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From Inflation to Horizon Entry

e Inflation provides a source of nearly scale invariant comoving
curvature fluctuations R or equivalently gravitational potential
fluctuations W as well as gravitational waves h

e Fluctuations are frozen outside while the mode 1s outside the
horizon

e Upon horizon (re)entry, causal microphysics of interaction and
particle propagation alters the initial spectrum

e Initial fluctuations transferred to observable fluctuations through
transfer functions that encode these processes

e For the CMB, Thomson scattering is the dominant process and
converts a scale free spectrum in £ to one with 3 fundamental
scales in multipole ¢: acoustic scale, equality scale, damping scale



CMB Temperature Fluctuations

e Angular Power Spectrum
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Schematic Outline

e Take apart features in the power spectrum
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Last Scattering

JitkD )

e Angular distribution T
of radiation 1s the 3D k
temperature field

Doppler
effect

projected onto a shell
- surface of last scattering

e Shell radius
1s distance from the observer

JitkD )

to recombination: called
the last scattering surface

e Take the radiation
distribution at last scattering to also be described by an isotropic
temperature fluctuation field ©(x)



Angular Power Spectrum

e Take recombination to be instantaneous
O(h) = / 4D O(x)5(D — D,)

where D 1s the comoving distance and ), denotes recombination.

e Describe the temperature field by its Fourier moments

e Power spectrum
(O(k)"0 (k) = (2m)0(k — k') Pr(k)

A% = ]{SPT/27T2



Angular Power Spectrum

e Temperature field

e Multipole moments ©(n) = >, Oy, Yo,

e Expand out plane wave in spherical coordinates

e n—47TZZ]e (kD.)Y 5 (K)Yem (B)



Angular Power Spectrum

e Power spectrum

d°k v, \
Opm = / (QW)S@(k)Zlm Je(kD,)Y, (k)

(00 Orm) :/(;ljr];?) (4m)%i " jo(k D) jor (kD) Yom (K)Y iy (K) Pr (k)

= 5gg/5mm/47'(' / dIn k]?(/{D*)A%(/{)

with [ 7 j7(z)dInz = 1/(20(¢ + 1)), slowly varying A7

e Angular power spectrum:
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Thomson Scattering

e Thomson scattering of photons off of free electrons 1s the most
important CMB process with a cross section (averaged over
polarization states) of

87 a?
o —
3Im?2

e Density of free electrons in a fully 1onized x. = 1 universe

— 6.65 x 10™%°cm?

ne = (1-7Y,/2)xz.ny = 107°Qh*(1 + 2)’cm ™,

where Y, =~ 0.24 is the Helium mass fraction, creates a high
(comoving) Thomson opacity

T = N.OTa

where dots are conformal time 7 = [ dt/a derivatives and 7 is the
optical depth.



Tight Coupling Approximation
e Near recombination z ~ 10° and ,h* ~ 0.02, the (comoving)
mean free path of a photon

1
Ao = — ~ 2.5Mpc
T

small by cosmological standards!

e On scales A > A¢ photons are tightly coupled to the electrons by
Thomson scattering which in turn are tightly coupled to the
baryons by Coulomb interactions

e Specifically, their bulk velocities are defined by a single fluid
velocity v, = v, and the photons carry no anisotropy in the rest
frame of the baryons

e — No heat conduction or viscosity (anisotropic stress) in fluid



Zeroth Order Approximation

e Momentum density of a fluid is (p + p)v, where p is the pressure

e Neglect the momentum density of the baryons

(b + Do) _ Pt Do 3P
(py +Py)vy  py Dy Apy

0 2
~ 0.6 uh ( ¢ )
0.02 103
since p., o< T is fixed by the CMB temperature 7' = 2.73(1 + 2)K
— OK substantially before recombination

R

e Neglect radiation in the expansion

2
P _ 36 (Sl ( a )
Or 0.15 10—3

e Neglect gravity




Fluid Equations

e Density p, o< T* so define temperature fluctuation ©

0T

e Real space continuity equation

57 = —(1 +w,)kv,
1

@ = —gk?}7

e Euler equation (neglecting gravity)

. a kc?
U,y = —(1 — Sw,y)av -+ m57

3
Vy = kciz% = 3c’k©



Oscillator: Take One

e Combine these to form the simple harmonic oscillator equation
O+ k0 =0
where the sound speed 1s adiabatic

