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Horizon Problem

e The horizon in a decelerating universe scales as 1 oc a1 3%)/2,
w > —1/3. For example in a matter dominated universe
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e CMB decoupled at a, = 107 so subtends an angle on the sky
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e So why is the CMB sky isotropic to 10™° in temperature if it is
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composed of ~ 10? causally disconnected regions

o If smooth by fiat, why are there 10° fluctuations correlated on
superhorizon scales



Flatness & Relic Problems

e Flatness problem: why is the radius of curvature larger than the
observable universe. (Before the CMB determinations, why 1s it at
least comparable to observable universe x| < €2,,)
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e Also phrased as a coincidence problem: since px o< a™
om o< a3, why would they be comparable today — modern version

1s dark energy coincidence p, = const.

e Relic problem — why don’t relics like monopoles dominate the
energy density

e Inflation is a theory that solves all three problems at once and also
supplies a source for density perturbations



Accelerating Expansion

e In a matter or radiation dominated universe, the horizon grows as a
power law 1n a so that there 1s no way to establish causal contact
on a scale longer than the inverse Hubble length (1/aH, comoving
coordinates) at any given time: general for a decelerating universe
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o H? o p oc a 30w qH oc a=U+3w)/2 critical value of w = —1/3,

the division between acceleration and deceleration

e In an accelerating universe, the Hubble length shrinks in comoving
coordinates and so the horizon gets its contribution at the earliest
times, €.g. 1n a cosmological constant universe, the horizon
saturates to a constant value



Causal Contact

e Note confusion in nomenclature: the true horizon always grows
meaning that one always sees more and more of the universe. The
Hubble length decreases: the difference in conformal time, the
distance a photon can travel between two epochs denoted by the
scale factor decreases. Regions that were 1in causal contact, leave
causal contact.

e Horizon problem solved if the universe was in an acceleration
phase up to 7; and the conformal time since then 1s shorter than the
total conformal age

Mo = Mo — N

total distance > distance traveled since inflation

apparent horizon



Flatness & Relic

e Comoving radius of curvature 1s constant and can even be small
compared to the full horizon R < ng yet still ng > R > no — n;

e In physical coordinates, the rapid expansion of the universe makes
the current observable universe much smaller than the curvature
scale

e Likewise, the number density of relics formed before the
accelerating (or inflationary) epoch is diluted to make them rare in
the current observable volume

e Common to reference time to the end of inflation n = n — n;. Here
conformal time 1s negative during inflation and its value (as a
difference 1in conformal time) reflects the comoving Hubble length
- defines leaving the horizon as k|| = 1



Exponential Expansion

e If the accelerating component has equation of state w = —1, p =
const., H = H; const. so that a < exp(Ht)
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e In particular, the current horizon scale Hyny ~ 1 exited the horizon
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Sufficient Inflation

e Current horizon scale must have exited the horizon during inflation
so that the start of inflation could not be after a;. How long before

the end of inflation must 1t have began?
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Perturbation Generation

e Horizon scale 7 during inflation acts like an even horizon - things
leaving causal contact

e Particle creation similar to Hawking radiation from a black hole
with hubble length replacing the BH horizon

e Because H; remains roughly constant during inflation the result is
a scale invariant spectrum of fluctuations due to zero-point
fluctuations becoming classical

e Fluctuations in the field driving inflation (inflaton) carry the energy
density of the universe and so their zero point fluctuations are net
energy density or curvature fluctuations

e Any other light field (gravitational waves, etc...) will also carry
scale 1nvariant perturbations but are 1so-curvature fluctuations



Scalar Fields

e Stress-energy tensor of a scalar field
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e For the background (¢) = ¢q (a2 from conformal time)
1 1

Pp = 5@‘%8 +V, py= §a_2$g —V

e So for kinetic dominated wy = py/pys — 1
e And potential dominated wy = py/py, — —1

e A slowly rolling (potential dominated) scalar field can accelerate
the expansion and so solve the horizon problem or act as a dark
energy candidate



Equation of Motion

e Can use general equations of motion of dictated by stress energy

conservation
. a
po = =3(py +1pg)
to obtain the equation of motion of the background field ¢

C.b.o =+ 23% +a’V' =0,

e In terms of time instead of conformal time
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e Field rolls down potential hill but experiences “Hubble friction” to
create slow roll. In slow roll 3Hd¢,/dt ~ —V' and so kinetic

energy 1s determined by field position — adiabatic — both kinetic

and potential energy determined by single degree of freedom ¢



Slow Roll Inflation

e Alternately can derive directly from the Klein-Gordon equation for
scalar field

e Scalar field equation of motion V' = dV/d¢

V.V G+ V() = 0

so that in the background ¢ = ¢y and

Q.b.o + 2%@50 +a*V' =0
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e Simply the continuity equation with the associations
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Slow Roll Parameters

Net energy 1s dominated by potential energy and so acts like a
cosmological constant w — —1

First slow roll parameter
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Second slow roll parameter d2¢, /dt? ~ 0, or ¢o ~ (a/a)do
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Slow roll condition €, 0 < 1 corresponds to a very flat potential




