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Anisotropy Suppression
• A fraction τ~0.1 of photons rescattered during reionization out of
 line of sight and replaced statistically by photon with random
 temperature flucutuation - suppressing anisotropy as e-τ



Reionization Suppression 
• Rescattering suppresses primary temperature and polarization 
 anisotropy according to optical depth, fraction of photons rescattered
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Tilt-τ Degeneracy 
• Only anisotropy at reionization (high k), not isotropic temperature 
 fluctuations (low k) - is suppressed leading to effective tilt for WMAP
 (not Planck)

Spergel et al (2006)
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Why Are Secondaries So Smalll?
• Original anisotropy replaced by new secondary sources

• Late universe more developed than early universe

Density fluctuations nonlinear not 10−5

Velocity field 10−3 not not 10−5

• Shouldn’t ∆T/T ∼ τv ∼ 10−4?

• Limber says no!

• Spatial and angular dependence of sources contributing and
cancelling broadly in redshift



Anisotropy Suppression and Regeneration
• 

• 

Recombination sources obscured and replaced with secondary
sources that suffer Limber cancellation from integrating over
many wavelengths of the source
Net suppression despite substantially larger sources due to 
growth of structure except beyond damping tail <10’
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Doppler Effect in Limber Approximation
• Only fluctuations transverse to line of sight survive in Limber approx

but linear Doppler effect has no contribution in this direction

observer
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Cancellation of the Linear Effect

overdensity

e— velocity redshifted γ

blueshifted γ

Observer

Cancellation

Reionization Surface



Modulated Doppler Effect

overdensity,
ionization patch,
cluster...

e— velocity unscattered γ

blueshifted γ

Observer

Reionization Surface



Ostriker–Vishniac Effect

Ostriker–
Vishniac

Primary

Doppler

Hu & White (1996)
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Patchy Reionization



• As reionization completes, ionization regions grow and fill the 
 space 

 

Inhomogeneous Ionization

Zahn et al. (2006) [Mortonson et al (2009)]



• Provides a source for modulated Doppler effect that appears
 on the scale of the ionization region

 

Inhomogeneous Ionization



Patchy Reionization
Aghanim et al (1996)

Gruzinov & Hu (1998)

Knox, Scocciomarro 
& Dodelson (1998)



Observational Constraints
• SPT detection of secondary anisotropy (likely SZ dominated, low 
 level) sets upper limit on modulated Doppler contributions

SPT Hall et al - Leuker et al (2010)



Observational Constraints
• Combined with well-determined velocity, rms optical depth 
 fluctuation at arcmin scale δτ<0.0036  (conservative 95% CL)

SPT Hall et al - Leuker et al (2010); Mortonson & Hu (2010)



Secondary Polarization



WMAP Correlation
• Reionization polarization first detected in WMAP1 through
 temperature cross correlation at an anomalously high value

Multipole moment (l)
0

(l+
1)

C
l/2

π� 
(µ

K
2 )

-1

0

1

2

3

10 10040 400200 800 1400

TE Cross Power
SpectrumReionization



Polarization from Thomson Scattering 

• Differential cross section depends on polarization and angle

dσ
dΩ

=
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8π
|ε̂′ · ε̂|2σT
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=
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Polarization from Thomson Scattering 

• Isotropic radiation scatters into unpolarized radiation




Polarization from Thomson Scattering 

• Quadrupole anisotropies scatter into linear polarization

aligned with
cold lobe




Whence Quadrupoles?
• Temperature inhomogeneities in a medium

• Photons arrive from different regions producing an anisotropy

hot

hot

cold

(Scalar) Temperature Inhomogeneity
Hu & White (1997)



CMB Anisotropy
• WMAP map of the CMB temperature anisotropy




Whence Polarization Anisotropy?
• Observed photons scatter into the line of sight 

• Polarization arises from the projection of the quadrupole on the

 transverse plane




Polarization Multipoles
• Mathematically pattern is described by the tensor (spin-2) spherical 
 harmonics [eigenfunctions of Laplacian on trace-free 2 tensor] 

• Correspondence with scalar spherical harmonics established
 via Clebsch-Gordan coefficients (spin x orbital)

• Amplitude of the coefficients in the spherical harmonic expansion
 are the multipole moments; averaged square is the power

