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Inhomogeneous Universe
• Inhomogeneities in the matter-energy distribution of the universe

grow via gravitational instability

• In expanding universe, growth rate is power law not exponential

• Must be a source in the early universe to explain structure in the
universe

• Follow general principles of the FRW/Thermal History discussion
but drop homogeneity and isotropy

Matter moves in the perturbed geometry (automatically
conserving stress-energy)

Closure requires more than just the relation between average
pressure and energy density w

Matter curves the geometry - cosmological Poisson equation
generates gravitational potential from density perturbations



Inhomogeneous Fields
• Like homogeneous cosmology, a full description of the matter

fields is given through their phase space distribution function

f(x,q, t)

where the momentum dependence q describes the bulk motion of
the particles

• Energy density and pressure are functions of position

ρ(x, t) = g

∫
d3q

(2π)3
f(x,q, t)E

p(x, t) = g

∫
d3q

(2π)3
f(x,q, t)

|q|2

3E

and can be considered as low order moments of the distribution
function



Inhomogeneous Boltzmann Equation
• Evolution of density inhomogeneities is governed by the

Boltzmann equation. Switch over to comoving representation: η,
comoving x, retain physical momentum q

• For non-interacting species, Liouville equation

ḟ + q̇ · ∂f
∂q

+ ẋ · ∂f
∂x

= 0

• Momentum q = qn̂, where n̂ is a directional unit vector and in a
flat universe q̇ = q̇n̂

• Particle velocity ẋ = q/E

ḟ + q̇
∂f

∂q
+

q

E
· ∂f
∂x

= 0



Gravitational Change of Momentum
• Momentum term: carries two contributions

• Consider the perturbed FRW line element to take the form

dτ 2 = a2[(1 + 2Ψ)dη2 − (1 + 2Φ)(dD2 +D2
AdΩ)]

where |Φ| � 1 and Ψ� 1

• Just as the background scale factor changes the de Broglie
wavelength of particles, a perturbation to the scale factor (or
spatial curvature)

a(x) = a(1 + Φ)



Gravitational Change of Momentum
• So Φ gives a time dependence to the momentum through

ȧ(x) = ȧ(1 + Φ) + aΦ̇

ȧ(x)

a(x)
≈ ȧ

a
+

Φ̇

1 + Φ
≈ ȧ

a
+ Φ̇

• Contribution from the spatial metric (independent of direction)

q̇ = −
(
ȧ

a
+ Φ̇

)
q

• Second term comes from Ψ which plays the role of the
gravitational potential

• Non-relativistic: gravitational force changes momentum

q̇ = F = −m∇Ψ → q̇ = n̂ · q̇ = −m(n̂ · ∇Ψ)



Gravitational Change of Momentum
• Ultra-Relativistic: time dilation implies shift of frequency or

gravitational redshift and hence momentum

∆q

q
= −∆Ψ

Rate of change from moving through a Ψ gradient is

q̇

q
= −ẋ · ∇Ψ = −n̂ · ∇Ψ

• In both relativistic and non-relativistic cases

q̇ = −E(n̂ · ∇Ψ)

• Combining the two momentum terms

q̇ = −
(
ȧ

a
+ Φ̇

)
q − (n̂ · ∇Ψ)E



Energy or Continuity Equation
• Integrate Boltzmann equation over

g

∫
d3q

(2π)3
E

(
ḟ + q̇

∂f

∂q
+

q

E
· ∂f
∂x

= 0

)
• Time term

g

∫
d3q

(2π)3
Eḟ = ρ̇

• Momentum terms

g

∫
d3q

(2π)3
q̇E

∂f

∂q
= g

∫
d3q

(2π)3

[
−
(
ȧ

a
+ Φ̇

)
q − (n̂ · ∇Ψ)E

]
E
∂f

∂q

second term vanishes by symmetry integrating over momenta
direction



Energy or Continuity Equation
• First term is identical to background derivation

g

∫
d3q

(2π)3
q̇E

∂f

∂q
= −

(
ȧ

a
+ Φ̇

)
g

∫
d3q

(2π)3
qE

∂f

∂q
= 3

[
ȧ

a
+ Φ̇

]
(ρ+ p)

• Position term: define average momentum as momentum density

∇ · g
∫

d3q

(2π)3
qf ≡ ∇ · (ρ+ p)v

• Linearized energy/continuity equation

ρ̇ = −3

[
ȧ

a
+ Φ̇

]
(ρ+ p)−∇ · (ρ+ p)v

• Local energy density changes due to: global expansion, local
change in expansion, flows of particles into/out of volume



