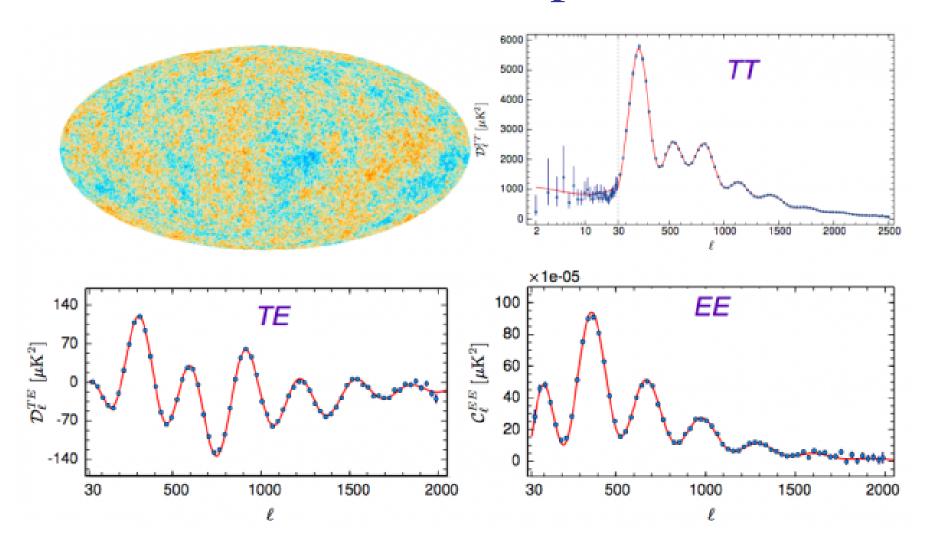
Ast 448

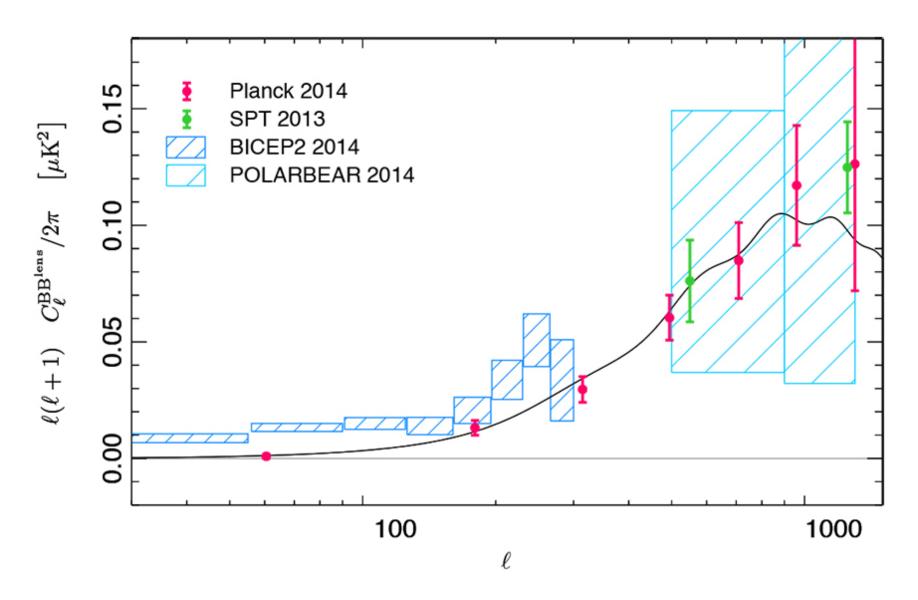
Set 4: Power Spectra

Wayne Hu

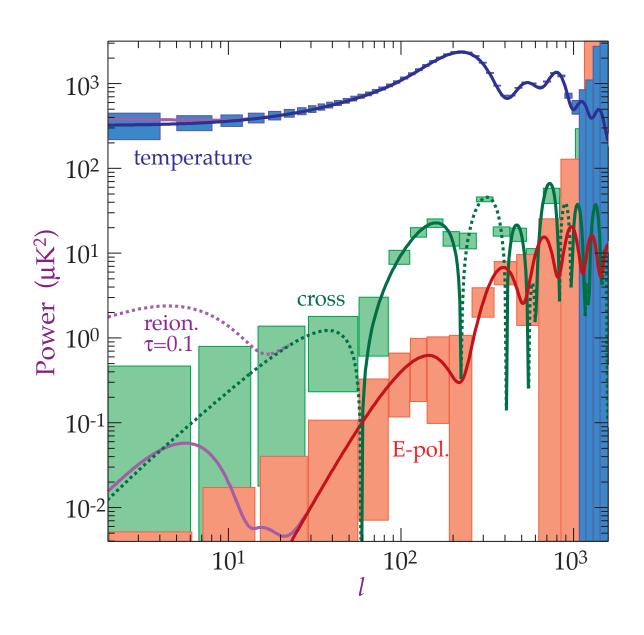
Planck Power Spectrum



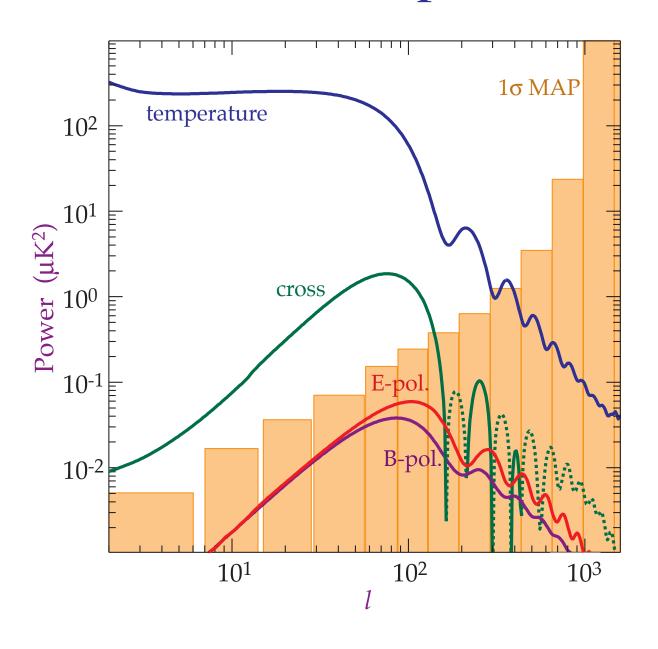
B-modes: Auto & Cross



Scalar Primary Power Spectrum

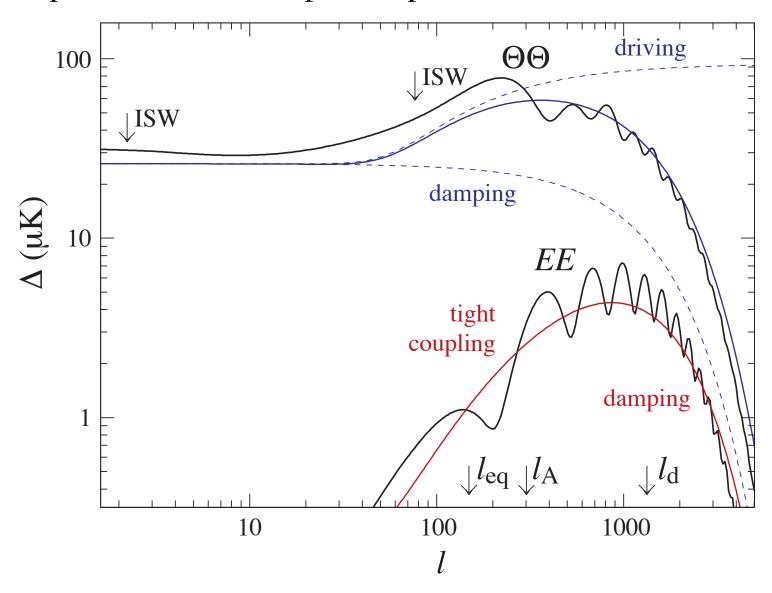


Tensor Power Spectrum



Schematic Outline

• Take apart features in the power spectrum



Thomson Scattering

• Thomson scattering of photons off of free electrons is the most important CMB process with a cross section (averaged over polarization states) of

