Ast 448

Set 2: Polarization and Secondaries
 Wayne Hu

Stokes Parameters

- Specific intensity is related to quadratic combinations of the electric field.
- Define the intensity matrix (time averaged over oscillations) $\left\langle\mathbf{E} \mathbf{E}^{\dagger}\right\rangle$
- Hermitian matrix can be decomposed into Pauli matrices

$$
\mathbf{P}=\left\langle\mathbf{E} \mathbf{E}^{\dagger}\right\rangle=\frac{1}{2}\left(I \boldsymbol{\sigma}_{0}+Q \boldsymbol{\sigma}_{3}+U \boldsymbol{\sigma}_{1}-V \boldsymbol{\sigma}_{2}\right)
$$

where
$\boldsymbol{\sigma}_{0}=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right), \boldsymbol{\sigma}_{1}=\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right), \boldsymbol{\sigma}_{2}=\left(\begin{array}{cc}0 & -i \\ i & 0\end{array}\right), \boldsymbol{\sigma}_{3}=\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right)$

- Stokes parameters recovered as $\operatorname{Tr}\left(\sigma_{i} \mathbf{P}\right)$
- Choose units of temperature for Stokes parameters $I \rightarrow \Theta$

Stokes Parameters

- Consider a general plane wave solution

$$
\begin{aligned}
\mathbf{E}(t, z) & =E_{1}(t, z) \hat{\mathbf{e}}_{1}+E_{2}(t, z) \hat{\mathbf{e}}_{2} \\
E_{1}(t, z) & =A_{1} e^{i \phi_{1}} e^{i(k z-\omega t)} \\
E_{2}(t, z) & =A_{2} e^{i \phi_{2}} e^{i(k z-\omega t)}
\end{aligned}
$$

- Explicitly:

$$
\begin{aligned}
I & =\left\langle E_{1} E_{1}^{*}+E_{2} E_{2}^{*}\right\rangle=A_{1}^{2}+A_{2}^{2} \\
Q & =\left\langle E_{1} E_{1}^{*}-E_{2} E_{2}^{*}\right\rangle=A_{1}^{2}-A_{2}^{2} \\
U & =\left\langle E_{1} E_{2}^{*}+E_{2} E_{1}^{*}\right\rangle=2 A_{1} A_{2} \cos \left(\phi_{2}-\phi_{1}\right) \\
V & =-i\left\langle E_{1} E_{2}^{*}-E_{2} E_{1}^{*}\right\rangle=2 A_{1} A_{2} \sin \left(\phi_{2}-\phi_{1}\right)
\end{aligned}
$$

so that the Stokes parameters define the state up to an unobservable overall phase of the wave

Detection

- This suggests that abstractly there are two different ways to detect polarization: separate and difference orthogonal modes (bolometers I, Q) or correlate the separated components (U, V).

- In the correlator example the natural output would be U but one can recover V by introducing a phase lag $\phi=\pi / 2$ on one arm, and Q by having the OMT pick out directions rotated by $\pi / 4$.
- Likewise, in the bolometer example, one can rotate the polarizer and also introduce a coherent front end to change V to U.

Detection

- Techniques also differ in the systematics that can convert unpolarized sky to fake polarization
- Differencing detectors are sensitive to relative gain fluctuations
- Correlation detectors are sensitive to cross coupling between the arms
- More generally, the intended block diagram and systematic problems map components of the polarization matrix onto others and are kept track of through "Jones" or instrumental response matrices $\mathbf{E}_{\text {det }}=\mathbf{J E} \mathbf{E}_{\text {in }}$

$$
\mathbf{P}_{\mathrm{det}}=\mathbf{J} \mathbf{P}_{\mathrm{in}} \mathbf{J}^{\dagger}
$$

where the end result is either a differencing or a correlation of the $\mathbf{P}_{\mathrm{det}}$.