2_51?_]&

C, = — = =
0p Py

here ¢? = 1/3 since we are photon-dominated

e General solution:

O(0)
kc,

O(n) = O(0) cos(ks) + sin(ks)

where the sound horizon is defined as s = [ c.dn



Harmonic Extrema

e All modes are frozen in | (a) Peak Scales

Hil2 i Initial conditions (k<<7t/s..) ]

at recombination (denoted

with a subscript *)

>
+
o Temperature perturbations @
of different amplitude st peur (s
for different modes. “Hir 2nd peak (k=2m/s,) ]
e For the adiabatic 02 04 06 08

/8
(curvature mode) 1nitial conditions

e So solution



Harmonic Extrema

e Modes caught in the extrema of their oscillation will have
enhanced fluctuations

k.S, = nmw

yielding a fundamental scale or frequency, related to the inverse
sound horizon

kA:T(/S*

and a harmonic relationship to the other extremaas 1 : 2 : 3...



Peak LLocation

e The fundmental physical scale 1s translated into a fundamental
angular scale by simple projection according to the angular
diameter distance D 4

QA = )\A/DA
614 = ]CADA

e In a flat universe, the distance 1s ssmply D4 = D = 19 — 1. = 10,
the horizon distance, and k4 = 7/s, = V37 /My SO

(914%E
7o

e In a matter-dominated universe 1 o< a'/? so 04 ~ 1/30 ~ 2° or

gA ~ 200



Curvature

e In a curved

universe, the apparent g o \
or angular diameter : .
distance 1s no longer

the conformal distance

D4 = Rsin(D/R) # D A

e Objects in a closed

universe are further than
they appear! gravitational lensing of the background...

e Curvature scale of the universe must be substantially larger than
current horizon



Curvature

e Flat universe indicates critical
density and implies missing
energy given local measures of
the matter density “dark energy”

e [ also depends
on dark energy density {2pg and
equation of state w = ppg/pPpE.

e Expansion rate at recombination
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Doppler Eftect

e Bulk motion of fluid changes the observed temperature via

(AT) )
S — nNn-v
1 dop !

e Averaged over directions

(AT > vy
T rms \/§
e Acoustic solution

D —ﬁ@ = —3ch O(0)sin(ks)

V3 k k
= O(0)sin(ks)

Doppler shifts



Doppler Peaks?

e Doppler effect for the photon dominated system 1s of equal
amplitude and 7 /2 out of phase: extrema of temperature are
turning points of velocity

e Effects add in quadrature:

(%) = 0°(0)[cos®(ks) + sin*(ks)] = ©7(0)

e No peaks in k spectrum! However the Doppler effect carries an
angular dependence that changes its projection on the sky

n-v,xn-k



Doppler Peaks?

e Coordinates where z || k

YioYeo — Yiti0

recoupling j,Yyo: no peaks in Doppler effect

temperature

last scattering surface




Restoring Gravity

e Take a simple photon dominated system with gravity

e Continuity altered since a gravitational potential represents a
stretching of the spatial fabric that dilutes number densities —
formally a spatial curvature perturbation

e Think of this as a perturbation to the scale factor a — a(1 + ®) so
that the cosmogical redshift 1s generalized to
a a

- = -+
a a

so that the continuity equation becomes

. 1 .
@: —gkvv—q)



Restoring Gravity

e (Gravitational force in momentum conservation F = —mVW
generalized to momentum density modifies the Euler equation to

0 = k(O + 0)

e General relativity says that ® and W are the relativistic analogues
of the Newtonian potential and that & ~ —W.

e In our matter-dominated approximation, ¢ represents matter
density fluctuations through the cosmological Poisson equation

k*® = 4nGa’p,\,,

where the difference comes from the use of comoving coordinates
for k (a® factor), the removal of the background density into the
background expansion (pA,,) and finally a coordinate subtlety that
enters into the definition of A,



Constant Potentials

e In the matter dominated epoch potentials are constant because
infall generates velocities as v,,, ~ knWV

e Velocity divergence generates density perturbations as
A, ~ —knv, ~ —(kn)*W

e And density perturbations generate potential fluctuations as
d ~ A,,/(kn)* ~ —V, keeping them constant. Note that because
of the expansion, density perturbations must grow to keep
potentials constant.

e Here we have used the Friedman equation H? = 87Gp,, /3 and
n= [dlna/(aH)~1/(aH)

e More generally, 1f stress perturbations are negligible compared
with density perturbations ( 0p < dp ) then potential will remain

roughly constant — more specifically a variant called the Bardeen
or comoving curvature K 1s constant