$$\sigma_T = \frac{8\pi\alpha^2}{3m_e^2} = 6.65 \times 10^{-25} \text{cm}^2$$

• Density of free electrons in a fully ionized $x_e = 1$ universe

$$n_e = (1 - Y_p/2)x_e n_b \approx 10^{-5}\Omega_b h^2 (1+z)^3 \text{cm}^{-3}$$

where $Y_p \approx 0.24$ is the Helium mass fraction, creates a high (comoving) Thomson opacity

$$\dot{\tau} \equiv n_e \sigma_T a$$

where dots are conformal time $\eta \equiv \int dt/a$ derivatives and τ is the optical depth.

Tight Coupling Approximation

• Near recombination $z \approx 10^3$ and $\Omega_b h^2 \approx 0.02$, the (comoving) mean free path of a photon

$$\lambda_C \equiv \frac{1}{\dot{\tau}} \sim 2.5 \mathrm{Mpc}$$

small by cosmological standards!

- On scales $\lambda \gg \lambda_C$ photons are tightly coupled to the electrons by Thomson scattering which in turn are tightly coupled to the baryons by Coulomb interactions
- Specifically, their bulk velocities are defined by a single fluid velocity $v_{\gamma}=v_{b}$ and the photons carry no anisotropy in the rest frame of the baryons
- No heat conduction or viscosity (anisotropic stress) in fluid

Equations of Motion

Continuity

$$\dot{\Theta} = -\frac{k}{3}v_{\gamma} - \dot{\Phi} \,, \quad \dot{\delta}_b = -kv_b - 3\dot{\Phi}$$

where the photon equation remains unchanged and the baryons follow number conservation with $\rho_b = m_b n_b$

• Navier-Stokes (Euler + heat conduction, viscosity)

$$\dot{v}_{\gamma} = k(\Theta + \Psi) - \frac{k}{6}\pi_{\gamma} - \dot{\tau}(v_{\gamma} - v_b)$$

$$\dot{v}_{b} = -\frac{\dot{a}}{a}v_b + k\Psi + \dot{\tau}(v_{\gamma} - v_b)/R$$

where the photons gain an anisotropic stress term π_{γ} from radiation viscosity and a momentum exchange term with the baryons and are compensated by the opposite term in the baryon Euler equation

Zeroth Order Approximation

- Momentum density of a fluid is $(\rho + p)v$, where p is the pressure
- Neglect the momentum density of the baryons

$$R \equiv \frac{(\rho_b + p_b)v_b}{(\rho_\gamma + p_\gamma)v_\gamma} = \frac{\rho_b + p_b}{\rho_\gamma + p_\gamma} = \frac{3\rho_b}{4\rho_\gamma}$$
$$\approx 0.6 \left(\frac{\Omega_b h^2}{0.02}\right) \left(\frac{a}{10^{-3}}\right)$$

since $\rho_{\gamma} \propto T^4$ is fixed by the CMB temperature $T=2.73(1+z){\rm K}$

- OK substantially before recombination
- Neglect radiation in the expansion

$$\frac{\rho_m}{\rho_r} = 3.6 \left(\frac{\Omega_m h^2}{0.15}\right) \left(\frac{a}{10^{-3}}\right)$$

Neglect gravity

Fluid Equations

• Density $\rho_{\gamma} \propto T^4$ so define temperature fluctuation Θ

$$\delta_{\gamma} = 4 \frac{\delta T}{T} \equiv 4\Theta$$

Real space continuity equation

$$\dot{\delta}_{\gamma} = -(1 + w_{\gamma})kv_{\gamma}$$

$$\dot{\Theta} = -\frac{1}{3}kv_{\gamma}$$

Euler equation (neglecting gravity)

$$\dot{v}_{\gamma} = -(1 - 3w_{\gamma})\frac{\dot{a}}{a}v_{\gamma} + \frac{kc_s^2}{1 + w_{\gamma}}\delta_{\gamma}$$

$$\dot{v}_{\gamma} = kc_s^2 \frac{3}{4}\delta_{\gamma} = 3c_s^2 k\Theta$$

Oscillator: Take One

Combine these to form the simple harmonic oscillator equation

$$\ddot{\Theta} + c_s^2 k^2 \Theta = 0$$

where the sound speed is adiabatic

$$c_s^2 = \frac{\delta p_{\gamma}}{\delta \rho_{\gamma}} = \frac{\dot{p}_{\gamma}}{\dot{\rho}_{\gamma}}$$

here $c_s^2 = 1/3$ since we are photon-dominated

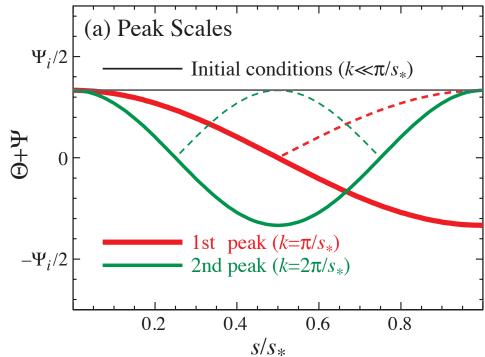
• General solution:

$$\Theta(\eta) = \Theta(0)\cos(ks) + \frac{\dot{\Theta}(0)}{kc_s}\sin(ks)$$

where the sound horizon is defined as $s \equiv \int c_s d\eta$

Harmonic Extrema

- All modes are frozen in at recombination (denoted with a subscript *)
- Temperature perturbations of different amplitude for different modes.
- For the adiabatic
 (curvature mode) initial conditions



$$\Theta(\eta_*) = \Theta(0)\cos(ks_*)$$

 $\dot{\Theta}(0) = 0$

Harmonic Extrema

 Modes caught in the extrema of their oscillation will have enhanced fluctuations

$$k_n s_* = n\pi$$

yielding a fundamental scale or frequency, related to the inverse sound horizon

$$k_A = \pi/s_*$$

and a harmonic relationship to the other extrema as 1:2:3...

Peak Location

• The fundmental physical scale is translated into a fundamental angular scale by simple projection according to the angular diameter distance D_A

$$\theta_A = \lambda_A / D_A$$

$$\ell_A = k_A D_A$$

• In a flat universe, the distance is simply $D_A = D \equiv \eta_0 - \eta_* \approx \eta_0$, the horizon distance, and $k_A = \pi/s_* = \sqrt{3}\pi/\eta_*$ so

$$\theta_A pprox rac{\eta_*}{\eta_0}$$

• In a matter-dominated universe $\eta \propto a^{1/2}$ so $\theta_A \approx 1/30 \approx 2^\circ$ or

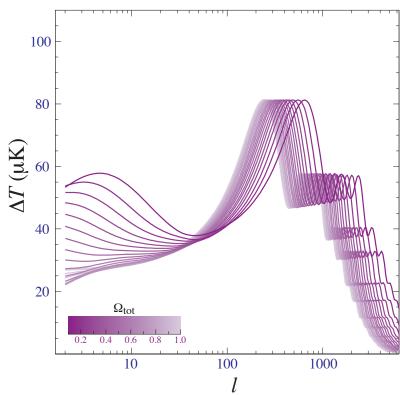
$$\ell_A \approx 200$$

Curvature

- In a curved universe, the apparent or angular diameter distance is no longer the conformal distance $D_A = R \sin(D/R) \neq D$
- Objects in a closed universe are further than they appear! gravitational lensing of the background...
- Curvature scale of the universe must be substantially larger than current horizon

Curvature

- Flat universe indicates critical density and implies missing energy given local measures of the matter density "dark energy"
- D also depends on dark energy density $\Omega_{\rm DE}$ and equation of state $w=p_{\rm DE}/\rho_{\rm DE}$.
- Expansion rate at recombination or matter-radiation ratio enters into calculation of k_A .