Polarization

- Radiation field involves a directed quantity, the electric field vector, which defines the polarization
- Consider a general plane wave solution

$$
\begin{aligned}
\mathbf{E}(t, z) & =E_{1}(t, z) \hat{\mathbf{e}}_{1}+E_{2}(t, z) \hat{\mathbf{e}}_{2} \\
E_{1}(t, z) & =\operatorname{Re} A_{1} e^{i \phi_{1}} e^{i(k z-\omega t)} \\
E_{2}(t, z) & =\operatorname{Re} A_{2} e^{i \phi_{2}} e^{i(k z-\omega t)}
\end{aligned}
$$

or at $z=0$ the field vector traces out an ellipse

$$
\mathbf{E}(t, 0)=A_{1} \cos \left(\omega t-\phi_{1}\right) \hat{\mathbf{e}}_{1}+A_{2} \cos \left(\omega t-\phi_{2}\right) \hat{\mathbf{e}}_{2}
$$

with principal axes defined by

$$
\mathbf{E}(t, 0)=A_{1}^{\prime} \cos (\omega t) \hat{\mathbf{e}}_{1}^{\prime}-A_{2}^{\prime} \sin (\omega t) \hat{\mathbf{e}}_{2}^{\prime}
$$

so as to trace out a clockwise rotation for $A_{1}^{\prime}, A_{2}^{\prime}>0$

Polarization

- Define polarization angle

$$
\begin{aligned}
& \hat{\mathbf{e}}_{1}^{\prime}=\cos \chi \hat{\mathbf{e}}_{1}+\sin \chi \hat{\mathbf{e}}_{2} \\
& \hat{\mathbf{e}}_{2}^{\prime}=-\sin \chi \hat{\mathbf{e}}_{1}+\cos \chi \hat{\mathbf{e}}_{2}
\end{aligned}
$$

- Match

$$
\begin{aligned}
\mathbf{E}(t, 0)= & A_{1}^{\prime} \cos \omega t\left[\cos \chi \hat{\mathbf{e}}_{1}+\sin \chi \hat{\mathbf{e}}_{2}\right] \\
& -A_{2}^{\prime} \cos \omega t\left[-\sin \chi \hat{\mathbf{e}}_{1}+\cos \chi \hat{\mathbf{e}}_{2}\right] \\
= & A_{1}\left[\cos \phi_{1} \cos \omega t+\sin \phi_{1} \sin \omega t\right] \hat{\mathbf{e}}_{1} \\
& +A_{2}\left[\cos \phi_{2} \cos \omega t+\sin \phi_{2} \sin \omega t\right] \hat{\mathbf{e}}_{2}
\end{aligned}
$$

Polarization

- Define relative strength of two principal states

$$
A_{1}^{\prime}=E_{0} \cos \beta \quad A_{2}^{\prime}=E_{0} \sin \beta
$$

- Characterize the polarization by two angles

$$
\begin{array}{ll}
A_{1} \cos \phi_{1}=E_{0} \cos \beta \cos \chi, & A_{1} \sin \phi_{1}=E_{0} \sin \beta \sin \chi \\
A_{2} \cos \phi_{2}=E_{0} \cos \beta \sin \chi, & A_{2} \sin \phi_{2}=-E_{0} \sin \beta \cos \chi
\end{array}
$$

Or Stokes parameters by

$$
\begin{aligned}
I & =E_{0}^{2}, \quad Q=E_{0}^{2} \cos 2 \beta \cos 2 \chi \\
U & =E_{0}^{2} \cos 2 \beta \sin 2 \chi, \quad V=E_{0}^{2} \sin 2 \beta
\end{aligned}
$$

- So $I^{2}=Q^{2}+U^{2}+V^{2}$, double angles reflect the spin 2 field or headless vector nature of polarization

