or instrumental response
matrices Eq. = JE;,

Pdet — J]-Dan]L

where the end result 1s either a differencing or a correlation of the
Pdet-



Polarization

e Radiation field involves a directed quantity, the electric field
vector, which defines the polarization

e Consider a general plane wave solution
E(ta Z) — El (ta Z)él =+ EQ(t7 Z)éQ

Ei(t, z) = ReA;e1eibz—wt)

Es(t, z) = ReAye?2eilkz—wt)
or at z = 0 the field vector traces out an ellipse

E(t, O) E— Al COS(Cdt — le)él —+ AQ COS(CUt — ng)ég
with principal axes defined by
E(t,0) = A} cos(wt)é] — A} sin(wt)é,

so as to trace out a clockwise rotation for A7, A;, > 0



Polarization

e Define polarization angle

~/ ~ . A
€; = COs x€1 + Sl x€s

A

/ . A A
€, = — SIn Y€1 + COoS X €2

e Match

E(t,0) = A] coswt[cos y€; + sin yé,]
— A, cos wt|— sin y€; + cos x€s)
= Ai[cos ¢y cos wt + sin ¢ sin wt|e;

+ As|cos ¢ cos wt + sin ¢g sin wit|és




Polarization
e Define relative strength of two principal states
Al = Eycos A, = Eysinf3
e Characterize the polarization by two angles
Ajcos ¢y = Eycos fcosy, Ajqsin¢; = Eysin 8 sin vy,
Ay cos ¢y = Eycos fsin vy, Ay sin g = —FEjy sin 5 cos
Or Stokes parameters by
[ =E;, Q= Ejcos23cos2y
U= E5cos2Bsin2y, V = Ejsin2f

o So I? = (Q* + U? + V#, double angles reflect the spin 2 field or
headless vector nature of polarization



Polarization

Special cases

e If 3 = 0,7/2, 7w then only one principal axis, ellipse collapses to a
line and V' = 0 — linear polarization oriented at angle

If y=0,7/2,mthen ] =+Q and U =0
If y=n/4,37/4...then ] = +U and Q) =0-soU is Q) ina
frame rotated by 45 degrees

o If 5 = 7 /4,3m/4, then principal components have equal strength

and F field rotatesonacircle: [ =+Vand @ =U =0 —
circular polarization

e U/() = tan 2y defines angle of linear polarization and
V /I = sin 25 defines degree of circular polarization



Natural Light

e A monochromatic plane wave 1s completely polarized
P=Q*+U*+V?

e Polarization matrix 1s like a density matrix in quantum mechanics
and allows for pure (coherent) states and mixed states

e Suppose the total E;; field 1s composed of different (frequency)
components

Etot — Z Ei

e Then components decorrelate in time average

(BwEle) =Y (BE])) =Y (BE])

1 )



Natural Light

e So Stokes parameters of incoherent contributions add

I=) 1 Q=) Q U= U V=)V

and since individual (), U and V' can have either sign:
I* > Q? + U? + V72, all 4 Stokes parameters needed



Linear Polarization
o ) x (E1EY) — (EuE3), U o< (E1ES) + (EyEY).
e Counterclockwise rotation of axes by 6 = 45°
By = (B, —E)/V2, Ey,=(E,+E)/V?2

o U x (EE*) — (EyES), difference of intensities at 45° or '
e More generally, P transforms as a tensor under rotations and

Q' = cos(20)Q + sin(20)U

U' = —sin(20)Q + cos(20)U

or
Q' +iU = eT[Q + iU

acquires a phase under rotation and 1s a spin +2 object



Coordinate Independent Representation
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e Two directions: orientation of polarization N

and change in amplitude, i.e. () and

U 1n the basis of the Fourier wavevector
(pointing with angle ¢;) for small sections
of sky are called I~ and B components

E) £iB(1) = - / da[Q' (1) + iU’ (1)) e 1™

_ e / FAIQ(R) & iU (R)]e~
e For the B-mode to not vanish, the
polarization must point in a direction not
related to the wavevector - not possible

for density fluctuations in linear theory

e Generalize to all-sky: eigenmodes of Laplace operator of tensor



Spin Harmonics

e Laplace Eigenfunctions

VQiQYEm[O'?, Fio| = —[l(l+1) —4]Y|o3 Fioq]

e Spin s spherical harmonics: orthogonal and complete

[ Y (8. Yo () = G
Z Y, (n)Yy,(n') =6(¢ — ¢')d(cosh — cos @)

where the ordinary spherical harmonics are Yy,,, = oY

e Given 1n terms of the rotation matrix

2€—|—1
47

snm(ﬁg) — (_1) (0450)