Momentum or Navier-Stokes Equation
• Integrate Boltzmann equation over

g

∫
d3q

(2π)3
q

(
ḟ + q̇

∂f

∂q
+

q

E
· ∂f
∂x

= 0

)
• Time term

∂

∂η
→ ∂

∂η
[(ρ+ p)v]

• Momentum term: de Broglie redshift

−[
ȧ

a
+ Φ̇]g

∫
d3q

(2π)3
q
∂f

∂q
= 4[

ȧ

a
+ Φ̇]g

∫
d3q

(2π)3
qqf

= 4

[
ȧ

a
+ Φ̇

]
(ρ+ p)v ≈ 4

ȧ

a
(ρ+ p)v



Momentum Equation
• Momentum term: gravitational potential jth component

−∂iΨ · g
∫

d3q

(2π)3
qEnjn

i∂f

∂q
≈ ∂jΨ(ρ+ p)

where angle averaged 〈ninj〉 = 1
3
δij and used relation from

homogeneous energy equation

• Spatial term: recall stress tensor divided into isotropic and
anisotropic pieces

g

∫
d3q

(2π)3

qiqj
E
f ≡ pδij + πij

• Combined momentum terms

∂

∂η
[(ρ+ p)vi] = −4

ȧ

a
(ρ+ p)vi − ∂ip− ∂jπij − (ρ+ p)∂iΨ



Boltzmann Hierarchy
• Momentum equation is Navier-Stokes equation. Unless stress

tensor is specified, equation is not closed

• In general, the time derivative of a low order moment of the
Boltzmann equation is given by the spatial gradient of higher order
moments (here anisotropic stress)

• Microphysics closes the Boltzmann equation. Energy and
momentum equations simply reflect conservation of the stress
energy tensor and is valid for any component of matter – even
things like cosmological defects.

• For non-relativistic particles, the velocity dispersion tensor
characterizes the pressure and anisotropic stress

• Thus closure relation for pressure and anisotropic stress need not
be linear in the momentum or density variables



Linear Perturbation Theory
• Note that we have not yet assumed that the fluctuations in the

density, pressure or momentum are small compared to spatial
average

• We have assumed that metric fluctuations are small to simplify
some equations

• Same equations as would be derived from stress energy
conservation ∇µT

µν = 0

• Equations are valid for components with no background term, e.g.
cosmological defects, other trace components

• Nonetheless though valid, these equations cannot in general be
solved directly due to unknown and not necessarily linear closure
relation



Linear Perturbation Theory
• For most components it is useful to subtract off the background

and consider the dimensionless (fractional) density fluctuation

δ(x, t) =
ρ(x, t)− 〈ρ(x, t)〉
〈ρ(x, t)〉

where δ � 1 on large scales

• Likewise assume that relative pressure fluctuation, bulk velocity
and anisotropic stress are all of the same order (or smaller)

• Thus we can think of the Boltzmann equation and its moment
expansion as a linear equation relating the fluctuation variables

• For a linear equation, eigenmodes of the spatial fluctuations evolve
independently

• Partial differential equation in space becomes a set of ordinary
differential equations in harmonic modes



Harmonic Decomposition
• In general, the eigenvectors of the Laplace operator form a

complete basis to expand a general function of x

• In a spatially flat cosmology these are simply plane waves

∇2Q = −k2Q → Q = eik·x

• In a curved geometry, these functions are somewhat more
complicated but on scales smaller than the curvature scale behave
like plane waves

• Empirically we know that the curvature scale if non-zero is at least
several times the Hubble scale

• Fourier decomposition suffices for observable modes in the
universe until near the Hubble scale

• When done properly, corrections take the form, e.g.
k2 → k2 − 3K where K = H2

0 (Ω− 1) is the curvature



Fourier Conventions
• Often required to relate harmonics in a finite (e.g. survey) volume

to infinite volume

• Periodicity: assume a 1D field F (x) periodic in finite volume of
length L

F (x+ L) = F (x)

=
∑
n

F (kn)e−iknx−iknL

=
∑
n

F (kn)e−iknx = F (x) if kn =
2π

L
n



Fourier Conventions
• Reality:

F ∗(x) =
∑
n

F ∗(kn)eiknx = F (x) =
∑
n

F (kn)e−iknx

F ∗(kn) = F (−kn)