Polarization

Special cases

- If $\beta=0, \pi / 2, \pi$ then only one principal axis, ellipse collapses to a line and $V=0 \rightarrow$ linear polarization oriented at angle χ

$$
\begin{aligned}
& \text { If } \chi=0, \pi / 2, \pi \text { then } I= \pm Q \text { and } U=0 \\
& \text { If } \chi=\pi / 4,3 \pi / 4 \ldots \text { then } I= \pm U \text { and } Q=0-\text { so } U \text { is } Q \text { in a } \\
& \text { frame rotated by } 45 \text { degrees }
\end{aligned}
$$

- If $\beta=\pi / 4,3 \pi / 4$, then principal components have equal strength and E field rotates on a circle: $I= \pm V$ and $Q=U=0 \rightarrow$ circular polarization
- $U / Q=\tan 2 \chi$ defines angle of linear polarization and $V / I=\sin 2 \beta$ defines degree of circular polarization

Natural Light

- A monochromatic plane wave is completely polarized $I^{2}=Q^{2}+U^{2}+V^{2}$
- Polarization matrix is like a density matrix in quantum mechanics and allows for pure (coherent) states and mixed states
- Suppose the total $\mathbf{E}_{\text {tot }}$ field is composed of different (frequency) components

$$
\mathbf{E}_{\mathrm{tot}}=\sum_{i} \mathbf{E}_{i}
$$

- Then components decorrelate in time average

$$
\left\langle\mathbf{E}_{\mathrm{tot}} \mathbf{E}_{\mathrm{tot}}^{\dagger}\right\rangle=\sum_{i j}\left\langle\mathbf{E}_{i} \mathbf{E}_{j}^{\dagger}\right\rangle=\sum_{i}\left\langle\mathbf{E}_{i} \mathbf{E}_{i}^{\dagger}\right\rangle
$$

Natural Light

- So Stokes parameters of incoherent contributions add

$$
I=\sum_{i} I_{i} \quad Q=\sum_{i} Q_{i} \quad U=\sum_{i} U_{i} \quad V=\sum_{i} V_{i}
$$

and since individual Q, U and V can have either sign:
$I^{2} \geq Q^{2}+U^{2}+V^{2}$, all 4 Stokes parameters needed

Linear Polarization

- $Q \propto\left\langle E_{1} E_{1}^{*}\right\rangle-\left\langle E_{2} E_{2}^{*}\right\rangle, U \propto\left\langle E_{1} E_{2}^{*}\right\rangle+\left\langle E_{2} E_{1}^{*}\right\rangle$.
- Counterclockwise rotation of axes by $\theta=45^{\circ}$

$$
E_{1}=\left(E_{1}^{\prime}-E_{2}^{\prime}\right) / \sqrt{2}, \quad E_{2}=\left(E_{1}^{\prime}+E_{2}^{\prime}\right) / \sqrt{2}
$$

- $U \propto\left\langle E_{1}^{\prime} E_{1}^{\prime *}\right\rangle-\left\langle E_{2}^{\prime} E_{2}^{\prime *}\right\rangle$, difference of intensities at 45° or Q^{\prime}
- More generally, \mathbf{P} transforms as a tensor under rotations and

$$
\begin{aligned}
& Q^{\prime}=\cos (2 \theta) Q+\sin (2 \theta) U \\
& U^{\prime}=-\sin (2 \theta) Q+\cos (2 \theta) U
\end{aligned}
$$

or

$$
Q^{\prime} \pm i U^{\prime}=e^{\mp 2 i \theta}[Q \pm i U]
$$

acquires a phase under rotation and is a spin ± 2 object

Coordinate Independent Representation

- Two directions: orientation of polarization and change in amplitude, i.e. Q and U in the basis of the Fourier wavevector (pointing with angle ϕ_{l}) for small sections of sky are called E and B components

$$
\begin{aligned}
E(\mathbf{l}) \pm i B(\mathbf{l}) & =-\int d \hat{\mathbf{n}}\left[Q^{\prime}(\hat{\mathbf{n}}) \pm i U^{\prime}(\hat{\mathbf{n}})\right] e^{-i \mathbf{l} \cdot \hat{\mathbf{n}}} \\
& =-e^{\mp 2 i \phi_{l}} \int d \hat{\mathbf{n}}[Q(\hat{\mathbf{n}}) \pm i U(\hat{\mathbf{n}})] e^{-i \mathbf{l} \cdot \hat{\mathbf{n}}}
\end{aligned}
$$