Oscillator: Take Two

e Combine these to form the simple harmonic oscillator equation

. L2 .
@+éﬁ@:—§m—¢

e In a CDM dominated expansion ® = ¥ = 0. Also for photon
domination ¢? = 1/3 so the oscillator equation becomes

O+ U+ Ak2(O+ W) =0
e Solution is just an offset version of the original
O+ Ul(n) =[O + V](0) cos(ks)

e O + W is also the observed temperature fluctuation since photons
lose energy climbing out of gravitational potentials at
recombination



Effective Temperature

e Photons climb out of potential wells at last scattering
e Lose energy to gravitational redshifts

e Observed or effective temperature

O+ WV
e Effective temperature oscillates around zero with amplitude given
by the initial conditions

e Note: 1nitial conditions are set when the perturbation 1s outside of
horizon, need inflation or other modification to matter-radiation
FRW universe.

e GR says that initial temperature 1s given by initial potential



Sachs-Wolfe Eftect and the Magic 1/3

e A gravitational potential 1s a perturbation to the temporal
coordinate [formally a gauge transformation]

ot
t
e Convert this to a perturbation in the scale factor,

A 3(1-+w)/2
ol ap1/2

where w = p/p so that during matter domination

=V

oa 20t
a 3t
o CMB temperature is cooling as T o< a™ ! s0

5T 5 1
O+v="qU=—40=_U
A a 3



Sachs-Wolfe Normalization

e Use measurements of AT /T = 107" in the Sachs-Wolfe effect to
infer A%

e Recall in matter domination ¥ = —3R /5

MW+ Ly,
2T 25

e So that the amplitude of initial curvature fluctuations is
A R~ H X 10_5

e Modern usage: WMAP’s measurement of 1st peak plus known
radiation transfer function is used to convert AT /T to Ag.



Baryon Loading
e Baryons add extra mass to the photon-baryon fluid
e Controlling parameter 1s the momentum density ratio:
Rpr+pb%?)OQbh2( a )
Py + Py 10-3

of order unity at recombination

e Momentum density of the joint system 1s conserved

(py + Py) vy + (b + Do) s = (Py + Dy + po + py) 0y
— (1 + R) (:07 =+ pv)vvb

where the controlling parameter 1s the momentum density ratio:

Pv + Po
Py T P
of order unity at recombination

R =

~ 2 (4
~ 30047 (155



New Euler Equation

e Momentum density ratio enters as

(14 R)vyp] =kO + (1 4+ R)kEV
e Photon continuity remains the same

. 3 |
© = —g?},yb—q)

e Modification of oscillator equation

(14 RO + é/@?@ _ —%kQ(l LR - [(1+ R)®]



Oscillator: Take Three

e Combine these to form the not-quite-so simple harmonic oscillator

equation
d : k2 d .
2 —2 27.2 2 9
—(c, 7O kO = ——WV —ci—(c. " P
CS d/r] (CS ) _|_ CS 3 CS d/r} (CS )
where ¢ = py/pp
2o 1
31+ R

e In a CDM dominated expansion ® = U = 0 and the adiabatic
approximation R /R < w = ke,

O+ (1+ R)V|(n) =04+ (14 R)¥](0)cos(ks)



Baryon Peak Phenomenology

e Photon-baryon

ratio enters in three ways
e Overall larger amplitude:

0 + (14 R)W](0) = %(1 +3R)T(0)

e Even-odd peak modulation of

effective temperature | /s

© + Upeass = [£(1+87) — 3R] S (0)
O+ U, — [0+ U, = [-63]%@(0)

e Shifting of the sound horizon down or /4 up

lyxVvV1I+ R



Photon Baryon Ratio Evolution

e Actual effects smaller since X evolves

e Oscillator equation has time evolving mass

, d

ch—n(cf@) +c2k*0 =0

e Effective mass is is m.z = 3¢, * = (1 + R)
e Adiabatic invariant

E 1 1
= §meﬁwA2 = 5308_21@03142 x A%(1+4 R)Y2 = const.