E-tensor harmonic

l=2, m=0



Modulation by Plane Wave

• Amplitude modulated by plane wave → higher multipole moments
• Direction detemined by perturbation type → E-modes
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A Catch-22
• Polarization is generated by scattering of anisotropic radiation

• Scattering isotropizes radiation

• Polarization only arises in optically thin conditions: reionization
 and end of recombination

• Polarization fraction is at best a small fraction of the 10-5 anisotropy:
 ~10-6  or µK in amplitude




WMAP 3yr Data
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Temperature Inhomogeneity
• Temperature inhomogeneity reflects initial density perturbation
 on large scales
• Consider a single Fourier moment:



Locally Transparent
• Presently, the matter density is so low that a typical CMB photon 
 will not scatter in a Hubble time (~age of universe)

recombination

observer

transparent



Reversed Expansion
• Free electron density in an ionized medium increases as scale factor 
 a-3; when the universe was a tenth of its current size CMB photons
 have a finite (~10%) chance to scatter

recombination

rescattering



Polarization Anisotropy
• Electron sees the temperature anisotropy on its recombination 
 surface and scatters it into a polarization

recombination

polarization



Temperature Correlation
• Pattern correlated with the temperature anisotropy that generates
 it; here an m=0 quadrupole



Instantaneous Reionization
• WMAP data constrains optical depth for instantaneous models
 of τ=0.087±0.017
• Upper limit on gravitational waves weaker than from temperature



Why Care?
• Early ionization is puzzling if due to ionizing radiation from normal
 stars; may indicate more exotic physics is involved

• Reionization screens temperature anisotropy on small scales
 making the true amplitude of initial fluctuations larger by eτ

• Measuring the growth of fluctuations is one of the best ways of 
 determining the neutrino masses and the dark energy

• Offers an opportunity to study the origin of the low multipole
 statistical anomalies

• Presents a second, and statistically cleaner, window on 
 gravitational waves from the early universe



Distance Predicts Growth
• With smooth dark energy, distance predicts scale-invariant
 growth to a few percent - a falsifiable prediction

Mortonson, Hu, Huterer (2008)



Ionization History
•	 Two models with same optical depth τ but different ionization
	 history 

Kaplinghat et al. (2002); Hu & Holder (2003)
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Distinguishable History
•	 Same optical depth, but different coherence - horizon scale
	 during scattering epoch	

Kaplinghat et al. (2002); Hu & Holder (2003)
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Principal Components
•	 Eigenvectors of the Fisher Matrix

Hu & Holder (2003) z
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Capturing the Observables
•	 First 5 modes have the information content and most of 
	 optical depth

Hu & Holder (2003)
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Representation in Modes
•	 Truncation at 5 modes leaves a low pass filtered of ionization
	 history

•	 Ionization fraction allowed to go negative (Boltzmann code
	 has negative sources)

Hu & Holder (2003)
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Representation in Modes
•	 Reproduces the power spectrum with sum over >3 modes
	 more generally 5 modes suffices: e.g. total τ=0.1375 vs 0.1377

Hu & Holder (2003)
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Total Optical Depth
•	 Optical depth measurement unbiased
•	 Ultimate errors set by cosmic variance here 0.01 
•	 Equivalently 1% measure of initial amplitude, impt for dark energy

Hu & Holder (2003) mode µ
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WMAP5 Ionization PCs
• Only first two modes constrained, τ=0.101±0.017

Mortonson & Hu (2008)



Model-Independent Reionization
• All possible ionization histories at z<30
• Detections at 20<l<30 required to further constrain general ionization
 which widens the τ-ns degeneracy allowing ns=1
• Quadrupole & octopole predicted to better than cosmic variance
 test ΛCDM for anomalies 

Mortonson & Hu (2008) 10 303
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Gravitational Secondaries
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Integrated Sachs-Wolfe
Effect



Scattering Secondaries
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ISW Effect

• Gravitational blueshift on infall does not cancel redshift 
on climbing out

• Contraction of spatial metric doubles the effect: ∆T/T=2∆Φ

• Effect from potential hills and wells cancel on small scales



ISW Effect

• Gravitational blueshift on infall does not cancel redshift 
on climbing out

• Contraction of spatial metric doubles the effect: ∆T/T=2∆Φ

• Effect from potential hills and wells cancel on small scales



Smooth Energy Density & Potential Decay

• Regardless of the equation of state an energy component
that clusters preserves an approximately constant 
gravitational potential (formally Bardeen curvature ζ)