- For the B-mode to not vanish, the polarization must point in a direction not related to the wavevector - not possible
 for density fluctuations in linear theory
- Generalize to all-sky: eigenmodes of Laplace operator of tensor

Spin Harmonics

- Laplace Eigenfunctions

$$
\nabla_{ \pm 2}^{2} Y_{\ell m}\left[\boldsymbol{\sigma}_{3} \mp i \boldsymbol{\sigma}_{1}\right]=-[l(l+1)-4]_{ \pm 2} Y_{\ell m}\left[\boldsymbol{\sigma}_{3} \mp i \boldsymbol{\sigma}_{1}\right]
$$

- Spin s spherical harmonics: orthogonal and complete

$$
\begin{aligned}
\int d \hat{\mathbf{n}}_{s} Y_{\ell m}^{*}(\hat{\mathbf{n}})_{s} Y_{\ell^{\prime} m^{\prime}}(\hat{\mathbf{n}}) & =\delta_{\ell \ell^{\prime}} \delta_{m m^{\prime}} \\
\sum_{\ell m}{ }_{s} Y_{\ell m}^{*}(\hat{\mathbf{n}})_{s} Y_{\ell m}\left(\hat{\mathbf{n}}^{\prime}\right) & =\delta\left(\phi-\phi^{\prime}\right) \delta\left(\cos \theta-\cos \theta^{\prime}\right)
\end{aligned}
$$

where the ordinary spherical harmonics are $Y_{\ell m}={ }_{0} Y_{\ell m}$

- Given in terms of the rotation matrix

$$
{ }_{s} Y_{\ell m}(\beta \alpha)=(-1)^{m} \sqrt{\frac{2 \ell+1}{4 \pi}} D_{-m s}^{\ell}(\alpha \beta 0)
$$

Statistical Representation

- All-sky decomposition

$$
[Q(\hat{\mathbf{n}}) \pm i U(\hat{\mathbf{n}})]=\sum_{\ell m}\left[E_{\ell m} \pm i B_{\ell m}\right]_{ \pm 2} Y_{\ell m}(\hat{\mathbf{n}})
$$

- Power spectra

$$
\begin{aligned}
& \left\langle E_{\ell m}^{*} E_{\ell m}\right\rangle=\delta_{\ell \ell^{\prime}} \delta_{m m^{\prime}} C_{\ell}^{E E} \\
& \left\langle B_{\ell m}^{*} B_{\ell m}\right\rangle=\delta_{\ell \ell^{\prime}} \delta_{m m^{\prime}} C_{\ell}^{B B}
\end{aligned}
$$

- Cross correlation

$$
\left\langle\Theta_{\ell m}^{*} E_{\ell m}\right\rangle=\delta_{\ell \ell^{\prime}} \delta_{m m^{\prime}} C_{\ell}^{\Theta E}
$$

others vanish if parity is conserved

Planck Power Spectrum

B-modes: Auto \& Cross

Thomson Scattering

- Polarization state of radiation in direction $\hat{\mathbf{n}}$ described by the intensity matrix $\left\langle E_{i}(\hat{\mathbf{n}}) E_{j}^{*}(\hat{\mathbf{n}})\right\rangle$, where \mathbf{E} is the electric field vector and the brackets denote time averaging.
- Differential cross section

$$
\frac{d \sigma}{d \Omega}=\frac{3}{8 \pi}\left|\hat{\mathbf{E}}^{\prime} \cdot \hat{\mathbf{E}}\right|^{2} \sigma_{T},
$$

where $\sigma_{T}=8 \pi \alpha^{2} / 3 m_{e}$ is the Thomson cross section, $\hat{\mathbf{E}}^{\prime}$ and $\hat{\mathbf{E}}$ denote the incoming and outgoing directions of the electric field or polarization vector.