W

e Amplitude of oscillation A o< (1 + 1)~/ decays adiabatically as
the photon-baryon ratio changes



Baryons in the Power Spectrum
e Relative heights of peaks
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Oscillator: Take Three and a Half

e The not-quite-so simple harmonic oscillator equation 1s a forced
harmonic oscillator
k* d

((38_2@) —+ C§k2@ = —g\If — Czd—n(cs_2q))

d

¢ —

dn
changes 1n the gravitational potentials alter the form of the

acoustic oscillations

e If the forcing term has a temporal structure that is related to the
frequency of the oscillation, this becomes a driven harmonic
oscillator

e Term involving W is the ordinary gravitational force

e Term involving ® involves the ® term in the continuity equation as
a (curvature) perturbation to the scale factor



Potential Decay

e Matter-to-radiation ratio

P 24th2( a )
Pr 103

of order unity at recombination in a low {2,,, universe

e Radiation 1s not stress free and so impedes the growth of structure

20 = 4nGa’p, A\,

4

A, ~ 40 oscillates around a constant value, p, o< a~" so the

Netwonian curvature decays.

e General rule: potential decays if the dominant energy component
has substantial stress fluctuations, i.e. below the generalized sound
horizon or Jeans scale



Radiation Driving

e Decay 1s timed precisely to drive the oscillator - close to fully
coherent

[©+ Ul(n)| =1]1©+ T](0)+ AV — AD|

— %\p(o) —20(0)| = !§\If(0)|

NTATYTr=
lA A‘ A\ /9o :
dr]VI]; ' ' @+‘P ;

& L Dol
5 15 20
ks/mt

e 5x the amplitude of the Sachs-Wolfe effect!



Matter-Radiation 1n the Power Spectrum

e Coherent
approximation 1s exact for
a photon-baryon fluid but reality
1s reduced to ~ 4 x because of
neutrino contribution to radiation

e Actual initial conditions
are © + U = U /2 for radiation

domination but comparison to
matter dominated SW correct



Damping
e Tight coupling equations assume a perfect fluid: no viscosity, no

heat conduction

e Fluid imperfections are related to the mean free path of the
photons 1n the baryons

L' where 7 = n.ora

Ao =T
1s the conformal opacity to Thomson scattering

e Dissipation is related to the diffusion length: random walk
approximation

Ap = VNI = /1/ e Ao = /1o

the geometric mean between the horizon and mean free path

e \p/n. ~ few %, so expect the peaks :> 3 to be affected by
dissipation



Equations of Motion

e Continuity

@:—§U7—®, 5[9:—/{2}5—3(1)

where the photon equation remains unchanged and the baryons
follow number conservation with p, = myny

e Euler
. k .
v, = k(@4 V) — 6™~ T(vy — Vp)
vy = —gvb—kk\lf#—%(vv — )/ R

where the photons gain an anisotropic stress term 7., from radiation
viscosity and a momentum exchange term with the baryons and
are compensated by the opposite term 1n the baryon Euler equation



Viscosity

e Viscosity 1s generated from radiation streaming from hot to cold
regions

e Expect

k
T~ N~ U~ —
Y 77_

generated by streaming, suppressed by scattering in a wavelength
of the fluctuation. Radiative transfer says

k
7Tfy ~ ZAU?J,Y ;

where A, = 16/15

kK k
’l.}fy — k(@ —|— \If) — §AU—,U7

T



Oscillator: Penultimate Take
e Adiabatic approximation (w > a/a)

: k
O ~ —g’l}fy
e Oscillator equation contains a O damping term
d : k% k* d :
2 —2 s 2 2 2 —2
— O A,©+Ek%°c,© = ——WVU — ¢l — o
CS dT] (CS ) —|_ 7_ —I_ CS 3 CS dT] (CS )

e Heat conduction term similar in that it 1s proportional to v., and is
suppressed by scattering % /7. Expansion of Euler equations to
leading order in k7 gives

R2
T 1+R
since the effects are only significant if the baryons are dynamically

Ap

important



Oscillator: Final Take

e Final oscillator equation

k*c? k* d

5 d

— (¢, %0 S[A, + A0 + k2O = —— U — 2—(c; 2
Qg (70) + A+ A0+ G0 =~ — ()
e Solve 1n the adiabatic approximation
O exp(i/wdn)
k2 c?
—w? + —(Ay + Ap)iw + k2 =0 (1)

+



Dispersion Relation

e Solve

w? = k*c {1 + ig(AU + Ah)}

o,
— t+ke, [1+=-—(A, + A
W C _ —|—27_( + h)]