Fourier Conventions
• Band limited: function has no high frequency structure, e.g.

because smoothed

kn < kmax ≡
2π

L

N

2

F (x) =

N/2∑
n=−N/2

F (kn)e−iknx

• Sampling theorem: sampling at a rate ∆ = L/N is sufficient to
reconstruct field exactly. Inverse relation

F (kn) =
1

N

N−1∑
m=0

F (xm)eiknxm , xm = m∆



Fourier Conventions
• δ (Kronecker) function

F (kn) =
1

N

N−1∑
m=0

N/2∑
n′=−N/2

F (kn′)e
−i(kn′−kn)xm

if n′ = n then

1

N

N−1∑
m=0

e−i(kn′−kn)xm =
1

N

N−1∑
m=0

1 = 1

if n′ 6= n then

e−i(kn′−kn)xm = cos(kn − kn′)xm + i sin(kn − kn′)xm



Fourier Conventions

N−1∑
m=0

cos[(kn − kn′)
2πm

N
] =

sin[(N − 1
2
)(n− n′)2π

N
]

2 sin[(n− n′) π
N

]
+

1

2

(N(n− n′)2π/N = 2π(n− n′) wheren− n′ integer)

= −
sin[(n− n′) π

N
]

2 sin[(n− n′) π
N

]
+

1

2
= 0

N−1∑
m=0

sin[(kn − kn′)
2πm

N
] =

sin[(n− n′)π] sin[N−1
N

(n− n′)π]

sin[(n− n′) π
N

]
= 0

→ 1

N

N−1∑
m=0

e−i(kn′−kn)xm = δnn′



Fourier Conventions
• Two point correlation

〈F (x)F (x′)〉 =
∑
nn′

〈F ∗(kn)F (kn′)〉eiknx−ikn′x
′

• Translational invariance

〈F (x+ d)F (x′ + d)〉 = 〈F (x)F (x′)〉∑
nn′

〈F ∗(kn)F (kn′)〉eiknx−ikn′x
′
ei(kn−kn′ )d =

∑
nn′

〈F ∗(kn)F (kn′)〉eiknx−ikn′x
′

〈F ∗(kn)F (kn′)〉 = δnn′PF (kn)

two point statistical properties are given by the power spectrum PF
and correlation function depends only on separation

〈F (x)F (x′)〉 = ξ(x− x′)



Fourier Conventions
• Continuous conventions: let L→∞, density of kn states gets high∑

n

→
∫
dn

• Forward and inverse transform

F (x) =

N/2∑
n=−N/2

F (kn)e−iknx =

∫ N/2

−N/2
dnF (kn)e−iknx,

= L

∫ kmax

−kmax

dk

2π
F (k)e−ikx (dkn = dn

2π

L
)

F (k) =
1

N

N−1∑
m=0

F (xm)eikxm =
1

L

∫
dxF (x)eikx dxm =

L

N
dm



Fourier Conventions
• The (Dirac) δ function

δnn′ =
1

N

N−1∑
m=0

e−i(kn′−kn)xm =
1

L

∫
dxe−i(kn′−kn)xm

F (kn) =
∑
n′

F (kn′)δnn′ =

∫
dn′F (kn′)δnn′ =

L

2π

∫
dk′n′F (kn′)δnn′

• Define the δ function as∫
dk′F (k′)δ(k − k′) = F (k)

then δ(k − k′) =
L

2π
δnn′ =

1

2π

∫
dxei(k−k

′)x

〈F ∗(k)F (k′)〉 =
2π

L
δ(k − k′)PF (k)



Fourier Conventions
• 3D Fields

F (x) = V

∫
d3k

(2π)3
F (k)e−ik·x

F (k) =
1

V

∫
d3xF (x)eik·x

(2π)3δ(k− k′) =

∫
d3xei(k−k

′)·x

〈F ∗(k)F (k′)〉 =
(2π)3

V
δ(k− k′)PF (k)

• Statistical isotropy: PF (k) = PF (k)



Fourier Conventions
• Suppress volume terms by making Fourier representation

dimensionful F̃ (k) ≡ V F (k), P̃F = V PF

F (x) =

∫
d3k

(2π)3
F̃ (k)e−ik·x

F̃ (k) =

∫
d3xF (x)eik·x

〈F̃ ∗(k)F̃ (k′)〉 = (2π)3V δ(k− k′)PF (k)

= (2π)3δ(k− k′)P̃F (k)

• Hereafter, suppress ∼, power spectra have dimensions of volume

• So: what does it mean to have a large fluctuation in power?



