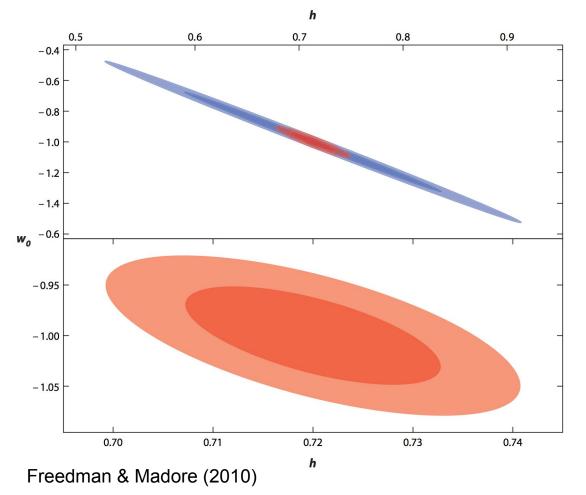
The H0 Tension

And repercussions on opposite datasets

- 1. Motivation for precise H0
- 2. How is it measured locally?
 - a. Parallaxes
 - b. Cepheids/TRGB
 - c. SNe la
- 3. If Planck H0 right, what happens locally?
- 4. Future local H0 measurements


- 1. Motivation for precise H0
- 2. How is it measured locally?
 - a. Parallaxes
 - b. Cepheids/TRGB
 - c. SNe la
- 3. If Planck H0 right, what happens locally?
- 4. Future local H0 measurements

Why such a fuss?

H0 + w degenerate in CMB

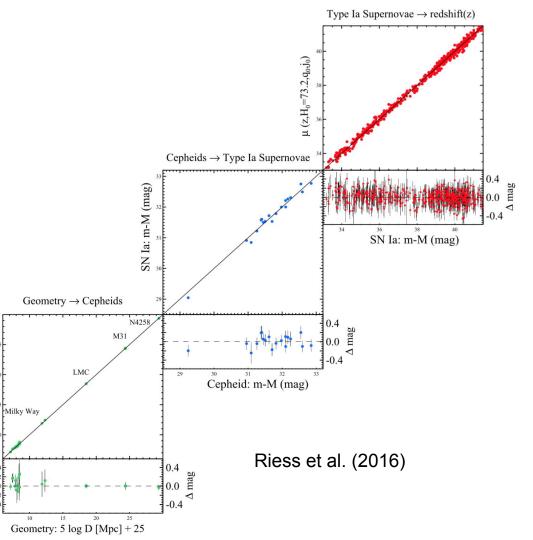
H0 informs very-late-time deviations from smooth w(a) = w0+(1-a)wa

Additional constraints on intermediate z probes

1. Motivation for precise H0

2. How is it measured locally?

- a. Parallaxes
- b. Cepheids/TRGB
- c. SNe la
- 3. If Planck H0 right, what happens locally?
- 4. Future local H0 measurements


How to measure?

Split Hubble diagram into pieces

Calibrate each rung's absolute magnitude

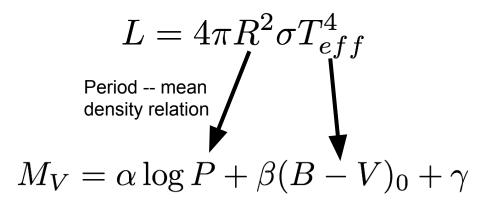
SN calibration low N; dominates error

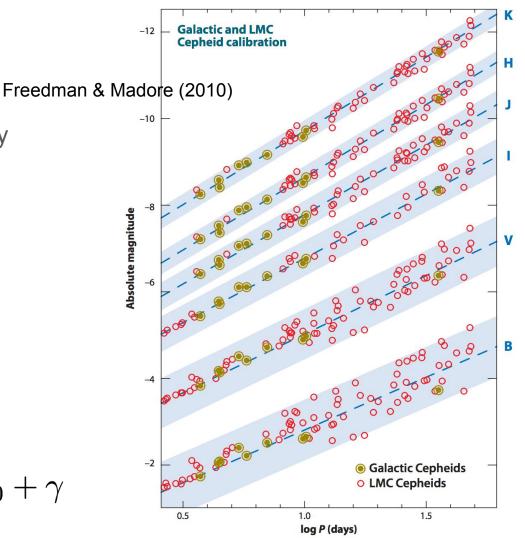
Cepheid: m-M (mag)