- Summed over angle and incoming polarization

$$
\sum_{i=1,2} \int d \hat{\mathbf{n}}^{\prime} \frac{d \sigma}{d \Omega}=\sigma_{T}
$$

Polarization Generation

- Heuristic: incoming radiation shakes an electron in direction of electric field vector $\hat{\mathbf{E}}^{\prime}$
- Radiates photon with
 polarization also in direction $\hat{\mathbf{E}}^{\prime}$
- But photon cannot be longitudinally polarized so that scattering into 90° can only pass one polarization
- Linearly polarized radiation like polarization by reflection
- Unlike reflection of sunlight, incoming radiation is nearly isotropic
- Missing from direction orthogonal to original incoming direction
- Only quadrupole anisotropy generates polarization by Thomson scattering

Acoustic Polarization

- Break down of tight-coupling leads to quadrupole anisotropy of

$$
\pi_{\gamma} \approx \frac{k}{\dot{\tau}} v_{\gamma}
$$

- Scaling $k_{D}=\left(\dot{\tau} / \eta_{*}\right)^{1 / 2} \rightarrow \dot{\tau}=k_{D}^{2} \eta_{*}$
- Know: $k_{D} s_{*} \approx k_{D} \eta_{*} \approx 10$
- So:

$$
\begin{aligned}
\pi_{\gamma} & \approx \frac{k}{k_{D}} \frac{1}{10} v_{\gamma} \\
\Delta_{P} & \approx \frac{\ell}{\ell_{D}} \frac{1}{10} \Delta_{T}
\end{aligned}
$$

Acoustic Polarization

- Gradient of velocity is along direction of wavevector, so polarization is pure E-mode
- Velocity is 90° out of phase with temperature - turning points of oscillator are zero points of velocity:

$$
\Theta+\Psi \propto \cos (k s) ; \quad v_{\gamma} \propto \sin (k s)
$$

- Polarization peaks are at troughs of temperature power

Cross Correlation

- Cross correlation of temperature and polarization

$$
(\Theta+\Psi)\left(v_{\gamma}\right) \propto \cos (k s) \sin (k s) \propto \sin (2 k s)
$$

- Oscillation at twice the frequency
- Correlation: radial or tangential around hot spots
- Partial correlation: easier to measure if polarization data is noisy, harder to measure if polarization data is high S / N or if bands do not resolve oscillations
- Good check for systematics and foregrounds
- Comparison of temperature and polarization is proof against features in initial conditions mimicking acoustic features

Reionization

- Reionization causes rescattering of radiation
- Suppresses temperature anisotopy as $e^{-\tau}$ and changes interpretation of amplitude to $A_{s} e^{-2 \tau}$
- Electron sees temperature anisotropy on its recombination surface

- For wavelengths that are comparable to the horizon at reionization, a quadrupole moment
- Rescatters to a linear polarization that is correlated with the Sachs-Wolfe temperature anisotropy

Reionization

- Amplitude of $C_{\ell}^{E E}$ depends mainly on τ
- Shape of $C_{\ell}^{E E}$ depends on reionization history
- Horizon at earlier epochs subtends a smaller angle, higher multipole peak

- Precision measurements can constrain the reionization history to be either low or high z dominated

Polarization Power

Tensor Power

- Gravitational waves obey a Klein-Gordon like equation

- Like inflation, perturbations generated by quantum fluctuations during inflation
- Freeze out at horizon crossing during inflation an amplitude that reflects the energy scale of inflation

$$
\Delta_{+, \times}^{2}=\frac{H^{2}}{2 \pi^{2} M_{\mathrm{Pl}}^{2}} \propto E_{i}^{4}
$$

- Gravitational waves remain frozen outside the horizon at constant amplitude
- Oscillate inside the horizon and decay or redshift as radiation