Fixed Deceleration Epoch

- CMB determination of matter density controls all determinations in the deceleration (matter dominated) epoch
- Planck: $\Omega_m h^2 = 0.1426 \pm 0.0025 \rightarrow 1.7\%$
- Distance to recombination D_* determined to $\frac{1}{4}1.7\% \approx 0.43\%$ (Λ CDM result 0.46%; $\Delta h/h \approx -\Delta \Omega_m h^2/\Omega_m h^2$) [more general: $-0.11\Delta w - 0.48\Delta \ln h - 0.15\Delta \ln \Omega_m - 1.4\Delta \ln \Omega_{\rm tot} = 0$]
- Expansion rate during any redshift in the deceleration epoch determined to $\frac{1}{2}1.7\%$
- Distance to any redshift in the deceleration epoch determined as

$$D(z) = D_* - \int_z^{z_*} \frac{dz}{H(z)}$$

- Volumes determined by a combination $dV = D_A^2 d\Omega dz/H(z)$
- Structure also determined by growth of fluctuations from z_*

Doppler Effect

 Bulk motion of fluid changes the observed temperature via Doppler shifts

$$\left(\frac{\Delta T}{T}\right)_{\text{dop}} = \hat{\mathbf{n}} \cdot \mathbf{v}_{\gamma}$$

Averaged over directions

$$\left(\frac{\Delta T}{T}\right)_{\rm rms} = \frac{v_{\gamma}}{\sqrt{3}}$$

Acoustic solution

$$\frac{v_{\gamma}}{\sqrt{3}} = -\frac{\sqrt{3}}{k}\dot{\Theta} = \frac{\sqrt{3}}{k}kc_s\,\Theta(0)\sin(ks)$$
$$= \Theta(0)\sin(ks)$$

Doppler Peaks?

- Doppler effect for the photon dominated system is of equal amplitude and $\pi/2$ out of phase: extrema of temperature are turning points of velocity
- Effects add in quadrature:

$$\left(\frac{\Delta T}{T}\right)^2 = \Theta^2(0)[\cos^2(ks) + \sin^2(ks)] = \Theta^2(0)$$

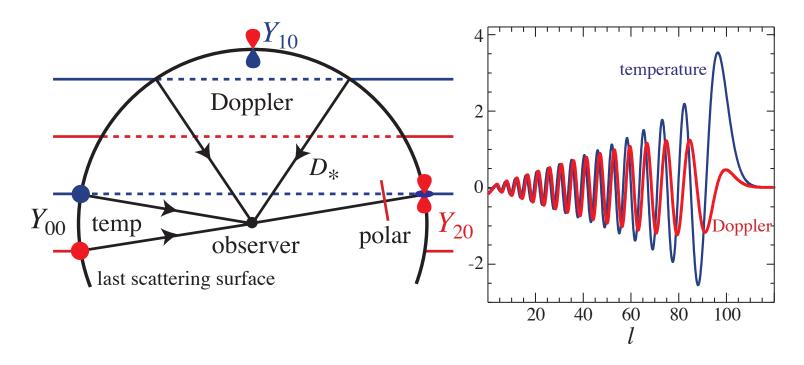
• No peaks in k spectrum! However the Doppler effect carries an angular dependence that changes its projection on the sky $\hat{\bf n}\cdot{\bf v}_{\gamma}\propto\hat{\bf n}\cdot\hat{\bf k}$

Doppler Peaks?

• Coordinates where $\hat{\mathbf{z}} \parallel \hat{\mathbf{k}}$

$$Y_{10}Y_{\ell 0} \to Y_{\ell \pm 10}$$

recoupling $j'_{\ell}Y_{\ell 0}$: no peaks in Doppler effect



Restoring Gravity

- Take a simple photon dominated system with gravity
- Continuity altered since a gravitational potential represents a stretching of the spatial fabric that dilutes number densities – formally a spatial curvature perturbation
- Think of this as a perturbation to the scale factor $a \to a(1 + \Phi)$ so that the cosmogical redshift is generalized to

$$\frac{\dot{a}}{a} \rightarrow \frac{\dot{a}}{a} + \dot{\Phi}$$

so that the continuity equation becomes

$$\dot{\Theta} = -\frac{1}{3}kv_{\gamma} - \dot{\Phi}$$

Restoring Gravity

• Gravitational force in momentum conservation ${\bf F}=-m\nabla\Psi$ generalized to momentum density modifies the Euler equation to

$$\dot{v}_{\gamma} = k(\Theta + \Psi)$$

- General relativity says that Φ and Ψ are the relativistic analogues of the Newtonian potential and that $\Phi \approx -\Psi$.
- In our matter-dominated approximation, Φ represents matter density fluctuations through the cosmological Poisson equation

$$k^2 \Phi = 4\pi G a^2 \rho_m \Delta_m$$

where the difference comes from the use of comoving coordinates for k (a^2 factor), the removal of the background density into the background expansion ($\rho\Delta_m$) and finally a coordinate subtlety that enters into the definition of Δ_m

Constant Potentials

- In the matter dominated epoch potentials are constant because infall generates velocities as $v_m \sim k \eta \Psi$
- Velocity divergence generates density perturbations as $\Delta_m \sim -k\eta v_m \sim -(k\eta)^2 \Psi$
- And density perturbations generate potential fluctuations

$$\Phi = \frac{4\pi G a^2 \rho \Delta}{k^2} \approx \frac{3}{2} \frac{H^2 a^2}{k^2} \Delta \sim \frac{\Delta}{(k\eta)^2} \sim -\Psi$$

keeping them constant. Note that because of the expansion, density perturbations must grow to keep potentials constant.

Constant Potentials

- More generally, if stress perturbations are negligible compared with density perturbations ($\delta p \ll \delta \rho$) then potential will remain roughly constant
- More specifically a variant called the Bardeen or comoving curvature is strictly constant

$$\mathcal{R} = \text{const} \approx \frac{5 + 3w}{3 + 3w} \Phi$$

where the approximation holds when $w \approx \text{const.}$

Oscillator: Take Two

• Combine these to form the simple harmonic oscillator equation

$$\ddot{\Theta} + c_s^2 k^2 \Theta = -\frac{k^2}{3} \Psi - \ddot{\Phi}$$

• In a CDM dominated expansion $\dot{\Phi} = \dot{\Psi} = 0$. Also for photon domination $c_s^2 = 1/3$ so the oscillator equation becomes

$$\ddot{\Theta} + \ddot{\Psi} + c_s^2 k^2 (\Theta + \Psi) = 0$$

Solution is just an offset version of the original

$$[\Theta + \Psi](\eta) = [\Theta + \Psi](0) \cos(ks)$$

ullet $\Theta+\Psi$ is also the observed temperature fluctuation since photons lose energy climbing out of gravitational potentials at recombination