Smooth Energy Density & Potential Decay

• Regardless of the equation of state an energy component
that clusters preserves an approximately constant 
gravitational potential (formally Bardeen curvature ζ)

• A smooth component contributes
density ρ to the expansion

but not
density fluctuation δρ to the Poisson equation

• Imbalance causes potential to decay once smooth 
component dominates the expansion



ISW Spatial Modes
• ISW effect comes from nearby acceleration regime 
• Shorter wavelengths project onto same angle
• Broad source kernel: Limber cancellation out to quadrupole
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Gordon & Hu (2004)



Smooth Energy Density & Potential Decay

• Regardless of the equation of state an energy component
that clusters preserves an approximately constant 
gravitational potential (formally Bardeen curvature ζ)

• A smooth component contributes
density ρ to the expansion

but not
density fluctuation δρ to the Poisson equation

• Imbalance causes potential to decay once smooth 
component dominates the expansion

• Scalar field dark energy (quintessence) is smooth out to
the horizon scale (sound speed cs=1)

• Potential decay measures the clustering  properties and 
hence the particle properties of the dark energy



ISW & Dark Energy



Dark Energy
• Peaks measure distance to recombination

• ISW effect constrains dynamics of acceleration
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Dark Energy Sound Speed
• Smooth and clustered regimes separated by sound horizon

• Covariant definition: ce
2=δp/δρ where momentum flux vanishes 

• For scalar field dark energy uniquely defined by kinetic term

Hu (1998)
Garriga & Mukhanov (1999) [plot: Hu & Scranton (2004)]
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Dark Energy Clustering
• ISW effect intrinsically sensitive to dark energy smoothness
• Large angle contributions reduced if clustered

Hu (1998); [plot: Hu & Scranton (2004)]
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   DGP CMB Large-Angle Excess
• Extra dimension modify gravity on large scales
• 4D universe bending into extra dimension alters gravitational 
 redshifts in cosmic microwave background
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Lensing of CMB Fields



Gravitational Lensing
• Lensing is a surface brightness conservingremappingof source to

image planes by the gradient of theprojected potential

φ(n̂) = 2

∫
dz

H(z)

DA(Ds −D)

DA(D)DA(Ds)
Φ(DAn̂, D) ,

such that the fields are remapped as

x(n̂) → x(n̂ +∇φ) ,

wherex ∈ {T,Q, U} temperature and polarization.

• Taylor expansion leads toproductof fields and Fourier
mode-coupling

• Appears in the power spectrum as aconvolution kernelfor T and
E and anE → B.



Lensing of a Gaussian Random Field

• CMB temperature and polarization anisotropies are Gaussian
random fields – unlike galaxy weak lensing

• Average over many noisy images – like galaxy weak lensing



Gravitational Lensing
• Gravitational lensing by large scale structure distorts the observed
 temperature and polarization fields

• Exaggerated example for the temperature

Original Lensed



Polarization Lensing



Electric & Magnetic Polarization
(a.k.a. gradient & curl)

Kamionkowski, Kosowsky, Stebbins (1997)
Zaldarriaga & Seljak (1997)

• Alignment of principal vs polarization axes 
(curvature matrix vs polarization direction)

E

B



Temperature & Polarization
• Warping of the polarization field generates B-modes from

E-modes at recombination (100 sq deg.)

Zaldarriaga & Seljak (1999) [figure from Hu & Okamoto (2001)]
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Lensing by a Gaussian Random Field

• Mass distribution at large angles and high redshift in
in the linear regime 

• Projected mass distribution (low pass filtered reflecting
deflection angles): 1000 sq. deg

rms deflection
2.6'

deflection coherence
10°



Deflection Power Spectrum
•	 Fundamental observable is deflection power spectrum (or 
	 convergence / l2 )
•	 Nearly entirely in linear regime
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Power Spectrum Observables



Gravitational Lensing
• Lensing is a surface brightness conserving remapping of source to

image planes by the gradient of the projected potential

φ(n̂) = 2

∫ η0

η∗

dη
(D∗ −D)

DD∗
Φ(Dn̂, η) .

such that the fields are remapped as

x(n̂)→ x(n̂ +∇φ) ,

where x ∈ {Θ, Q, U} temperature and polarization.