- 1. Motivation for precise H0
- 2. How is it measured locally?
 - a. Parallaxes
 - b. Cepheids/TRGB
 - c. SNe la
- 3. If Planck H0 right, what happens locally?
- 4. Future local H0 measurements

Current HST (~8%) parallaxes for only 10 Cepheids in Benedict+07

GAIA will have 100s of Cepheids and 1000s of Red giants with parallax errors <1%


~2% error budget decrease to <~0.5%


- 1. Motivation for precise H0
- 2. How is it measured locally?
 - a. Parallaxes
 - b. Cepheids/TRGB
 - c. SNe la
- 3. If Planck H0 right, what happens locally?
- 4. Future local H0 measurements

Cepheids

IR to avoid reddening and metallicity effects

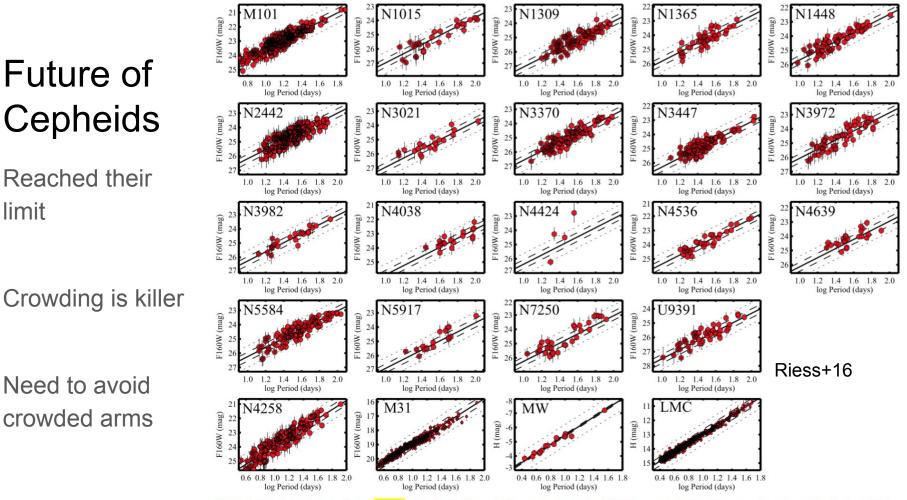
NIR Scatter ~0.10 mag

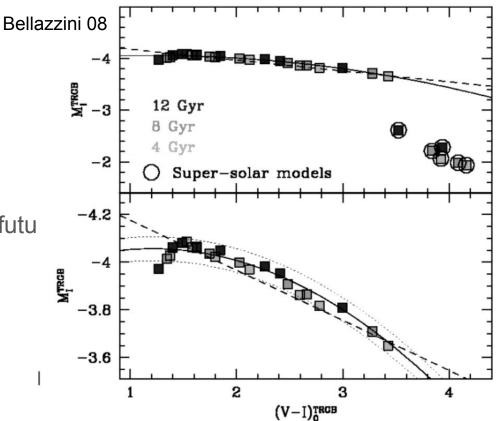
Freedman & Madore (2010)

Known	Key Project	Revisions	Anticipated	Basis
Systematics	(2001)	(2007/2009)	Spitzer/JWST	
(1) Cepheid Zero Point	± 0.12 mag	±0.06 mag	± 0.03 mag	Galactic Parallaxes
(2) Metallicity	\pm 0.10 mag	±0.05 mag	± 0.02 mag	IR + Models
(3) Reddening	± 0.05 mag	± 0.03 mag	± 0.01 mag	IR 20–30 \times Reduced
(4) Transformations	± 0.05 mag	± 0.03 mag	± 0.02 mag	Flight Magnitudes
Final Uncertainty	± 0.20 mag	±0.09 mag	± 0.04 mag	Added in Quadrature
Percentage Error on H_o	$\pm 10\%$	±5%	±2%	Distances

Revisions (Column 2) incorporating the recent work of Benedict et al. (2007) and Riess et al. (2009b).