Effective Temperature

- Photons climb out of potential wells at last scattering
- Lose energy to gravitational redshifts
- Observed or effective temperature

$$\Theta + \Psi$$

- Effective temperature oscillates around zero with amplitude given by the initial conditions
- Note: initial conditions are set when the perturbation is outside of horizon, need inflation or other modification to matter-radiation FRW universe.
- GR says that initial temperature is given by initial potential

Sachs-Wolfe Effect and the Magic 1/3

• A gravitational potential is a perturbation to the temporal coordinate [formally a gauge transformation]

$$\frac{\delta t}{t} = \Psi$$

• Convert this to a perturbation in the scale factor,

$$t = \int \frac{da}{aH} \propto \int \frac{da}{a\rho^{1/2}} \propto a^{3(1+w)/2}$$

where $w \equiv p/\rho$ so that during matter domination

$$\frac{\delta a}{a} = \frac{2}{3} \frac{\delta t}{t}$$

• CMB temperature is cooling as $T \propto a^{-1}$ so

$$\Theta + \Psi \equiv \frac{\delta T}{T} + \Psi = -\frac{\delta a}{a} + \Psi = \frac{1}{3}\Psi$$

Sachs-Wolfe Normalization

- Use measurements of $\Delta T/T \approx 10^{-5}$ in the Sachs-Wolfe effect to infer $\Delta_{\mathcal{R}}^2$
- Recall in matter domination $\Psi = -3\mathcal{R}/5$

$$\frac{\ell(\ell+1)C_{\ell}}{2\pi} \approx \Delta_T^2 \approx \frac{1}{25}\Delta_R^2$$

- So that the amplitude of initial curvature fluctuations is $\Delta_R \approx 5 \times 10^{-5}$
- Modern usage: WMAP's measurement of 1st peak plus known radiation transfer function is used to convert $\Delta T/T$ to Δ_R .

Baryon Loading

- Baryons add extra mass to the photon-baryon fluid
- Controlling parameter is the momentum density ratio:

$$R \equiv \frac{p_b + \rho_b}{p_\gamma + \rho_\gamma} \approx 30\Omega_b h^2 \left(\frac{a}{10^{-3}}\right)$$

of order unity at recombination

Momentum density of the joint system is conserved

$$(\rho_{\gamma} + p_{\gamma})v_{\gamma} + (\rho_b + p_b)v_b \approx (p_{\gamma} + p_{\gamma} + \rho_b + \rho_{\gamma})v_{\gamma}$$
$$= (1 + R)(\rho_{\gamma} + p_{\gamma})v_{\gamma b}$$

where the controlling parameter is the momentum density ratio:

$$R \equiv \frac{p_b + \rho_b}{p_\gamma + \rho_\gamma} \approx 30\Omega_b h^2 \left(\frac{a}{10^{-3}}\right)$$

of order unity at recombination

New Euler Equation

Momentum density ratio enters as

$$[(1+R)v_{\gamma b}] = k\Theta + (1+R)k\Psi$$

Photon continuity remains the same

$$\dot{\Theta} = -\frac{k}{3}v_{\gamma b} - \dot{\Phi}$$

Modification of oscillator equation

$$[(1+R)\dot{\Theta}] + \frac{1}{3}k^2\Theta = -\frac{1}{3}k^2(1+R)\Psi - [(1+R)\dot{\Phi}]$$

Oscillator: Take Three

• Combine these to form the not-quite-so simple harmonic oscillator equation

$$c_s^2 \frac{d}{d\eta} (c_s^{-2} \dot{\Theta}) + c_s^2 k^2 \Theta = -\frac{k^2}{3} \Psi - c_s^2 \frac{d}{d\eta} (c_s^{-2} \dot{\Phi})$$

where $c_s^2 \equiv \dot{p}_{\gamma b}/\dot{\rho}_{\gamma b}$

$$c_s^2 = \frac{1}{3} \frac{1}{1+R}$$

• In a CDM dominated expansion $\dot{\Phi}=\dot{\Psi}=0$ and the adiabatic approximation $\dot{R}/R\ll\omega=kc_s$

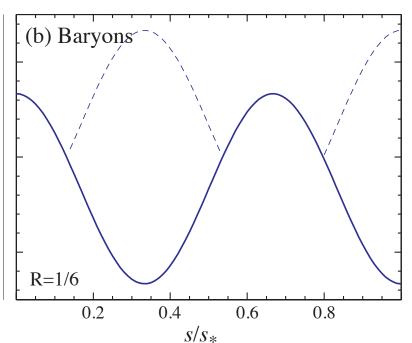
$$[\Theta + (1 + R)\Psi](\eta) = [\Theta + (1 + R)\Psi](0)\cos(ks)$$

Baryon Peak Phenomenology

- Photon-baryon ratio enters in three ways
- Overall larger amplitude:

$$[\Theta + (1 + \mathbf{R})\Psi](0) = \frac{1}{3}(1 + 3\mathbf{R})\Psi(0)$$

• Even-odd peak modulation of effective temperature



$$[\Theta + \Psi]_{\text{peaks}} = [\pm (1 + 3R) - 3R] \frac{1}{3} \Psi(0)$$
$$[\Theta + \Psi]_1 - [\Theta + \Psi]_2 = [-6R] \frac{1}{3} \Psi(0)$$

• Shifting of the sound horizon down or ℓ_A up

$$\ell_A \propto \sqrt{1+R}$$

Photon Baryon Ratio Evolution

- Actual effects smaller since R evolves
- Oscillator equation has time evolving mass

$$c_s^2 \frac{d}{d\eta} (c_s^{-2} \dot{\Theta}) + c_s^2 k^2 \Theta = 0$$

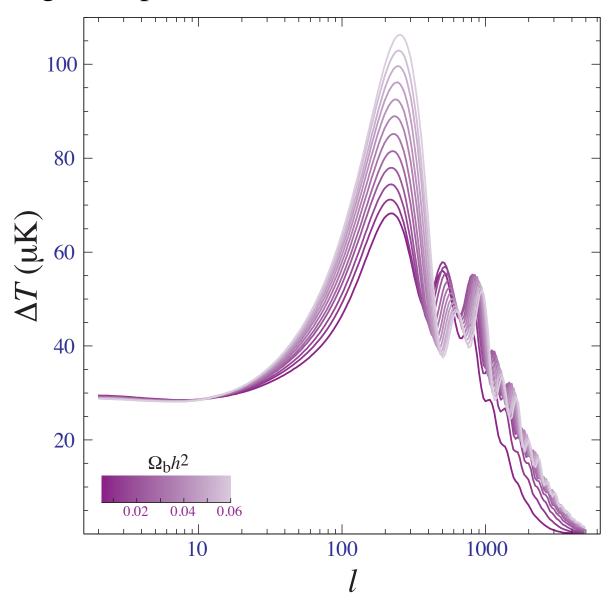
- Effective mass is is $m_{\text{eff}} = 3c_s^{-2} = (1 + R)$
- Adiabatic invariant

$$\frac{E}{\omega} = \frac{1}{2} m_{\text{eff}} \omega A^2 = \frac{1}{2} 3 c_s^{-2} k c_s A^2 \propto A^2 (1 + R)^{1/2} = const.$$

• Amplitude of oscillation $A \propto (1+R)^{-1/4}$ decays adiabatically as the photon-baryon ratio changes

Baryons in the Power Spectrum

• Relative heights of peaks



Oscillator: Take Three and a Half

• The not-quite-so simple harmonic oscillator equation is a forced harmonic oscillator

$$c_s^2 \frac{d}{d\eta} (c_s^{-2} \dot{\Theta}) + c_s^2 k^2 \Theta = -\frac{k^2}{3} \Psi - c_s^2 \frac{d}{d\eta} (c_s^{-2} \Phi)$$

changes in the gravitational potentials alter the form of the acoustic oscillations

- If the forcing term has a temporal structure that is related to the frequency of the oscillation, this becomes a driven harmonic oscillator
- ullet Term involving Ψ is the ordinary gravitational force
- Term involving Φ involves the $\dot{\Phi}$ term in the continuity equation as a (curvature) perturbation to the scale factor

Potential Decay

Matter-to-radiation ratio

$$\frac{\rho_m}{\rho_r} \approx 24\Omega_m h^2 \left(\frac{a}{10^{-3}}\right)$$

of order unity at recombination in a low Ω_m universe

Radiation is not stress free and so impedes the growth of structure

$$k^2\Phi = 4\pi G a^2 \rho_r \Delta_r$$

 $\Delta_r \sim 4\Theta$ oscillates around a constant value, $\rho_r \propto a^{-4}$ so the Netwonian curvature decays.