Fourier Conventions
• Variance

σ2
F ≡ 〈F (x)F (x)〉 =

∫
d3k

(2π)3
PF (k)

=

∫
k2dk

2π2

∫
dΩ

4π
PF (k)

=

∫
d ln k

k3

2π2
PF (k)

• Define power per logarithmic interval

∆2
F (k) ≡ k3PF (k)

2π2

• This quantity is dimensionless in all representations. Serves as a
definition of the linear regime k’s where ∆2

δ � 1



Linearity
• Fields related by a linear equation obey equation independent

equations

F (x) = AG(x) +B → F (k) = AG(k) (k > 0)

includes linear differential equation

F (x) = A∇G(k) +B

F (k) = A

∫
d3xeik·x∇

∫
d3k′

(2π)3
e−ik

′·xG(k′)

= A

∫
d3k′

(2π)3

∫
d3xei(k−k

′)·x(−ik′)G(k′) = A(−ik)G(k)

converts differential equations to algebraic relations



Convolution
• Convolution in real space often occurs – smoothing of field by

finite resolution and normalization
∫
d3xW (x) = 1

FW (x) =

∫
d3yW (x− y)F (y)

=

∫
d3y

∫
d3k

(2π)3
W (k)e−ik·(x−y)

∫
d3k′

(2π)3
F (k′)e−ik

′·y

=

∫
d3k

(2π)3

∫
d3k′

(2π)3
e−ik·xW (k)F (k′)

∫
d3yei(k−k

′)·y

=

∫
d3k

(2π)3
W (k)F (k)e−ik·x

FW (k) = W (k)F (k)

• Smoothing acts as a low pass filter: if W (x) is a broad function of
width L, W (k) suppressed for k > 2π/L



Convolution
• Filtered Variance

〈FW (x)FW (x)〉 =

∫
d3k

(2π)3

∫
d3k′

(2π)3
ei(k−k

′)·x〈F ∗(k)F (k′)〉W ∗(k)W (k′)

=

∫
d3k

(2π)3
PF (k)|W (k)|2

• Common filter is the spherical tophat:

WR(x) = V −1
R x < R

WR(x) = 0 x > R

• Fourier transform

WR(k) =
3

y3
(sin y − y cos y) , (y = kR)



Normalization
• Normalization is often quoted as the top hat rms of the density field

σ2
R =

∫
d ln k∆2

δ(k)|WR(k)|2

where observationally σ8h−1Mpc ≡ σ8 ≈ 1

• Note that ∆2
δ(k) itself can be thought of as the variance of the field

with a filter that has sharp high and low pass filters in k-space

• Convention is that σR is defined against the linear density field, not
the true non-linear density field



Linear Perturbation Theory
• Energy (continuity) and momentum (Navier-Stokes) equations are

linearized and hence Fourier modes obey

∂

∂η
[(ρ+ p)vi] = −4

ȧ

a
(ρ+ p)vi + +ikp+ ikjπij + iki(ρ+ p)Ψ

• If the source of perturbations is from the (scalar) gravitational
potential, directional dependence of velocity and anisotropic stress
follows the direction of the plane wave, so define scalar velocity
and anisotropic stress as

v(k) = ik̂v

πij(k) =

(
−k̂ik̂j +

1

3
δij

)
pπ



Linear Perturbation Theory
• Navier-Stokes equation

∂

∂η
[(ρ+ p)v] = −4

ȧ

a
(ρ+ p)vi + kp− 2

3
kpπ + (ρ+ p)kΨ

(w = p/ρ , c2
s = δp/δρ , ρ̇/ρ = −3(1 + w)ȧ/a)

v̇ = −(1− 3w)
ȧ

a
v − ẇ

1 + w
v +

kc2
s

1 + w
δ − 2

3

w

1 + w
kπ + kΨ

• Continuity Equation

ρ̇ = −3

[
ȧ

a
+ Φ̇

]
(ρ+ p) + ik · (ρ+ p)v

ρ̇ = −3

[
ȧ

a
+ Φ̇

]
(ρ+ p)− k(ρ+ p)v

δ̇ = −3
ȧ

a
(c2
s − w)δ − (1 + w)(kv + 3Φ̇)



Poisson Equation
• Naive expectation: Φ = −Ψ and

∇2Φ = −4πGa2δρ

k2Φ = 4πGa2ρδ

where a2 comes from physical→ comoving and δρ since
background density goes into scale factor evolution

• Einstein equations put in a relativistic correction (flat universe)

k2Φ = 4πGa2ρ[δ + 3
ȧ

a
(1 + w)v/k]

k2(Φ + Ψ) = −8πGa2pπ

convenient to call combination

∆ ≡ δ + 3
ȧ

a
(1 + w)v/k



Constancy of Potential & Growth Rate
• Given the Poisson equation relates a redshifting total density ρ and

the comoving derivative factor a the density perturbation must
grow as ∆ ∝ (a2ρ)−1 ∝ a1−3w to maintain a constant potential.