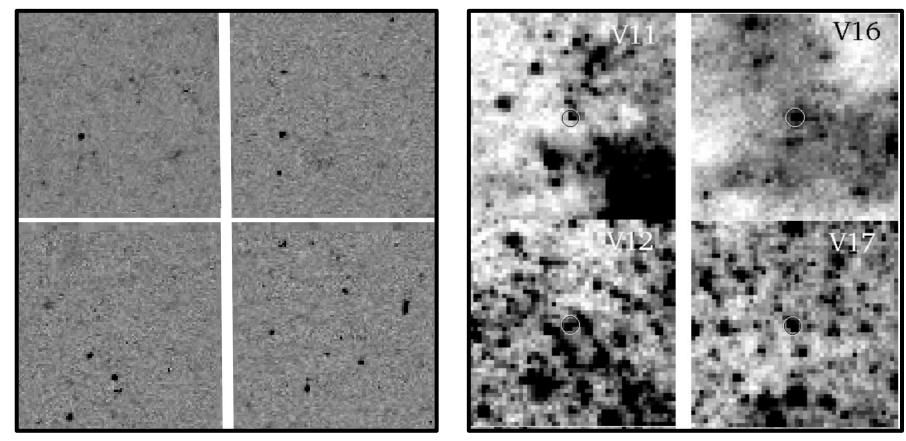
Freedman & Madore (2010)



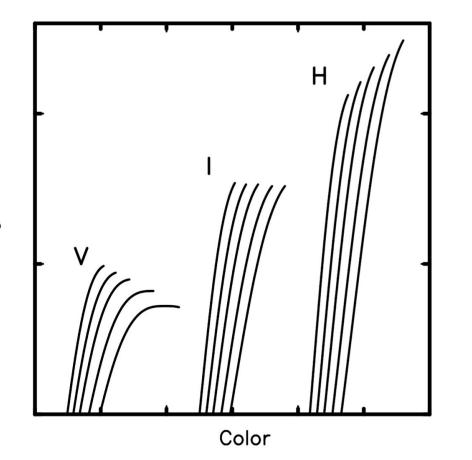

Figure 6. Near-infrared Cepheid P-L relations. The Cepheid magnitudes are shown for the 19 SN hosts and the four distance-scale anchors. Magnitudes labeled as F160W are all from the same instrument and camera, WFC3 F160W. The uniformity of the photometry and metallicity reduces systematic errors along the distance ladder. A single slope is shown to illustrate the relations, but we also allow for a break (two slopes) as well as limited period ranges.

- 1. Motivation for precise H0
- 2. How is it measured locally?
 - a. Parallaxes
 - b. Cepheids/TRGB
 - c. SNe la
- 3. If Planck H0 right, what happens locally?
- 4. Future local H0 measurements

The Tip of the Red Giant Branch (TRGB)

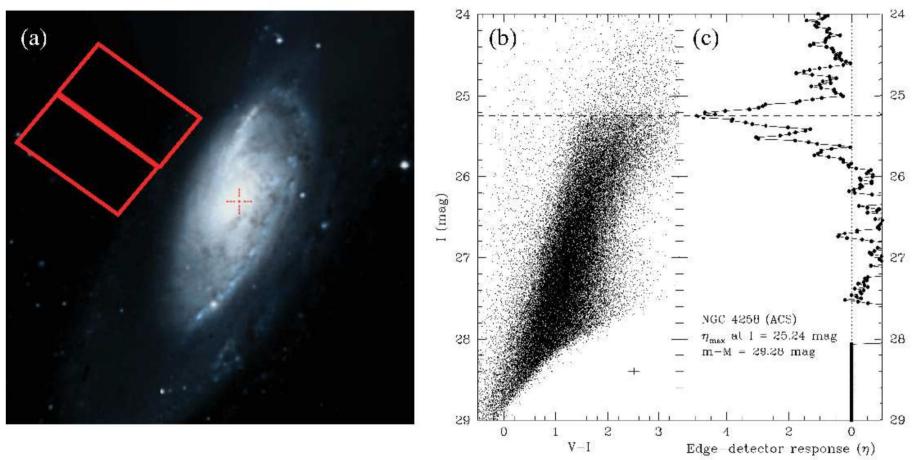

Compared to Cepheids

- 1. Metallicity dependence theory+empirical consistent
- Reddening minimized by NIR
 and halo pointing
- 3. Inverted crowding "problem"; futu with JWST