• General rule: potential decays if the dominant energy component has substantial stress fluctuations, i.e. below the generalized sound horizon or Jeans scale

Radiation Driving

 Decay is timed precisely to drive the oscillator - close to fully coherent

$$|[\Theta + \Psi](\eta)| = |[\Theta + \Psi](0) + \Delta \Psi - \Delta \Phi|$$

$$= |\frac{1}{3}\Psi(0) - 2\Psi(0)| = |\frac{5}{3}\Psi(0)|$$

$$\Psi_{i}$$

$$Q_{i}$$

$$W_{i}$$

$$W_{i}$$

$$Q_{i}$$

$$W_{i}$$

$$W_{i}$$

$$Q_{i}$$

$$W_{i}$$

• 5× the amplitude of the Sachs-Wolfe effect!

External Potential Approach

Solution to homogeneous equation

$$(1+R)^{-1/4}\cos(ks)$$
, $(1+R)^{-1/4}\sin(ks)$

• Give the general solution for an external potential by propagating impulsive forces

$$(1+R)^{1/4}\Theta(\eta) = \Theta(0)\cos(ks) + \frac{\sqrt{3}}{k} \left[\dot{\Theta}(0) + \frac{1}{4}\dot{R}(0)\Theta(0) \right] \sin ks$$
$$+ \frac{\sqrt{3}}{k} \int_0^{\eta} d\eta' (1+R')^{3/4} \sin[ks - ks'] F(\eta')$$

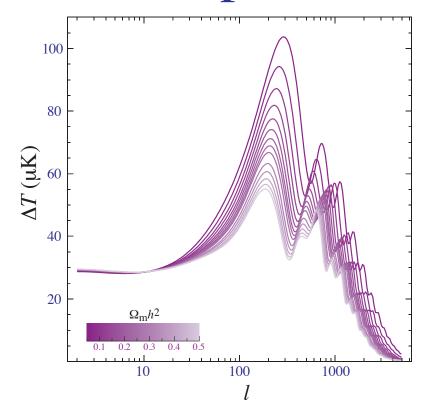
where

$$\mathbf{F} = -\ddot{\Phi} - \frac{\dot{R}}{1+R}\dot{\Phi} - \frac{k^2}{3}\Psi$$

Useful if general form of potential evolution is known

Matter-Radiation in the Power Spectrum

- Coherent approximation is exact for a photon-baryon fluid but reality is reduced to $\sim 4\times$ because of neutrino contribution to radiation
- Actual initial conditions are $\Theta + \Psi = \Psi/2$ for radiation domination but comparison to matter dominated SW correct



Damping

- Tight coupling equations assume a perfect fluid: no viscosity, no heat conduction
- Fluid imperfections are related to the mean free path of the photons in the baryons

$$\lambda_C = \dot{\tau}^{-1}$$
 where $\dot{\tau} = n_e \sigma_T a$

is the conformal opacity to Thomson scattering

• Dissipation related to diffusion length: random walk approx

$$\lambda_D = \sqrt{N}\lambda_C = \sqrt{\eta/\lambda_C}\,\lambda_C = \sqrt{\eta\lambda_C}$$

the geometric mean between the horizon and mean free path

- $\lambda_D/\eta_* \sim \text{few \%}$, so expect peaks > 3 to be affected by dissipation
- $\sqrt{\eta}$ enters here and η in the acoustic scale \rightarrow expansion rate and extra relativistic species

Equations of Motion

Continuity

$$\dot{\Theta} = -\frac{k}{3}v_{\gamma} - \dot{\Phi} \,, \quad \dot{\delta}_b = -kv_b - 3\dot{\Phi}$$

where the photon equation remains unchanged and the baryons follow number conservation with $\rho_b = m_b n_b$

• Navier-Stokes (Euler + heat conduction, viscosity)

$$\dot{v}_{\gamma} = k(\Theta + \Psi) - \frac{k}{6}\pi_{\gamma} - \dot{\tau}(v_{\gamma} - v_b)$$

$$\dot{v}_{b} = -\frac{\dot{a}}{a}v_b + k\Psi + \dot{\tau}(v_{\gamma} - v_b)/R$$

where the photons gain an anisotropic stress term π_{γ} from radiation viscosity and a momentum exchange term with the baryons and are compensated by the opposite term in the baryon Euler equation

Viscosity

- Viscosity is generated from radiation streaming from hot to cold regions
- Expect

$$\pi_{\gamma} \sim v_{\gamma} \frac{k}{\dot{\tau}}$$

generated by streaming, suppressed by scattering in a wavelength of the fluctuation. Radiative transfer says

$$\pi_{\gamma} \approx 2A_{v}v_{\gamma}\frac{k}{\dot{\tau}}$$

where $A_v = 16/15$

$$\dot{v}_{\gamma} = k(\Theta + \Psi) - \frac{k}{3} A_v \frac{k}{\dot{\tau}} v_{\gamma}$$

Oscillator: Penultimate Take

• Adiabatic approximation ($\omega \gg \dot{a}/a$)

$$\dot{\Theta} \approx -\frac{k}{3}v_{\gamma}$$

• Oscillator equation contains a Θ damping term

$$c_s^2 \frac{d}{d\eta} (c_s^{-2} \dot{\Theta}) + \frac{k^2 c_s^2}{\dot{\tau}} A_v \dot{\Theta} + k^2 c_s^2 \Theta = -\frac{k^2}{3} \Psi - c_s^2 \frac{d}{d\eta} (c_s^{-2} \dot{\Phi})$$

• Heat conduction term similar in that it is proportional to v_{γ} and is suppressed by scattering $k/\dot{\tau}$. Expansion of Euler equations to leading order in $k\dot{\tau}$ gives

$$A_h = \frac{R^2}{1+R}$$

since the effects are only significant if the baryons are dynamically important

Oscillator: Final Take

Final oscillator equation

$$c_s^2 \frac{d}{d\eta} (c_s^{-2} \dot{\Theta}) + \frac{k^2 c_s^2}{\dot{\tau}} [A_v + A_h] \dot{\Theta} + k^2 c_s^2 \Theta = -\frac{k^2}{3} \Psi - c_s^2 \frac{d}{d\eta} (c_s^{-2} \dot{\Phi})$$

Solve in the adiabatic approximation

$$\Theta \propto \exp(i \int \omega d\eta)$$

$$-\omega^{2} + \frac{k^{2}c_{s}^{2}}{\dot{\tau}}(A_{v} + A_{h})i\omega + k^{2}c_{s}^{2} = 0$$