I 1 ke
— tkc, |1 £+ = SAU A
| ;5 (Aot h)]

e Exponentiate

1 2
exp(i/wdn) = T ex Xp —kQ/dU§CT.S(Av + Ap)]

= =" exp[—(k/kp)?]

e Damping 1s exponential under the scale £ p




Diffusion Scale

e Diffusion wavenumber

k2/d1 1 16 R
b= YR T R\ T 1+ R)

e Limiting forms

116 1

. _2 _ o o

R0 = 51 )
1 1
. _2 - _ e
A k= G/dn%

e Geometric mean between horizon and mean free path as expected
from a random walk

2T 2T
Ap = =5~ ()2

kp /6



Thomson Scattering

e Polarization state of radiation in direction n described by the
intensity matrix ( F;(n)E?(n)), where E is the electric field vector
and the brackets denote time averaging.

e Differential cross section

do
df)

where o = 8ma?/3m, is the Thomson cross section, E' and E

3 . .
= —W]E’-E\QJT,

denote the incoming and outgoing directions of the electric field or
polarization vector.

e Summed over angle and incoming polarization

> [l

1=1,2



Polarization Generation

y E—-mode

e Heuristic:

B—mode k —>

e But photon cannot be longitudinally polarized so that scattering

. . . . Quadrupole
incoming radiation shakes J

. . . Thomson

an electron 1n direction Scattering )

. ~ <
of electric field vector E’

Linear
Polarization

N)

e Radiates photon with
polarization also in direction E’

into 90° can only pass one polarization
e Linearly polarized radiation like polarization by reflection
e Unlike reflection of sunlight, incoming radiation 1s nearly 1sotropic
e Missing from direction orthogonal to original incoming direction

e Only quadrupole anisotropy generates polarization by Thomson
scattering



Acoustic Polarization

Break down of tight-coupling leads to quadrupole anisotropy of

k
7T,y ~ ;/U'Y
Scaling kp = (7/n.)Y? — 7 = k%,
Know: kps, ~ kpn, ~ 10

So:



Acoustic Polarization

e Gradient of velocity 1s along direction of wavevector, so
polarization 1s pure f~-mode

e Velocity 1s 90° out of phase with temperature — turning points of
oscillator are zero points of velocity:

© + VU  cos(ks); v, o< sin(ks)

e Polarization peaks are at troughs of temperature power



Cross Correlation

e Cross correlation of temperature and polarization

(© 4+ ¥)(v,) x cos(ks)sin(ks) o sin(2ks)
e Oscillation at twice the frequency

e Correlation: radial or tangential around hot spots

e Partial correlation: easier to measure if polarization data 1s noisy,
harder to measure if polarization data is high S/ or if bands do
not resolve oscillations

e Good check for systematics and foregrounds

e Comparison of temperature and polarization 1s proof against
features 1n 1nitial conditions mimicking acoustic features



Polarization Power

100: T IIIIII| T T IIIIII| T T T T T 1T T E
10 OF
- reionization
A i l
N
S 1L
N~ o
&~ n
< I
0.1
_ gravitational
i waves
001 [ R B | N R | [ B
10 100 1000

[ (multipole)



Transfer Function

e Transfer function transfers the initial Newtonian curvature to its
value today (linear response theory)

(I)(]f, a = 1) (I)(knorma ainit)
(I)(]C, ainit) (I)<knorm7 a — 1)

e Conservation of Bardeen curvature: Newtonian curvature 1s a

T(k) =

constant when stress perturbations are negligible: above the
horizon during radiation and dark energy domination, on all scales
during matter domination

e When stress fluctuations dominate, perturbations are stabilized by
the Jeans mechanism

e Hybrid Poisson equation: Newtonian curvature, comoving density
perturbation A = (dp/p)com implies @ decays

(k* — 3K)® = 47GpA ~ n A



Transfer Function

Freezing of A stops at 7

O~ (Fneq) A ~ (F1eq) ™ Pinie

Transfer function has a &~ fall-off beyond k., ~ ne—ql

Small correction since growth with a smooth radiation component
1s logarithmic not frozen

Transfer function 1s a direct output of an Einstein-Boltzmann code



Fitting Function

e Alternately accurate fitting formula exist, e.g. pure CDM form:

B L(q)
T = T T ce

L(q) = In(e + 1.84q)
325
1+ 60.5¢*11
q = k/Qnh*Mpce ™ (Toms/2.7K)?