• Taylor expansion leads to product of fields and Fourier
mode-coupling



Flat-sky Treatment
• Taylor expand

Θ(n̂) = Θ̃(n̂ +∇φ)

= Θ̃(n̂) +∇iφ(n̂)∇iΘ̃(n̂) +
1

2
∇iφ(n̂)∇jφ(n̂)∇i∇jΘ̃(n̂) + . . .

• Fourier decomposition

φ(n̂) =

∫
d2l

(2π)2
φ(l)eil·n̂

Θ̃(n̂) =

∫
d2l

(2π)2
Θ̃(l)eil·n̂



Flat-sky Treatment
• Mode coupling of harmonics

Θ(l) =

∫
dn̂ Θ(n̂)e−il·n̂

= Θ̃(l)−
∫

d2l1
(2π)2

Θ̃(l1)L(l, l1) ,

where

L(l, l1) = φ(l− l1) (l− l1) · l1

+
1

2

∫
d2l2

(2π)2
φ(l2)φ∗(l2 + l1 − l) (l2 · l1)(l2 + l1 − l) · l1 .

• Represents a coupling of harmonics separated by L ≈ 60 peak of
deflection power



Power Spectrum
• Power spectra

〈Θ∗(l)Θ(l′)〉 = (2π)2δ(l− l′) CΘΘ
l ,

〈φ∗(l)φ(l′)〉 = (2π)2δ(l− l′) Cφφ
l ,

becomes

CΘΘ
l =

(
1− l2R

)
C̃ΘΘ
l +

∫
d2l1

(2π)2
C̃ΘΘ
|l−l1|C

φφ
l1

[(l− l1) · l1]2 ,

where

R =
1

4π

∫
dl

l
l4Cφφ

l .



Smoothing Power Spectrum
• If C̃ΘΘ

l slowly varying then two term cancel

C̃ΘΘ
l

∫
d2l1

(2π)2
Cφφ
l (l · l1)2 ≈ l2RC̃ΘΘ

l .

• So lensing acts to smooth features in the power spectrum.
Smoothing kernel is ∆L ∼ 60 the peak of deflection power
spectrum

• Because acoustic feature appear on a scale lA ∼ 300, smoothing is
a subtle effect in the power spectrum.

• Lensing generates power below the damping scale which directly
reflect power in deflections on the same scale



Lensing in the Power Spectrum

• Lensing smooths the power spectrum with a width ∆l~60

• Convolution with specific kernel: higher order correlations 
between multipole moments – not apparent in power
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Generation of Power
• On scales below the damping scale, primary CMB looks like a

smooth gradient

• Lensing effects modulate the gradient (l1 � l):

CΘΘ
l ≈

∫
d2l1

(2π)2
C̃ΘΘ
l1
Cφφ
|l−l1|[(l− l1) · l1]2

≈ 1

2
l2Cφφ

l

∫
d2l1

(2π)2
l21C̃

ΘΘ
l1

and produce power on the same scale from power in the primary
gradient (Zaldarriaga 2000)



Lensing in the Power Spectrum
• Small scale lenses modulate the large scale temperature field

• Generates power below damping scale from gradient power
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Temperature Power Spectrum
•	 Lensing acts to smooth the temperature (and E polarization peaks)
•	 Subtle effect reaches 10% deep in the damping tail 
•	 Statistically detectable at high significance with Planck in the
	 absence of other secondaries and foregrounds 
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Seljak (1996) [see Challinor & Lewis (2006) for refinements]



Polarization Lensing
• Polarization field harmonics lensed similarly

[Q± iU ](n̂) = −
∫

d2l

(2π)2
[E ± iB](l)e±2iφlel·n̂

so that

[Q± iU ](n̂) = [Q̃± iŨ ](n̂ +∇φ)

≈ [Q̃± iŨ ](n̂) +∇iφ(n̂)∇i[Q̃± iŨ ](n̂)

+
1

2
∇iφ(n̂)∇jφ(n̂)∇i∇j[Q̃± iŨ ](n̂)



Polarization Power Spectra
• Carrying through the algebra to the power spectrum

CEE
l =

(
1− l2R

)
C̃EE
l +

1

2

∫
d2l1

(2π)2
[(l− l1) · l1]2Cφφ

|l−l1|

× [(C̃EE
l1

+ C̃BB
l1

) + cos(4ϕl1)(C̃
EE
l1
− C̃BB

l1
)] ,

CBB
l =

(
1− l2R

)
C̃BB
l +

1

2

∫
d2l1

(2π)2
[(l− l1) · l1]2Cφφ

|l−l1|

× [(C̃EE
l1

+ C̃BB
l1

)− cos(4ϕl1)(C̃
EE
l1
− C̃BB

l1
)] ,

CΘE
l =

(
1− l2R

)
C̃ΘE
l +

∫
d2l1

(2π)2
[(l− l1) · l1]2Cφφ

|l−l1|

× C̃ΘE
l1

cos(2ϕl1) ,

• Lensing generates B-modes out of the acoustic polaraization
E-modes contaminates gravitational wave signature if
Ei < 1016GeV.