Dispersion Relation

Solve

$$\omega^{2} = k^{2}c_{s}^{2} \left[1 + i \frac{\omega}{\dot{\tau}} (A_{v} + A_{h}) \right]$$

$$\omega = \pm kc_{s} \left[1 + \frac{i}{2} \frac{\omega}{\dot{\tau}} (A_{v} + A_{h}) \right]$$

$$= \pm kc_{s} \left[1 \pm \frac{i}{2} \frac{kc_{s}}{\dot{\tau}} (A_{v} + A_{h}) \right]$$

Exponentiate

$$\exp(i\int \omega d\eta) = e^{\pm iks} \exp[-k^2 \int d\eta \frac{1}{2} \frac{c_s^2}{\dot{\tau}} (A_v + A_h)]$$
$$= e^{\pm iks} \exp[-(k/k_D)^2]$$

• Damping is exponential under the scale k_D

Diffusion Scale

Diffusion wavenumber

$$k_D^{-2} = \int d\eta \frac{1}{\dot{\tau}} \frac{1}{6(1+R)} \left(\frac{16}{15} + \frac{R^2}{(1+R)} \right)$$

Limiting forms

$$\lim_{R \to 0} k_D^{-2} = \frac{1}{6} \frac{16}{15} \int d\eta \frac{1}{\dot{\tau}}$$

$$\lim_{R \to \infty} k_D^{-2} = \frac{1}{6} \int d\eta \frac{1}{\dot{\tau}}$$

 Geometric mean between horizon and mean free path as expected from a random walk

$$\lambda_D = \frac{2\pi}{k_D} \sim \frac{2\pi}{\sqrt{6}} (\eta \dot{\tau}^{-1})^{1/2}$$

Thomson Scattering

- Polarization state of radiation in direction $\hat{\mathbf{n}}$ described by the intensity matrix $\langle E_i(\hat{\mathbf{n}})E_j^*(\hat{\mathbf{n}})\rangle$, where \mathbf{E} is the electric field vector and the brackets denote time averaging.
- Differential cross section

$$\frac{d\sigma}{d\Omega} = \frac{3}{8\pi} |\hat{\mathbf{E}}' \cdot \hat{\mathbf{E}}|^2 \sigma_T,$$

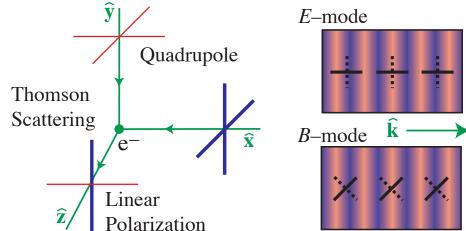
where $\sigma_T = 8\pi\alpha^2/3m_e$ is the Thomson cross section, $\hat{\mathbf{E}}'$ and $\hat{\mathbf{E}}$ denote the incoming and outgoing directions of the electric field or polarization vector.

• Summed over angle and incoming polarization

$$\sum_{i=1,2} \int d\hat{\mathbf{n}}' \frac{d\sigma}{d\Omega} = \sigma_T$$

Polarization Generation

- Heuristic:
 incoming radiation shakes
 an electron in direction
 of electric field vector Ê'
- Radiates photon with polarization also in direction $\hat{\mathbf{E}}'$



- But photon cannot be longitudinally polarized so that scattering into 90° can only pass one polarization
- Linearly polarized radiation like polarization by reflection
- Unlike reflection of sunlight, incoming radiation is nearly isotropic
- Missing from direction orthogonal to original incoming direction
- Only quadrupole anisotropy generates polarization by Thomson scattering

Acoustic Polarization

• Break down of tight-coupling leads to quadrupole anisotropy of

$$\pi_{\gamma} pprox rac{k}{\dot{ au}} v_{\gamma}$$

- Scaling $k_D = (\dot{\tau}/\eta_*)^{1/2} \to \dot{\tau} = k_D^2 \eta_*$
- Know: $k_D s_* \approx k_D \eta_* \approx 10$
- So:

$$\pi_{\gamma} \approx \frac{k}{k_D} \frac{1}{10} v_{\gamma}$$

$$\Delta_P \approx \frac{\ell}{\ell_D} \frac{1}{10} \Delta_T$$

Acoustic Polarization

- Gradient of velocity is along direction of wavevector, so polarization is pure E-mode
- Velocity is 90° out of phase with temperature turning points of oscillator are zero points of velocity:

$$\Theta + \Psi \propto \cos(ks); \quad v_{\gamma} \propto \sin(ks)$$

• Polarization peaks are at troughs of temperature power

Cross Correlation

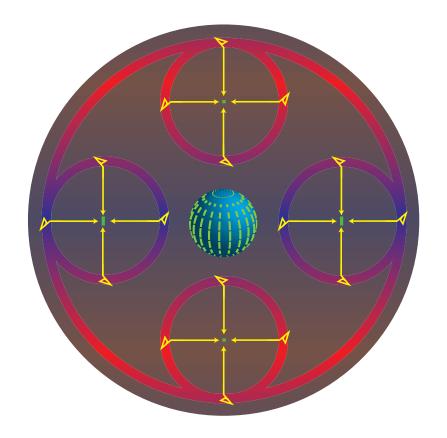
Cross correlation of temperature and polarization

$$(\Theta + \Psi)(v_{\gamma}) \propto \cos(ks)\sin(ks) \propto \sin(2ks)$$

- Oscillation at twice the frequency
- Correlation: radial or tangential around hot spots
- Partial correlation: easier to measure if polarization data is noisy, harder to measure if polarization data is high S/N or if bands do not resolve oscillations
- Good check for systematics and foregrounds
- Comparison of temperature and polarization is proof against features in initial conditions mimicking acoustic features

Reionization

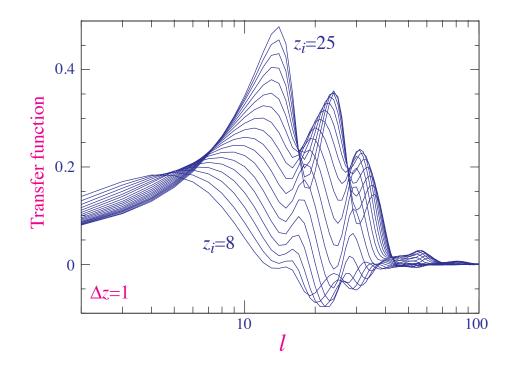
- Reionization causes rescattering of radiation
- Suppresses temperature anisotopy as $e^{-\tau}$ and changes interpretation of amplitude to $A_s e^{-2\tau}$
- Electron sees temperature anisotropy on its recombination surface



- For wavelengths that are comparable to the horizon at reionization, a quadrupole moment
- Rescatters to a linear polarization that is correlated with the Sachs-Wolfe temperature anisotropy

