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Part	I:	
	

Basic	Theory	
	of	

Bayesian	Sta5s5cs	
	



Condi5onal	Probabili5es	

P (A|B)

(Probability	of	A	given	B)	

No5ce:	 P (A|B) 6= P (B|A)

P (pregnant|woman) ⇠< 1%

P (woman|pregnant) = 1

But:	



Bayes	Theorem	

P (A,B) = P (A|B)P (B) joint probability

Also:	

P (B,A) = P (B|A)P (A)

But:	 P (A,B) = P (B,A)

Combining:	 P (A|B) =
P (B|A)P (A)

P (B)

This	is	the	famous	Bayes	theorem….	





Consider	again	Bayes	theorem…	

Now:						A	à	T	=	theory,				B	à	D	=	data	

P (T |D) =
P (T )P (D|T )

P (D)

Posterior	

Likelihood	
Prior	

Bayesians		
Vs		

Frequin5sts	

Evidence	



Usually	we	assume	a	flat	prior,	so	posterior		/ Likelihood	

P (T |D) / L(T )

Model	(theory)	with	parameters	θ		 Likelihood	func5on	
(Gaussian,	Poisson	…)	

What	are	the	best	values	θ	given	the	available	data?		

Maximum	likelihood	es5mator	for	θ:		 ✓ML ⌘ max

✓
L(✓)

Recipe:	
@ lnL(✓)

@✓

����
✓ML

= 0



	Example	of	(Gaussian)	likelihood:			

L =

1

(2⇡)n/2| detC|1/2
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Where:	

Cij = h(di � ✓i)(dj � ✓j)i

Is	the	covariance	matrix	



Marginaliza5on	

What	is	θ?		For	example,	it	can	be:		

✓ = {⌦m,⌦⇤, H0, . . . }
You	want,	for	example,	to	know	the	probability	distribu5on	of				⌦m

Regardless	of	the	values	of	the	other	parameters	(some5mes	referred	as	
nuisance		parameters).	We	simply	integrate	out	these	parameters:	

P (⌦m) =

Z
d⌦⇤dH0d . . . P (⌦m,⌦⇤, H0, . . . )

This	process	is	known	as	Marginaliza5on	



Confidence	Intervals	and	Combina5on	of	Experiments	

Regions	of	confidence	(or	belief	).	These	are	defined	as	regions	R(α)	of	constant	
likelihood,	for	which:			

Z

R(↵)
L(✓i)dn✓ = ↵

0 < ↵ < 1Where:	

↵ = 0.683, 0.954, 0.997Typical	choices:	

We’ll	say	more	things	about	errors…	See	Fisher	matrix		



Q:	Are	all	data	sets	compa5ble?	



Fisher	Matrix	Formalism	
and		

Error	Forecasts	

Let’s	find	an	elegant	way	to	handle	models	with	many	parameters….			

Consider	a	general	log-likelihood	(one	parameter	θ)		and	expand	around	the	
maximum	likelihood	es5mator:			

lnL(✓) = lnL(✓ML) +
@ lnL(✓)

@✓
|✓ML(✓ � ✓ML) +

1

2

@2 lnL✓
@2✓

(✓ � ✓ML)
2 + . . .

Second	term	vanishes,	likelihood	can	be	wriben:	

L(✓) ⇠
=

L(✓ML) exp

✓
�1

2

(✓ � ✓ML)
2

⌃✓

◆
+ . . .

Where:	

1

⌃2
✓

= �@2 lnL(✓)
@2✓

|✓MLError	



lnL(✓) = lnL(✓ML) +
1

2

X

ij

(✓i � ✓ML,i)
@2 lnL(✓)

@2✓
(✓j � ✓ML,j) + . . .

Easy	to	generalize	this:	

If	I	define	the	Fisher	Matrix:	

Fij = �
⌧
@2 lnL
@✓i@✓j

�

You’ll	not	be	surprised	if	I	tell	you	that:	

�✓i � (F�1)1/2ii

This	is	known	as	the	marginalized	error	

Equal	sign	for	
gaussian	
likelihood	

Cramer	–	Rao	inequality	



We	can	es5mate	the	parameters	errors	before	doing	
the	experiment	

We’ll	see	later	the	Fisher	Matrix	for	the	CMB	
	
	
Actually	one	has	to	use	stochas5c	methods		
	

(MCMC)	
	

Details	not	covered	here…	



Part	II:	
	

Sta5s5cal	Challenges		
of	

Cosmic	Microwave	
Background	Analysis	



From	Time	Ordered	Data	(TOD)	

To	cosmological	Parameters	



Where	is	the	info?	
No	informa5on	in	any	feature	of	the	CMB	map		

Informa5on	encoded	in	the	sta5s5cal	proper5es	of	the	CMB	map	
–	or	the	invariant	under	SO(3)		quan55es	of	the	temperature	/
polariza5on	anisotropies.		
	