Perturbations
e Linearize perturbation ¢ = ¢y + ¢ then

. a -
o1+ 2-01 + kg1 + a*V 6 =0
in slow roll inflation V" term negligible

e Implicitly assume that the spatial metric fluctuations (curvature R)
vanishes, otherwise covariant derivatives pick these up

e GR: work in the spatially flat slicing and transform back to
comoving slicing once done.

e Curvature is local scale factor a — (1 + R)a or da/a =R
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a a a ¢
a change in the field value ¢, defines a change in the epoch that
inflation ends, imprinting a curvature fluctuation



Slow-Roll Evolution

e Rewrite in u = a@ to remove expansion damping
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e or for conformal time measured from the end of inflation

ﬁ:n_nend
. “ da N 1
N Ha?2 ~  aH



Slow Roll Limait

e Slow roll equation has the exact solution:

u= Ak £ E)eﬂkﬁ
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e For |kn| > 1 (early times, inside Hubble length) behaves as free
oscillator

lim w = AkeT™1
|k7|— o0

e Normalization A will be set by origin in quantum fluctuations of
free field



Slow Roll Limait

e For |kn| < 1 (late times, > Hubble length) fluctuation freezes in
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e Slow roll replacement
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e Comoving curvature power spectrum
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Quantum Fluctuations
e Simple harmonic oscillator << Hubble length
i+ k*u =0
e Quantize the simple harmonic oscillator
i = u(k,n)a + u*(k,n)a’

where u(k, n) satisfies classical equation of motion and the
creation and annihilation operators satisty

a,a'] =1, al0) =0
e Normalize wavefunction |u, du/dn] = 1

1
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Quantum Fluctuations

e Zero point fluctuations of ground state

(u?) = {

= (0|(u*a’ + ua)(ua + u*a")|0)
= (0laa|0)|u(k, )|

= (0l[a, a'] + a'al0)|u(k, 7)|

= ulk D = o

e Classical equation of motion take this quantum fluctuation outside
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horizon where it freezes in. Slow roll equation

e So A = (2k*)~Y/2 and curvature power spectrum
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Tilt
e Curvature power spectrum is scale invariant to the extent that /{ is

constant

e Scalar spectral index
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Tilt

e Evolution of €

dlne dlne a
=0 a4 a%i=20
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e Tilt in the slow-roll approximation
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Gravitational Waves

e Gravitational wave amplitude satisfies Klein-Gordon equation
(K = 0), same as scalar field

. a -
h_|_7>< + Qgh_}_,x + k2h_|_7>< — O .
e Acquires quantum fluctuations in same manner as ¢. Lagrangian

sets the normalization

e Scale-invariant gravitational wave amplitude
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Gravitational Waves

e Gravitational wave power o« H? oc V o< E} where Ej is the energy
scale of inflation

e Tensor-scalar ratio - various definitions - WMAP standard 1s
A2
_ +
Y 4A_% = 166

e Tensor tilt:




Gravitational Waves

e Consistency relation between tensor-scalar ratio and tensor tilt

r = 16e = —8nr
e Measurement of scalar tilt and gravitational wave amplitude
constrains inflationary model in the slow roll context

e Comparision of tensor-scalar ratio and tensor tilt tests the 1dea of
slow roll itself



Gravitational Wave Phenomenology

e A gravitational wave makes a quadrupolar (transverse-traceless)
distortion to metric

e Just like the scale factor or spatial curvature, a temporal variation
in 1ts amplitude leaves a residual temperature variation in CMB
photons — here anisotropic

e Before recombination, anisotropic variation 1s eliminated by
scattering

e Gravitational wave temperature effect drops sharply at the horizon
scale at recombination



Large Field Models

For detectable gravitational waves, scalar field must roll by order
Mp1 — (SWG)_1/2
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The larger € 1s the more the field rolls in an e-fold
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Observable scales span AN ~ 5 so

d
A¢y ~ 5d—j3 = 5(r/8)2 My ~ 0.6(r/0.1)/2 M,

Does this make sense as an effective field theory?




Large Field Models

e Large field models include monomial potentials V' (¢) = A¢p™
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e Slow roll requires large field values of ¢ > M,
e Thus € ~ |4| and a finite tilt indicates finite €

e Given WMAP tilt, potentially observable gravitational waves



Small Field Models

If the field 1s near an maximum of the potential

V() =V — %/fcbz

Inflation occurs if the V|, term dominates
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Tilt reflects 0: ng =~ 1 — 20 and € 1s much smaller
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The field does not roll significantly during inflation and
gravitational waves are negligible



Hybrid Models

e If the field 1s rolling toward a minimum of the potential

V(9) = Vo + 5m?s?

e Slow roll parameters similar to small field but a real m?
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e Then V;; domination ¢, 0 < 0 and ng > 1 - blue tilt
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e For m? domination, monomial-like.

e Intermediate cases with intermediate predictions - can have
observable gravity waves but does not require it.



Hybrid Models

e But how does inflation end? Vj remains as field settles to minimum

e Implemented as multiple field model with Vi supplied by second
field

e Inflation ends when rolling triggers motion in the second field to
the true joint minimum