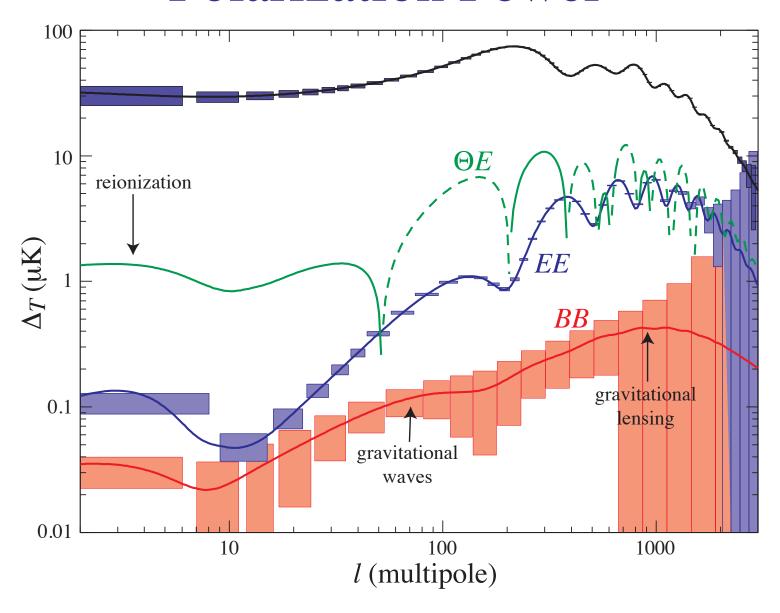
Reionization

- Amplitude of C_ℓ^{EE} depends mainly on τ
- Shape of C_{ℓ}^{EE} depends on reionization history
- Horizon at earlier epochs subtends a smaller angle, higher multipole peak



ullet Precision measurements can constrain the reionization history to be either low or high z dominated

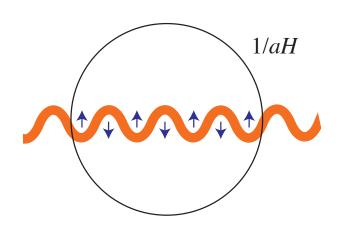
Polarization Power



Tensor Power

 Gravitational waves obey a Klein-Gordon like equation

- Like inflation, perturbations generated by quantum fluctuations during inflation
- Freeze out at horizon crossing during inflation an amplitude that reflects the energy scale of inflation



$$\Delta_{+,\times}^2 = \frac{H^2}{2\pi^2 M_{\rm Pl}^2} \propto E_i^4$$

- Gravitational waves remain frozen outside the horizon at constant amplitude
- Oscillate inside the horizon and decay or redshift as radiation

Tensor Quadrupoles

m=2

Tensors

(Gravity Waves)

trough

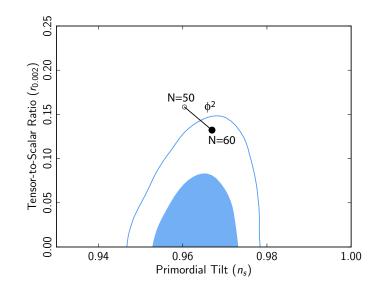
crest

trough

- Changing transverse-traceless distortion of space creates a quadrupole CMB anisotropy much like the distortion of test ring of particles
- As the tensor mode enters the horizon it imprints a quadrupole temperature distortion: $\dot{H}_T^{\pm 2}$ is source to $S_2^{\pm 2}$
- Modes that cross before recombination: effect erased by rescattering $e^{-\tau}$ in the integral solution
- Modes that cross after recombination: integrate contributions along the line of sight - tensor ISW effect

Tensor Temperature Power Spectrum

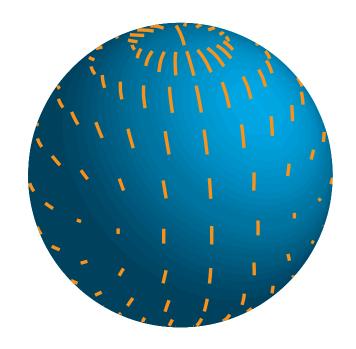
- Resulting spectum, near scale invariant out to horizon at recombination $\ell < 100$
- Suppressed on smaller scales or higher multipoles $\ell > 100$, weakly degenerate with tilt



- When added to scalar spectrum, enhances large scale anisotropy over small scale
- Shape of total temperature spectrum can place tight limit r < 0.1, for power law curvature spectrum
- Smaller tensor-scalar ratios cannot be constrained by temperature alone due the high cosmic variance of the low multipole specrum

Tensor Polarization Power Spectrum

- Polarization
 of gravitational wave determines the
 quadrupole temperature anisotropy
- Scattering of quadrupole temperature anisotropy generates linear polarization aligned with cold lobe



- Direction of CMB polarization is therefore determined by gravitational wave polarization rather than direction of wavevector
- B-mode polarization when the amplitude is modulated by the plane wave
- Requires scattering: two peaks horizon at recombination and reionization

Tensor Polarization Power Spectrum

 Measuring B-modes from gravitational waves determines the energy scale of inflation

$$\Delta B_{\rm peak} \approx 0.024 \left(\frac{E_i}{10^{16} {\rm GeV}}\right)^2 \mu {\rm K}$$

- Also generates E-mode polarization which, like temperature, is a consistency check for $r\sim 0.1$
- Projection is less sharp than for scalar E, so evading temperature bounds by adding features to the curvature spectrum can be tested

Gravitational Lensing

• Lensing is a surface brightness conserving remapping of source to image planes by the gradient of the projected potential

$$\phi(\hat{\mathbf{n}}) = 2 \int_{\eta_*}^{\eta_0} d\eta \, \frac{(D_* - D)}{D D_*} \Phi(D\hat{\mathbf{n}}, \eta) \, .$$

such that the fields are remapped as

$$x(\hat{\mathbf{n}}) \to x(\hat{\mathbf{n}} + \nabla \phi),$$

where $x \in \{\Theta, Q, U\}$ temperature and polarization.

 Taylor expansion leads to product of fields and Fourier mode-coupling

Flat-sky Treatment

Talyor expand

$$\Theta(\hat{\mathbf{n}}) = \tilde{\Theta}(\hat{\mathbf{n}} + \nabla \phi)$$

$$= \tilde{\Theta}(\hat{\mathbf{n}}) + \nabla_i \phi(\hat{\mathbf{n}}) \nabla^i \tilde{\Theta}(\hat{\mathbf{n}}) + \frac{1}{2} \nabla_i \phi(\hat{\mathbf{n}}) \nabla_j \phi(\hat{\mathbf{n}}) \nabla^i \nabla^j \tilde{\Theta}(\hat{\mathbf{n}}) + \dots$$

Fourier decomposition

$$\phi(\hat{\mathbf{n}}) = \int \frac{d^2l}{(2\pi)^2} \phi(\mathbf{l}) e^{i\mathbf{l}\cdot\hat{\mathbf{n}}}$$
$$\tilde{\Theta}(\hat{\mathbf{n}}) = \int \frac{d^2l}{(2\pi)^2} \tilde{\Theta}(\mathbf{l}) e^{i\mathbf{l}\cdot\hat{\mathbf{n}}}$$

Flat-sky Treatment

Mode coupling of harmonics

$$\Theta(\mathbf{l}) = \int d\hat{\mathbf{n}} \,\Theta(\hat{\mathbf{n}}) e^{-il\cdot\hat{\mathbf{n}}}$$

$$= \tilde{\Theta}(\mathbf{l}) - \int \frac{d^2\mathbf{l}_1}{(2\pi)^2} \tilde{\Theta}(\mathbf{l}_1) L(\mathbf{l}, \mathbf{l}_1) ,$$

where

$$L(\mathbf{l}, \mathbf{l}_1) = \phi(\mathbf{l} - \mathbf{l}_1) (\mathbf{l} - \mathbf{l}_1) \cdot \mathbf{l}_1$$

$$+ \frac{1}{2} \int \frac{d^2 \mathbf{l}_2}{(2\pi)^2} \phi(\mathbf{l}_2) \phi^*(\mathbf{l}_2 + \mathbf{l}_1 - \mathbf{l}) (\mathbf{l}_2 \cdot \mathbf{l}_1) (\mathbf{l}_2 + \mathbf{l}_1 - \mathbf{l}) \cdot \mathbf{l}_1.$$