Statistical Representation

e All-sky decomposition

Q1) +iU(R)] = > [Epm £ iBom]2Yim(0)

m

e Power spectra

<EZmE€m> — 5@8’5mm’ EEE

<BZmB€m> — 5@6’5mm’ KBB
e Cross correlation
<@ZmE€m> — 5%’5mm’C?E

others vanish if parity 1s conserved



Planck Power Spectrum
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Thomson Scattering

e Polarization state of radiation in direction n described by the
intensity matrix ( F;(n)E?(n)), where E is the electric field vector
and the brackets denote time averaging.

e Differential cross section

do
df)

where o = 8ma?/3m, is the Thomson cross section, E' and E

3 . .
= —W]E’-E\QJT,

denote the incoming and outgoing directions of the electric field or
polarization vector.

e Summed over angle and incoming polarization

> [l

1=1,2



Polarization Generation

y E—-mode

e Heuristic:

B—mode k —>

e But photon cannot be longitudinally polarized so that scattering

. . . . Quadrupole
incoming radiation shakes J

. . . Thomson

an electron 1n direction Scattering )

. ~ <
of electric field vector E’

Linear
Polarization

N)

e Radiates photon with
polarization also in direction E’

into 90° can only pass one polarization
e Linearly polarized radiation like polarization by reflection
e Unlike reflection of sunlight, incoming radiation 1s nearly 1sotropic
e Missing from direction orthogonal to original incoming direction

e Only quadrupole anisotropy generates polarization by Thomson
scattering



Acoustic Polarization

Break down of tight-coupling leads to quadrupole anisotropy of

k
7T,y ~ ;/U'Y
Scaling kp = (7/n.)Y? — 7 = k%,
Know: kps, ~ kpn, ~ 10

So:



Acoustic Polarization

e Gradient of velocity 1s along direction of wavevector, so
polarization 1s pure f~-mode

e Velocity 1s 90° out of phase with temperature — turning points of
oscillator are zero points of velocity:

© + VU  cos(ks); v, o< sin(ks)

e Polarization peaks are at troughs of temperature power



Cross Correlation

e Cross correlation of temperature and polarization

(© 4+ ¥)(v,) x cos(ks)sin(ks) o sin(2ks)
e Oscillation at twice the frequency

e Correlation: radial or tangential around hot spots

e Partial correlation: easier to measure if polarization data 1s noisy,
harder to measure if polarization data is high S/ or if bands do
not resolve oscillations

e Good check for systematics and foregrounds

e Comparison of temperature and polarization 1s proof against
features 1n 1nitial conditions mimicking acoustic features



Reionization

e Reionization causes
rescattering of radiation

e Suppresses temperature anisotopy
as e~ 7 and changes interpretation
of amplitude to A,e™%7

e Electron sees temperature
anisotropy on its recombination

surface

e For wavelengths that are comparable to the horizon at reionization,
a quadrupole moment

e Rescatters to a linear polarization that 1s correlated with the
Sachs-Wolfe temperature anisotropy



Reionization

e Amplitude of
CF* depends mainly on 7

e Shape of C/'* depends
on reionization history

Transfer function

e Horizon at earlier epochs

subtends a smaller angle,

higher multipole peak

e Precision measurements can constrain the reionization history to
be either low or high z dominated



Polarization Power
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Tensor Power

e Gravitational l/aH
waves obey a Klein-Gordon like equation J\,@\N

e Like inflation, perturbations generated

by quantum fluctuations during inflation 1/aH

e Freeze out at horizon crossing
during inflation an amplitude
that reflects the energy scale of inflation

A2 = H*
X 27T2M}2)1

x E}

e Gravitational waves remain frozen outside the horizon at constant
amplitude

e Oscillate inside the horizon and decay or redshift as radiation



Tensor Quadrupoles

e Changing transverse-traceless
distortion of space creates a
quadrupole CMB anisotropy
much like the distortion
of test ring of particles

Tensors
(Gravity Waves)

e As the tensor mode enters the
horizon it imprints a quadrupole
temperature distortion: H7? is source to Sy~

e Modes that cross before recombination: effect erased by
rescattering e~ 7 in the integral solution

e Modes that cross after recombination: integrate contributions
along the line of sight - tensor ISW effect



Tensor Temperature Power Spectrum

e Resulting spectum,
near scale invariant out to

N=50

e

N=60

a iO (r0.002

to-Scalar Rat
0.00 0.05 0.10 0.15 0.20 0.25

horizon at recombination ¢ < 100

Tensor-to-Scalar

e Suppressed on smaller scales or

higher multipoles ¢ > 100, weakly

0.94 0.96 0.98 1.00

degenerate with tilt Primordia Tit (n)

e When added to scalar spectrum, enhances large scale anisotropy
over small scale

e Shape of total temperature spectrum can place tight limit r < 0.1,
for power law curvature spectrum

e Smaller tensor-scalar ratios cannot be constrained by temperature
alone due the high cosmic variance of the low multipole specrum