Tensor Quadrupoles

- Changing transverse-traceless distortion of space creates a quadrupole CMB anisotropy much like the distortion of test ring of particles
- As the tensor mode enters the
 horizon it imprints a quadrupole temperature distortion: $\dot{H}_{T}^{ \pm 2}$ is source to $S_{2}^{ \pm 2}$
- Modes that cross before recombination: effect erased by rescattering $e^{-\tau}$ in the integral solution
- Modes that cross after recombination: integrate contributions along the line of sight - tensor ISW effect

Tensor Temperature Power Spectrum

- Resulting spectum, near scale invariant out to horizon at recombination $\ell<100$
- Suppressed on smaller scales or higher multipoles $\ell>100$, weakly degenerate with tilt

- When added to scalar spectrum, enhances large scale anisotropy over small scale
- Shape of total temperature spectrum can place tight limit $r<0.1$, for power law curvature spectrum
- Smaller tensor-scalar ratios cannot be constrained by temperature alone due the high cosmic variance of the low multipole specrum

Tensor Polarization Power Spectrum

- Polarization of gravitational wave determines the quadrupole temperature anisotropy
- Scattering of quadrupole temperature anisotropy generates linear polarization aligned with cold lobe

- Direction of CMB polarization is therefore determined by gravitational wave polarization rather than direction of wavevector
- B-mode polarization when the amplitude is modulated by the plane wave
- Requires scattering: two peaks - horizon at recombination and reionization

Tensor Polarization Power Spectrum

- Measuring B-modes from gravitational waves determines the energy scale of inflation

$$
\Delta B_{\text {peak }} \approx 0.024\left(\frac{E_{i}}{10^{16} \mathrm{GeV}}\right)^{2} \mu \mathrm{~K}
$$

- Also generates E-mode polarization which, like temperature, is a consistency check for $r \sim 0.1$
- Projection is less sharp than for scalar E, so evading temperature bounds by adding features to the curvature spectrum can be tested

Gravitational Lensing

- Lensing is a surface brightness conserving remapping of source to image planes by the gradient of the projected potential

$$
\phi(\hat{\mathbf{n}})=2 \int_{\eta_{*}}^{\eta_{0}} d \eta \frac{\left(D_{*}-D\right)}{D D_{*}} \Phi(D \hat{\mathbf{n}}, \eta) .
$$

such that the fields are remapped as

$$
x(\hat{\mathbf{n}}) \rightarrow x(\hat{\mathbf{n}}+\nabla \phi),
$$

where $x \in\{\Theta, Q, U\}$ temperature and polarization.

- Taylor expansion leads to product of fields and Fourier mode-coupling

Flat-sky Treatment

- Talyor expand

$$
\begin{aligned}
\Theta(\hat{\mathbf{n}}) & =\tilde{\Theta}(\hat{\mathbf{n}}+\nabla \phi) \\
& =\tilde{\Theta}(\hat{\mathbf{n}})+\nabla_{i} \phi(\hat{\mathbf{n}}) \nabla^{i} \tilde{\Theta}(\hat{\mathbf{n}})+\frac{1}{2} \nabla_{i} \phi(\hat{\mathbf{n}}) \nabla_{j} \phi(\hat{\mathbf{n}}) \nabla^{i} \nabla^{j} \tilde{\Theta}(\hat{\mathbf{n}})+\ldots
\end{aligned}
$$

- Fourier decomposition

$$
\begin{aligned}
\phi(\hat{\mathbf{n}}) & =\int \frac{d^{2} l}{(2 \pi)^{2}} \phi(\mathbf{l}) e^{i \cdot \hat{\mathbf{n}}} \\
\tilde{\Theta}(\hat{\mathbf{n}}) & =\int \frac{d^{2} l}{(2 \pi)^{2}} \tilde{\Theta}(\mathbf{l}) e^{i \mathbf{l} \cdot \hat{\mathbf{n}}}
\end{aligned}
$$