• Represents a coupling of harmonics separated by $L \approx 60$ peak of deflection power

Power Spectrum

Power spectra

$$\langle \Theta^*(\mathbf{l})\Theta(\mathbf{l}')\rangle = (2\pi)^2 \delta(\mathbf{l} - \mathbf{l}') C_l,$$
$$\langle \phi^*(\mathbf{l})\phi(\mathbf{l}')\rangle = (2\pi)^2 \delta(\mathbf{l} - \mathbf{l}') C_l^{\phi\phi},$$

becomes

$$C_{l} = (1 - l^{2}R) \tilde{C}_{l} + \int \frac{d^{2}\mathbf{l}_{1}}{(2\pi)^{2}} \tilde{C}_{|\mathbf{l}-\mathbf{l}_{1}|} C_{l_{1}}^{\phi\phi} [(\mathbf{l} - \mathbf{l}_{1}) \cdot \mathbf{l}_{1}]^{2},$$

where

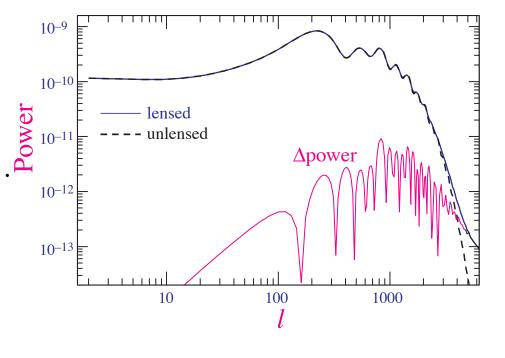
$$R = \frac{1}{4\pi} \int \frac{dl}{l} l^4 C_l^{\phi\phi} .$$

Smoothing Power Spectrum

• If \tilde{C}_l slowly varying then two term cancel

$$\tilde{C}_l \int \frac{d^2 \mathbf{l}_1}{(2\pi)^2} C_l^{\phi\phi} (\mathbf{l} \cdot \mathbf{l}_1)^2 \approx l^2 R \tilde{C}_l \cdot \sum_{10^{-12}}^{\frac{10^{-11}}{10^{-12}}}$$

 So lensing acts to smooth features in the power spectrum. Smoothing



kernel is $L \sim 60$ the peak of deflection power spectrum

- Because acoustic feature appear on a scale $l_A \sim 300$, smoothing is a subtle effect in the power spectrum.
- Lensing generates power below the damping scale which directly reflect power in deflections on the same scale

Polarization Lensing

Polarization field harmonics lensed similarly

$$[Q \pm iU](\hat{\mathbf{n}}) = -\int \frac{d^2l}{(2\pi)^2} [E \pm iB](\mathbf{l}) e^{\pm 2i\phi_{\mathbf{l}}} e^{\mathbf{l}\cdot\hat{\mathbf{n}}}$$

so that

$$[Q \pm iU](\hat{\mathbf{n}}) = [\tilde{Q} \pm i\tilde{U}](\hat{\mathbf{n}} + \nabla\phi)$$

$$\approx [\tilde{Q} \pm i\tilde{U}](\hat{\mathbf{n}}) + \nabla_i\phi(\hat{\mathbf{n}})\nabla^i[\tilde{Q} \pm i\tilde{U}](\hat{\mathbf{n}})$$

$$+ \frac{1}{2}\nabla_i\phi(\hat{\mathbf{n}})\nabla_j\phi(\hat{\mathbf{n}})\nabla^i\nabla^j[\tilde{Q} \pm i\tilde{U}](\hat{\mathbf{n}})$$

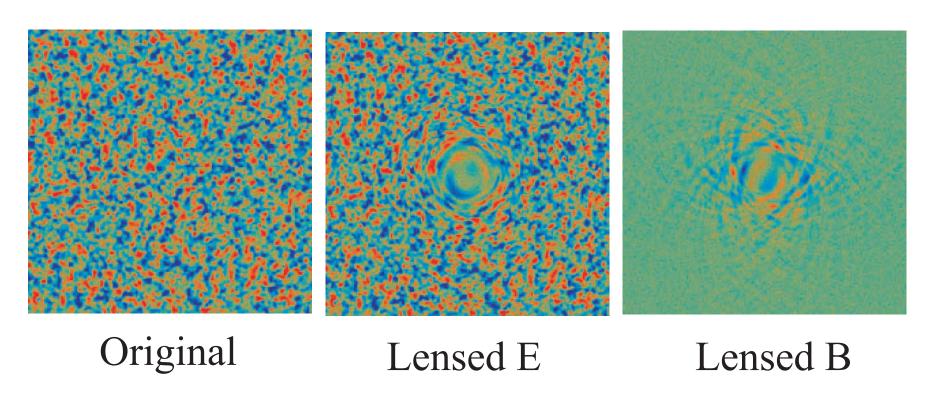
Polarization Power Spectra

Carrying through the algebra

$$C_{l}^{EE} = (1 - l^{2}R) \, \tilde{C}_{l}^{EE} + \frac{1}{2} \int \frac{d^{2}\mathbf{l}_{1}}{(2\pi)^{2}} [(\mathbf{l} - \mathbf{l}_{1}) \cdot \mathbf{l}_{1}]^{2} C_{|\mathbf{l} - \mathbf{l}_{1}|}^{\phi\phi} \\
\times [(\tilde{C}_{l_{1}}^{EE} + \tilde{C}_{l_{1}}^{BB}) + \cos(4\varphi_{l_{1}}) (\tilde{C}_{l_{1}}^{EE} - \tilde{C}_{l_{1}}^{BB})], \\
C_{l}^{BB} = (1 - l^{2}R) \, \tilde{C}_{l}^{BB} + \frac{1}{2} \int \frac{d^{2}\mathbf{l}_{1}}{(2\pi)^{2}} [(\mathbf{l} - \mathbf{l}_{1}) \cdot \mathbf{l}_{1}]^{2} C_{|\mathbf{l} - \mathbf{l}_{1}|}^{\phi\phi} \\
\times [(\tilde{C}_{l_{1}}^{EE} + \tilde{C}_{l_{1}}^{BB}) - \cos(4\varphi_{l_{1}}) (\tilde{C}_{l_{1}}^{EE} - \tilde{C}_{l_{1}}^{BB})], \\
C_{l}^{\Theta E} = (1 - l^{2}R) \, \tilde{C}_{l}^{\Theta E} + \int \frac{d^{2}\mathbf{l}_{1}}{(2\pi)^{2}} [(\mathbf{l} - \mathbf{l}_{1}) \cdot \mathbf{l}_{1}]^{2} C_{|\mathbf{l} - \mathbf{l}_{1}|}^{\phi\phi} \\
\times \tilde{C}_{l_{1}}^{\Theta E} \cos(2\varphi_{l_{1}}),$$

Polarization Lensing

• Lensing generates B-modes out of the acoustic polaraization E-modes contaminates gravitational wave signature if $E_i < 10^{16} {\rm GeV}$.



Reconstruction from the CMB

Correlation between Fourier moments reflect lensing potential

$$\langle x(\mathbf{l})x'(\mathbf{l}')\rangle_{\text{CMB}} = f_{\alpha}(\mathbf{l},\mathbf{l}')\phi(\mathbf{l}+\mathbf{l}'),$$

where $x \in$ temperature, polarization fields and f_{α} is a fixed weight that reflects geometry

- Each pair forms a noisy estimate of the potential or projected mass
 just like a pair of galaxy shears
- Minimum variance weight all pairs to form an estimator of the lensing mass