Temperature and Polarization Spectra
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Power Spectrum Measurements
• Lensed field is non-Gaussian in that a single degree scale lens
 controls the polarization at arcminutes

• Increased variance and covariance implies that 10x as much 
 sky needed compared with Gaussian fields

Smith, Hu & Kaplinghat (2004)
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Lensed Power Spectrum Observables
•	 Principal components show two observables in lensed power spectra
•	 Temperature and E-polarization: deflection power at l~100
	 B-polarization: deflection power at l~500
•	 Normalized so that observables error = fractional lens power error

Smith, Hu & Kaplinghat (2006)
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Mass Reconstruction



Quadratic Estimator
• Taylorexpandmapping

T (n̂) = T̃ (n̂ +∇φ)

= T̃ (n̂) +∇iφ(n̂)∇iT̃ (n̂) + . . .

• Fourier decomposition→ mode couplingof harmonics

T (l) =

∫
dn̂T (n̂)e−il·n̂

= T̃ (l)−
∫

d2l1
(2π)2

(l− l1) · l1 T̃ (l1)φ(l− l1)

• Considerfixed lensand Gaussian randomCMB realizations: each
pair is an estimator of the lens atL = l1 + l2 (Hu 2001):

〈T (l)T ′(l′)〉CMB ≈
[
C̃TT

l1
(L · l1) + C̃TT

l2
(L · l2)

]
φ(L) (l 6= −l′)



Reconstruction from the CMB
• Generalize to polarization: eachquadratic pairof fields estimates

thelensing potential(Hu & Okamoto 2002)

〈x(l)x′(l′)〉CMB = fα(l, l′)φ(l + l′) ,

wherex ∈ temperature, polarization fieldsandfα is a fixed weight
that reflects geometry

• Each pair forms anoisy estimateof the potential or projected mass
- just like a pair of galaxy shears

• Minimum variance weightall pairs to form an estimator of the
lensing mass

• Generalizeto inhomogeneous noise, cut sky and maximum
likelihood byiteratingthequadratic estimator(Seljak & Hirata 2002)



High Signal-to-Noise B-modes 
• Cosmic variance of CMB fields sets ultimate limit for T,E

• B-polarization allows mapping to finer scales and in principle
is not limited by cosmic variance of E (Hirata & Seljak 2003) 

Hu & Okamoto (2001)

100 sq. deg; 4' beam; 1µK-arcmin

mass temp. reconstruction EB pol. reconstruction



Matter Power Spectrum
• Measuring projected matter power spectrum to cosmic vari-

ance limit across whole linear regime 0.002< k < 0.2 h/Mpc

Hu & Okamoto (2001)
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Matter Power Spectrum
• Measuring projected matter power spectrum to cosmic vari-

ance limit across whole linear regime 0.002< k < 0.2 h/Mpc

Hu & Okamoto (2001)
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Reconstruction in the Halo Regime
• Reconstruction techniques noisy but nearly unbiased if gradients
 from lensed image and other contaminates filtered out 
 (Hu, DeDeo, Vale 2007) 

Vale (2007, unpublished); Zahn (in prep)
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Reconstruction in the Halo Regime
• Reconstruction techniques noisy but nearly unbiased if gradients
 from lensed image and other contaminates filtered out 
 (Hu, DeDeo, Vale 2007) 

Vale (2007, unpublished); Zahn (in prep)
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Reconstruction in the Halo Regime
• Reconstruction techniques noisy but nearly unbiased if gradients
 from lensed image and other contaminates filtered out 
 (Hu, DeDeo, Vale 2007) 

Vale (2007, unpublished); Zahn (in prep)



Cluster Lensing 
• CMB lensing reconstruction measures cluster lensing statistically
 through average profiles or the cluster-mass correlation function
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Hu, DeDeo & Vale (2007)
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