Flat-sky Treatment

- Mode coupling of harmonics

$$
\begin{aligned}
\Theta(\mathbf{l}) & =\int d \hat{\mathbf{n}} \Theta(\hat{\mathbf{n}}) e^{-i l \cdot \hat{\mathbf{n}}} \\
& =\tilde{\Theta}(\mathbf{l})-\int \frac{d^{2} \mathbf{l}_{1}}{(2 \pi)^{2}} \tilde{\Theta}\left(\mathbf{l}_{1}\right) L\left(\mathbf{l}, \mathbf{l}_{1}\right),
\end{aligned}
$$

where

$$
\begin{aligned}
L\left(\mathbf{l}, \mathbf{l}_{1}\right) & =\phi\left(\mathbf{l}-\mathbf{l}_{1}\right)\left(\mathbf{l}-\mathbf{l}_{1}\right) \cdot \mathbf{l}_{1} \\
& +\frac{1}{2} \int \frac{d^{2} \mathbf{l}_{2}}{(2 \pi)^{2}} \phi\left(\mathbf{l}_{2}\right) \phi^{*}\left(\mathbf{l}_{2}+\mathbf{l}_{1}-\mathbf{l}\right)\left(\mathbf{l}_{2} \cdot \mathbf{l}_{1}\right)\left(\mathbf{l}_{2}+\mathbf{l}_{1}-\mathbf{l}\right) \cdot \mathbf{l}_{1}
\end{aligned}
$$

- Represents a coupling of harmonics separated by $L \approx 60$ peak of deflection power

Power Spectrum

- Power spectra

$$
\begin{aligned}
\left\langle\Theta^{*}(\mathbf{l}) \Theta\left(\mathbf{l}^{\prime}\right)\right\rangle & =(2 \pi)^{2} \delta\left(\mathbf{l}-\mathbf{l}^{\prime}\right) C_{l} \\
\left\langle\phi^{*}(\mathbf{l}) \phi\left(\mathbf{l}^{\prime}\right)\right\rangle & =(2 \pi)^{2} \delta\left(\mathbf{l}-\mathbf{l}^{\prime}\right) C_{l}^{\phi \phi}
\end{aligned}
$$

becomes

$$
C_{l}=\left(1-l^{2} R\right) \tilde{C}_{l}+\int \frac{d^{2} \mathbf{l}_{1}}{(2 \pi)^{2}} \tilde{C}_{\mid \mathbf{l - \mathbf { l } _ { 1 }}} C_{l_{1}}^{\phi \phi}\left[\left(\mathbf{l}-\mathbf{l}_{1}\right) \cdot \mathbf{l}_{1}\right]^{2}
$$

where

$$
R=\frac{1}{4 \pi} \int \frac{d l}{l} l^{4} C_{l}^{\phi \phi}
$$

Smoothing Power Spectrum

- If \tilde{C}_{l} slowly varying then two term cancel
$\tilde{C}_{l} \int \frac{d^{2} \mathbf{l}_{1}}{(2 \pi)^{2}} C_{l}^{\phi \phi}\left(\mathbf{l} \cdot \mathbf{l}_{1}\right)^{2} \approx l^{2} R \tilde{C}_{l}$.
- So lensing acts to smooth features in the power
 spectrum. Smoothing kernel is $L \sim 60$ the peak of deflection power spectrum
- Because acoustic feature appear on a scale $l_{A} \sim 300$, smoothing is a subtle effect in the power spectrum.
- Lensing generates power below the damping scale which directly reflect power in deflections on the same scale