Tensor Polarization Power Spectrum

e Polarization
of gravitational wave determines the
quadrupole temperature anisotropy

e Scattering of quadrupole
temperature anisotropy generates
linear

polarization aligned with cold lobe

e Direction of CMB polarization is therefore determined by
gravitational wave polarization rather than direction of wavevector

e [-mode polarization when the amplitude 1s modulated by the
plane wave

e Requires scattering: two peaks - horizon at recombination and
reionization



Tensor Polarization Power Spectrum

e Measuring 5-modes from gravitational waves determines the
energy scale of inflation

E  \°
AB, ... ~ 0.024 - K
peak (1016(}6\/) K

e Also generates F/-mode polarization which, like temperature, 1s a
consistency check for r» ~ 0.1

e Projection 1s less sharp than for scalar [/, so evading temperature
bounds by adding features to the curvature spectrum can be tested



Gravitational Lensing

e Lensing 1s a surface brightness conserving remapping of source to
image planes by the gradient of the projected potential

1o D*—D X
o) =2 [ an Sy,

such that the fields are remapped as

r(n) = x(n+ Vo),
where x € {©, (), U} temperature and polarization.

e Taylor expansion leads to product of fields and Fourier
mode-coupling



Flat-sky Treatment

e Talyor expand

~

O(n) =6n + Vo)
= O(1) + Vio(0) V'O () + £ Vio() V,0(0) V'O (M) + ..

e Fourier decomposition




Flat-sky Treatment

e Mode coupling of harmonics

where
LLL)=¢o01-1)1-1) L
1 d?1
T 2 / (277)22 o(l)¢*(la+ 1L =1 (L-L)(L+L -1 L.

e Represents a coupling of harmonics separated by L ~ 60 peak of

deflection power



Power Spectrum

e Power spectra

(O (e()) = (2m)*(1-1) ¢,
(¢*(Me(l)) = (2m)?6(1 1) 77,

becomes
2 ~ d211 ~ 2
Cl — (]._Z R) Cl_l_ (271_) Cll 11|C [(].—]_1) ].1] ,
where
R = dl cee.

47T [



Smoothing Power Spectrum

o If éz slowly varying 102 £ | ]
then two term cancel 1010k .

S f lensed ;

~ d211 N % 10-11 = T unlensed \ 3
C, wa(l : 11)2 ~ Z2RCZ Ak P :
(27’(’)2 10—125— \ 3

e So lensing acts to smooth 1013é—
features in the power [ ||||||1|0 L1 |||||1|(lO L1 ||||1|(|)(|)0 L1 1]

spectrum. Smoothing
kernel 1s L ~ 60 the peak of deflection power spectrum

e Because acoustic feature appear on a scale [4 ~ 300, smoothing is
a subtle effect in the power spectrum.

e Lensing generates power below the damping scale which directly
reflect power in deflections on the same scale



Polarization Lensing

e Polarization field harmonics lensed similarly

d?l

- +2i¢y 1B
27)° E+iB|(1)e™""e

Qi@ -~ |
so that
(Q £iU](n) = [Q £iU|(h + V)
~ [Q +4U)(h) + Vip(0)V[Q + U] (1)

+ %Vﬂ(fl)vg'@b(ﬁ)vivj Q£iU](n)



Polarization Power Spectra
e Carrying through the algebra

. 1 [ d?1
BB 5 BB 1 ol
G = (1 -FR) 7 + 5/ e (1= 1) - LICE,

X [(CEF 4- CPB) 4 cos(4¢1, ) (CFE — CEPY),

CBB — (1 —2R) CBB L [ L 1—1,)-1,]2C%?
[ T ( o ) [ + 5 (27_‘_)2[( o 1) | 1] 11—11 |

x [(CFF + CPPY — cos(4¢) ) (CEF — CPPY]

. d?1
CPF = (1= PR)CP + [ Gl -1 PR,

X C’SE cos(2¢y, ),



Polarization Lensing

e Lensing generates B-modes out of the acoustic polaraization

F/-modes contaminates gravitational wave signature if
E; < 101GeV.

Original Lensed E Lensed B



Reconstruction from the CMB

e Correlation between Fourier moments reflect lensing potential

(z(M)z"(I))ems = fa(,1)o(1+1),

where x € temperature, polarization fields and f,, is a fixed weight
that reflects geometry

e Each pair forms a noisy estimate of the potential or projected mass
- just like a pair of galaxy shears

e Minimum variance weight all pairs to form an estimator of the
lensing mass