C(q) =144+

e In h Mpc!, the critical scale depends on I = ,,,h also known as
the shape parameter



Transfer Function

e Numerical calculation

(k)

0.01 E

. :_.

k (h—1 Mpc)

0.0001 0.001 0.01 0.1

[E—



Dark Matter and the Transfer Function

e Baryons caught up in the acoustic oscillations of the CMB and
impart acoustic wiggles to the transfer function. Density
enhancements are produced kinematically through the continuity
equation d, ~ (kn)v, and hence are out of phase with CMB
temperature peaks

e Dissipation of the acoustic oscillations eliminates both the CMB
and baryon perturbations — known as Silk damping for the
baryons. This suppression and the general fact that baryons are
caught up with photons was one of the main arguments for CDM

e Neutrino dark matter suffers similar effects and hence cannot be
the main component of dark matter in the universe



Massive Neutrinos

e Relativistic stresses of a light neutrino slow the growth of structure

e Neutrino species with cosmological abundance contribute to

matter as 2,h* = > m, /94eV, suppressing power as
AP/P ~ —8Q,/Q,,

e Current data from 2dF galaxy survey and CMB indicate
> m, < 0.9eV assuming a ACDM model with constant tilt based
on the shape of the transfer function.



Growth Function

e Same physics applies to the dark energy dominated universe

e Under the dark energy sound horizon or Jeans scale, dark energy
density frozen. Potential decays at the same rate for all scales

P (knorma CL) / d
o (knormp ainit) dlna

Gla) =

e Continuity + Euler + Poisson

/! 1 / 1 / / /!
G”+<1—p—,+—&>G’+<—pC+p —p—,>G:0
P 2pc 2 pe p

where p 1s the Jeans unstable matter and p. is the critical density




Dark Energy Growth Suppression

e Pressure growth suppression: 6 = dp,,/pm x aG

d*GG 5 3 dG 3
d1n a? i 2 Qw(Z)QDE(Z> dlna * 5[1 —w(z)[op(2)G =0,

where w = ppr/ppr and Qpr = ppr/(pm + ppr) With initial
conditions G = 1, dg/dIna = 0

e As (2pr — 0 G =const. 1s a solution. The other solution is the
decaying mode, elimated by initial conditions

o AsQpr — 1 G o< a!is asolution. Corresponds to a frozen
density field.



Velocity field

e Continuity gives the velocity from the density field as

, aH dA
v / k dlna
_ _aHAdln(ag)
k dlna

e In a ACDM model or open model d1n(ag)/dIna ~ Q%°

e Measuring both the density field and the velocity field (through
distance determination and redshift) allows a measurement of €2,,,

e Practically one measures S = Q2°/b where b is a bias factor for
the tracer of the density field, i.e. with galaxy numbers on/n = bA

e Can also measure this factor from the redshift space power
spectrum - the Kaiser effect where clustering in the radial direction
1s apparently enhanced by gravitational infall



Lyman-« Forest

e QSO spectra absorbed by neutral hydrogen through the Ly«
transition.

e Lack of complete absorption, known as the lack of a
Gunn-Peterson trough indicates that the universe is nearly fully
ionized out to the highest redshift quasar z ~ 6; recently SDSS
QSO implies z ~ 6 1s the end of the reionization epoch

e In ionization equilibrium, the Gunn-Peterson optical depth 1s a
tracer of the underlying baryon density which itself 1s a tracer of
the dark matter 7¢p oc p, 707 with T'(pp).

e Clustering in the Ly« forest reflects the underlying linear power
spectrum as calibrated through simulations



Gravitational Lensing

e Gravitational potentials along the line of sight n to some source at
comoving distance D, lens the images according to (flat universe)

o(f) = 2 / dD DBZ)SD & (D, n(D))

remapping image positions as

n' = n® 4+ Vao(n)

e Since absolute source position 1s unknown, use image distortion
defined by the Jacobian matrix

on!
L= §. .
87153 i+




Weak Lensing

Small 1image distortions described by the convergence x and shear
components (71, V2)

R —" —72
- )
—Y2 Kt M

where V; = DV and

Vij = 2/GZDD(D;)_ D)V,L-Vj@(Dﬂ,n(D))

e In particular, through the Poisson equation the convergence
(measured from shear) 1s simply the projected mass

D(D,— D)A(Dn.,n(D
KJ:%QmHg/dD ( s ) ( nﬂ?( ))
2 D, a