Polarization Lensing

- Polarization field harmonics lensed similarly

$$
[Q \pm i U](\hat{\mathbf{n}})=-\int \frac{d^{2} l}{(2 \pi)^{2}}[E \pm i B](\mathbf{1}) e^{ \pm 2 i \phi_{1}} e^{1 \cdot \hat{\mathbf{n}}}
$$

so that

$$
\begin{aligned}
{[Q \pm i U](\hat{\mathbf{n}})=} & {[\tilde{Q} \pm i \tilde{U}](\hat{\mathbf{n}}+\nabla \phi) } \\
\approx & {[\tilde{Q} \pm i \tilde{U}](\hat{\mathbf{n}})+\nabla_{i} \phi(\hat{\mathbf{n}}) \nabla^{i}[\tilde{Q} \pm i \tilde{U}](\hat{\mathbf{n}}) } \\
& +\frac{1}{2} \nabla_{i} \phi(\hat{\mathbf{n}}) \nabla_{j} \phi(\hat{\mathbf{n}}) \nabla^{i} \nabla^{j}[\tilde{Q} \pm i \tilde{U}](\hat{\mathbf{n}})
\end{aligned}
$$

Polarization Power Spectra

- Carrying through the algebra

$$
\begin{aligned}
C_{l}^{E E}= & \left(1-l^{2} R\right) \tilde{C}_{l}^{E E}+\frac{1}{2} \int \frac{d^{2} \mathbf{l}_{1}}{(2 \pi)^{2}}\left[\left(\mathbf{l}-\mathbf{l}_{1}\right) \cdot \mathbf{l}_{1}\right]^{2} C_{\mid \mathbf{l - \mathbf { l } _ { 1 } |}}^{\phi \phi} \\
& \times\left[\left(\tilde{C}_{l_{1}}^{E E}+\tilde{C}_{l_{1}}^{B B}\right)+\cos \left(4 \varphi_{l_{1}}\right)\left(\tilde{C}_{l_{1}}^{E E}-\tilde{C}_{l_{1}}^{B B}\right)\right], \\
C_{l}^{B B}= & \left(1-l^{2} R\right) \tilde{C}_{l}^{B B}+\frac{1}{2} \int \frac{d^{2} \mathbf{l}_{1}}{(2 \pi)^{2}}\left[\left(\mathbf{l}-\mathbf{l}_{1}\right) \cdot \mathbf{l}_{1}\right]^{2} C_{\left|1-\mathbf{l}_{1}\right|}^{\phi \phi} \\
& \times\left[\left(\tilde{C}_{l_{1}}^{E E}+\tilde{C}_{l_{1}}^{B B}\right)-\cos \left(4 \varphi_{l_{1}}\right)\left(\tilde{C}_{l_{1}}^{E E}-\tilde{C}_{l_{1}}^{B B}\right)\right], \\
C_{l}^{\Theta E}= & \left(1-l^{2} R\right) \tilde{C}_{l}^{\Theta E}+\int \frac{d^{2} \mathbf{l}_{1}}{(2 \pi)^{2}}\left[\left(\mathbf{l}-\mathbf{l}_{1}\right) \cdot \mathbf{l}_{1}\right]^{2} C_{\left|\mathbf{l}-\mathbf{l}_{1}\right|}^{\phi \phi} \\
& \times \tilde{C}_{l_{1}}^{\Theta E} \cos \left(2 \varphi_{l_{1}}\right),
\end{aligned}
$$

Polarization Lensing

- Lensing generates B-modes out of the acoustic polaraization E-modes contaminates gravitational wave signature if $E_{i}<10^{16} \mathrm{GeV}$.

Original

Lensed E

Lensed B

Reconstruction from the CMB

- Correlation between Fourier moments reflect lensing potential

$$
\left\langle x(\mathbf{l}) x^{\prime}\left(\mathbf{l}^{\prime}\right)\right\rangle_{\mathrm{CMB}}=f_{\alpha}\left(\mathbf{l}, \mathbf{l}^{\prime}\right) \phi\left(\mathbf{l}+\mathbf{l}^{\prime}\right),
$$

where $x \in$ temperature, polarization fields and f_{α} is a fixed weight that reflects geometry

- Each pair forms a noisy estimate of the potential or projected mass - just like a pair of galaxy shears
- Minimum variance weight all pairs to form an estimator of the lensing mass