Simplest	models	à	Only	2p	func5on	counts….	

A	model	can	have		10	–	20	parameters	we	want	to	
constrain.		
	
Recipe.	Given	a	model,	calculate:	
	
	
	

⌧
�T

T0
(x̂)

�T

T0
(ŷ)

�
= C(arccos(x̂ · ŷ))



Since	we	are	working	on	the	surface	of	a	sphere,	it	is	
easier	to	work	with	spherical	harmonics:	

T (n̂) =
1X

`=2

+X̀

m=�`

a`mY`m(n̂)

Note	star5ng	point	

Diagonal	correla5ons:	 ha`ma⇤`0m0i = C`�``0�mm0

Power	Spectrum	

C(✓) =
X

`

2`+ 1

4⇡
C`P`(cos ✓)

Correla5on	
func5on	



Power	spectrum	MLE	es5mator:	

Ĉ` =

P
m |a`|2

2`+ 1

Compare	theory	and	observa5ons	
	

That	easy???	



Data	from	CMB	observa5ons	

(Wandelt	2003)	



Data	from	CMB	observa5ons	
	

•  Restricted	from	our	posi5on	on	the	sky	à	other	
sources	of	microwaves	(foregrounds)	

	
•  Instrument	systema5cs.	Microwaves	have	

macroscopic	wavelengths	à	diffract	around	the	
edges	of	the	instrument.	

•  Detector	adds	noise	

•  Maps	from	different	bands	
	
	

	



The	data	program:	

For	PLANCK:	Complete	TOD			~			1	Terabyte	of	storage		

100	detectors	à	Each	one	results	in	a	map	of	order	10	–	100	Mb	

Grouping	into	10	frequency	bands	

CMB	maps	
	

Calcula5on	of	the	power	spectrum	(~	a	few	thousand	Cl	s)		

Cosmological	parameters	



Time	Ordered	Data	-	Inference	

di =
X

p

AipTp + ni

d = AT+ nIn	matrix	form:	

i = (f, t)

data	
Ac5on	of	the	detector	

Noise	

Temperature	at	pixel	p	

frequency	 pixel	

hnii = 0, hninji = Nij

A,N ) known



Apply	Bayes	Theorem	to	get	posterior:	

P (C`,⇥, A|d) = P (d|C`,⇥, A)P (C`,⇥, A)

P (d)

We	have	to	explore	this	(Likelihood),	or	
equivalently	
The	CMB	Fisher	Informa+on	matrix		



Let’	s	just	give	the	CMB	Fisher	matrix	

Fij =
1

2
Tr

⇥
C�1C, iC�1C, j + C�1Mij

⇤
Gaussian	data:	

Mij = ✓,i ✓
T ,j +✓,j ✓

T ,i

Signal	for	CMB:	 s = (aT` , a
E
` , a

B
` )

FCMB
ij =

X

XY

X

`

@CX
`

@✓i

�
CXY
`

��1 @CY
`

@✓j

X,Y = TT, TE,EE,BB, etc....



More	challenges….	

How	to	pixelize	on	the	sphere?	
Algorithms:	



Weak	Lensing	à	Needs	delensing	

Beam	decomvolu5on	
	
Component	separa5on	



See	again	the	formula	for	the	es5ma5on	of	power	
spectrum:	

Ĉ` =

P
m |a`|2

2`+ 1

For	low		l		just	a	few	values	of	m	
à Poor	sta5s5cs	

Cosmic	Variance	



Computa5onal	limita5ons	due	to	the	5me	
needed	to	perform	opera5ons		as	
calcula5ons	of	C_ls	and	then	es5mate	
parameters	…	

For	one	likelihood	evalua5on	with	Planck	data:	 1021

Opera5ons	à	thousands	of	CPU	years	

S5ll	things	to	be	done	