• Density perturbations are stabilized by the expanding universe
(expansion drag) and do not grow exponentially. Presents a new
version of the horizon problem.

• Naive (Newtonian) argument: in the absence of stress
perturbations the Euler equation takes the form v̇ ∼ kΨ

• Given an initial potential perturbation Ψi a velocity perturbation
v ∼ (kη)Ψi

• Given a velocity perturbation continuity grows a density
fluctuation as ∆̇ ∼ −kv or ∆ = −(kη)2Ψi.



Constancy of Potential & Growth Rate
• The growing density perturbation is exactly that required to

maintain the potential constant

Ψ ≈ −4πGa2ρ

k2
∆ ≈ 4πGa2ρ

k2
(kη)2Ψi

η ∝ a(1+3w)/2, a2ρ ∝ a−(1+3w)

• Under gravity alone, the density fluctuations grow just fast enough
to maintain constant potentials

• Stress fluctuations only decrease the rate of growth of the
potential. Starting from an unperturbed Ψi = 0 universe, where do
the fluctuations that form large scale structure come from



Bardeen Curvature
• A proper relativistic generalization involves the (ȧ/a)v/k

corrections, called the Bardeen (or comoving) curvature

R ≡ Φ− ȧ

a
v/k .

• Geometric meaning: space curvature fluctuation on comoving
(velocity-orthogonal-isotropic) time slicing

• Same time slicing gives ∆ as the density perturbation



Bardeen Curvature
• Continuity equation becomes

∆̇ = −3
ȧ

a

(
C2
s − w

)
∆− (1 + w)(kv + 3Ṙ) ,

where the transformed sound speed

C2
s ≡

∆p

∆ρ

∆p ≡ δp− ṗv/k

• Euler equation becomes

Ṙ =
ȧ

a
ξ

ξ = − C2
s

1 + w
∆ +

2

3

w

1 + w
π .



Bardeen Curvature
• So that the Bardeen curvature only changes in the presence of

stress fluctuations – scales below the horizon

• Extremely useful result (proven in problem set) says that calculated
R once and for all – e.g. during formation in an inflationary epoch

• Relationship to gravitational potential: (from Poisson &
conservation equations)

ȧ

a
Ψ− Φ̇ = 4πGa2(ρ+ p)v/k

so that if Φ constant and Ψ = −Φ then

−
(
ȧ

a

)2

Φ = 4πGa2ρ(1 + w)
ȧ

a
v/k

=
3

2

(
ȧ

a

)2

(1 + w)
ȧ

a
v/k



Bardeen Curvature
• Relationship between the curvature Φ and v

ȧ

a
v/k = − 2

3(1 + w)
Φ → R = 1 +

2

3(1 + w)
Φ

• Matter dominated Φ = 3R/5, radiation dominated Φ = 2R/3, Λ

dominated Φ→ 0.

• So: put these pieces together assuming dark energy is smooth

k3

2π2
P∆(k) =

(
k2

4πGa2ρm

)2
k3

2π2
PΦ(k)

=

(
k2

4πGa2ρm

)2
k3

2π2
PΦ(k)

=
4

9

a2k4

Ω2
mH

4
0

k3

2π2
PΦ(k)



Bardeen Curvature
• Assume initial curvature power spectrum

k3

2π2
PR(k) = AS

(
k

knorm

)nS−1

and a transfer function T (k) that defines the subhorizon evolution
which is influenced by pressure effects during radiation domination

• Finally normalize to the matter dominated expectation and take
Φ = [3G(a)/5]R where G(a) is the modification to the growth
rate of Φ due to the dark energy and curvature

Φ(a, k) =
3

5
G(a)T (k)R(0, k)

k3

2π2
P∆(k) =

4

25
AS

(
G(a)a

Ωm

)2(
k

H0

)4(
k

knorm

)nS−1

T 2(k)