(lack of) crowding

Silbermann+98



TRGB Morphology with Wavelength

Potential systematics

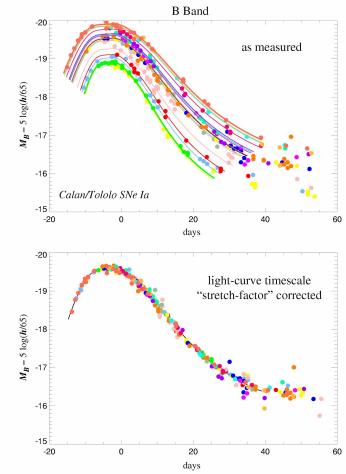
- Mass dependency of TRGB luminosity (mass indep. for M <~ 1.6 M_sun)
- 2. Underpopulation of Tip
- Detection of maximal slope in luminosity function (~few 0.01 mag)

Beaton+16

Near Infrared TRGB

- 1. Motivation for precise H0
- 2. How is it measured locally?
 - a. Parallaxes
 - b. Cepheids/TRGB
 - c. SNe la
- 3. If Planck H0 right, what happens locally?
- 4. Future local H0 measurements

Type la Supernovae


Kim et al. (1997)

 $M = M_{ch}$ gives almost standard candle

Assuming m_{peak} vs. Δm_{15} linear relation, scatter in Hubble diagram is <10%

Recent triumphs Multi-wavelength lc fitting (Guy+07, SALT2; Burns+11, SNooPy)

Common photometric system (Scolnic+15)

Kim, et al. (1997)

SNe la Problems

Not theoretically well understood

Light-curve fitting an "art"

Entangled Intrinsic color + host galaxy reddening

Dependence on galaxy environment

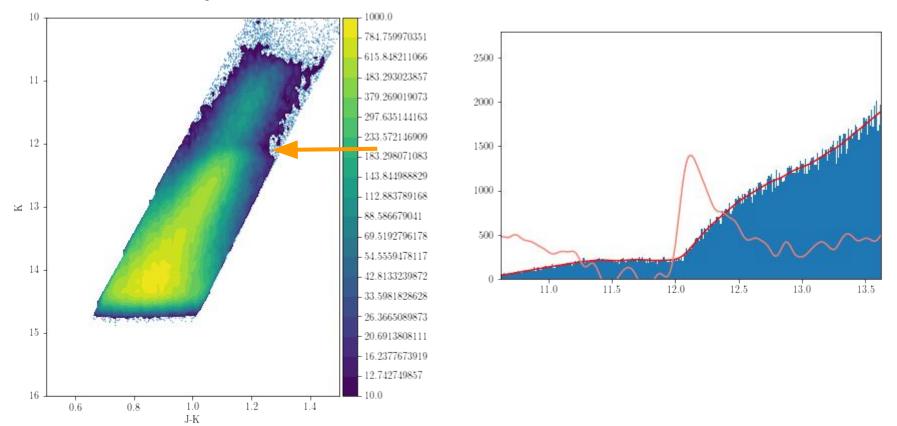
Small numbers between 0.05 < z < 0.1

Carnegie Supernova Project

WFIRST(?)

Evolution with redshift

- 1. Motivation for precise H0
- 2. How is it measured locally?
 - a. Parallaxes
 - b. Cepheids/TRGB
 - c. SNe la
- 3. If Planck H0 right, what happens locally?
- 4. Future local H0 measurements


The LMC

Eclipsing binaries, Cepheids, RR Lyrae, TRGB, all agree within a few %

CMB H0 shifts *everything* by **0.05 mag**

Eclipsing Binaries	18.493 ± 0.008(statistical) ± 0.047 (systematic) mag	Pietrzyński+13
Optical RR Lyrae	18.45 ± 0.09 mag	Clementini+02
MIR Cepheids	18.477 ± 0.033 mag	Scowcroft+12
NIR TRGB	In progress!	Freedman+ in prep.

Preliminary LMC NIR-TRGB

- 1. Motivation for precise H0
- 2. How is it measured locally?
 - a. Parallaxes
 - b. Cepheids/TRGB
 - c. SNe la
- 3. If Planck H0 right, what happens locally?
- 4. Future local H0 measurements

Future measurements

Gaia + Webb => $\sigma(H0) < 1\%$

Direct into Hubble flow (50-60 Mpc < d < 100 Mpc)

First precise check on SNe Ia

Lots of work still to do in the NIR -- stay tuned