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Transfer Function
• Transfer function transfers the initial Newtonian curvature to its

value today (linear response theory)

T (k) =
Φ(k, a = 1)

Φ(k, ainit)

Φ(knorm, ainit)

Φ(knorm, a = 1
)

• Conservation of Bardeen curvature: Newtonian curvature is a
constant when stress perturbations are negligible: above the
horizon during radiation and dark energy domination, on all scales
during matter domination

• When stress fluctuations dominate, perturbations are stabilized by
the Jeans mechanism

• Hybrid Poisson equation: Newtonian curvature, comoving density
perturbation ∆ ≡ (δρ/ρ)com implies Φ decays

(k2 − 3K)Φ = 4πGρ∆ ∼ η−2∆



Transfer Function
• Freezing of ∆ stops at ηeq

Φ ∼ (kηeq)−2∆H ∼ (kηeq)−2Φinit

• Transfer function has a k−2 fall-off beyond keq ∼ η−1
eq

• Small correction since growth with a smooth radiation component
is logarithmic not frozen

• Transfer function is a direct output of an Einstein-Boltzmann code



Fitting Function
• Alternately accurate fitting formula exist, e.g. pure CDM form:

T (k(q)) =
L(q)

L(q) + C(q)q2

L(q) = ln(e+ 1.84q)

C(q) = 14.4 +
325

1 + 60.5q1.11

q = k/Ωmh
2Mpc−1(TCMB/2.7K)2

• In h Mpc−1, the critical scale depends on Γ ≡ Ωmh also known as
the shape parameter



Transfer Function
• Numerical calculation
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Dark Matter and the Transfer Function
• Baryons caught up in the acoustic oscillations of the CMB and

impart acoustic wiggles to the transfer function. Density
enhancements are produced kinematically through the continuity
equation δb ∼ (kη)vb and hence are out of phase with CMB
temperature peaks

• Dissipation of the acoustic oscillations eliminates both the CMB
and baryon perturbations – known as Silk damping for the
baryons. This suppression and the general fact that baryons are
caught up with photons was one of the main arguments for CDM

• Neutrino dark matter suffers similar effects and hence cannot be
the main component of dark matter in the universe



Massive Neutrinos
• Relativistic stresses of a light neutrino slow the growth of structure

• Neutrino species with cosmological abundance contribute to
matter as Ωνh

2 =
∑
mν/94eV, suppressing power as

∆P/P ≈ −8Ων/Ωm

• Current data from 2dF galaxy survey and CMB indicate∑
mν < 0.9eV assuming a ΛCDM model with constant tilt based

on the shape of the transfer function.



Growth Function
• Same physics applies to the dark energy dominated universe

• Under the dark energy sound horizon or Jeans scale, dark energy
density frozen. Potential decays at the same rate for all scales

g(a) =
Φ(knorm, a)

Φ(knorm, ainit)
′ ≡ d

d ln a

• Continuity + Euler + Poisson

g′′ +

(
1− ρ′′

ρ′
+

1

2

ρ′c
ρc

)
g′ +

(
1

2

ρ′c + ρ′

ρc
− ρ′′

ρ′

)
g = 0

where ρ is the Jeans unstable matter and ρc is the critical density



Dark Energy Growth Suppression
• Pressure growth suppression: δ ≡ δρm/ρm ∝ ag

d2g

d ln a2
+

[
5

2
− 3

2
w(z)ΩDE(z)

]
dg

d ln a
+

3

2
[1− w(z)]ΩDE(z)g = 0 ,

where w ≡ pDE/ρDE and ΩDE ≡ ρDE/(ρm + ρDE) with initial
conditions g = 1, dg/d ln a = 0

• As ΩDE → 0 g =const. is a solution. The other solution is the
decaying mode, elimated by initial conditions

• As ΩDE → 1 g ∝ a−1 is a solution. Corresponds to a frozen
density field.



COBE Normalization
• Normalization of potential is set by observations of the CMB, aka

COBE normalization

• Take the radiation distribution at last scattering to also be
described by an isotropic temperature fluctuation field Θ(x) and
recombination to be instantaneous

Θ(n̂) =

∫
dDΘ(x)δ(D −D∗)

where D is the comoving distance and D∗ denotes recombination.

• Describe the temperature field by its Fourier moments

Θ(x) =

∫
d3k

(2π)3
Θ(k)eik·x



COBE Normalization
• Power spectrum

〈Θ(k)∗Θ(k′)〉 = (2π)3δ(k− k′)PT (k)

∆2
T = k3PT/2π

2

• Temperature field

Θ(n̂) =

∫
d3k

(2π)3
Θ(k)eik·D∗n̂

• Multipole moments Θ(n̂) =
∑

`m Θ`mY`m



COBE Normalization
• Expand out plane wave in spherical coordinates

eikD∗·n̂ = 4π
∑
`m

i`j`(kD∗)Y
∗
`m(k)Y`m(n̂)

Θ`m =

∫
d3k

(2π)3
Θ(k)4πi`j`(kD∗)Y`m(k)

• Power spectrum

〈Θ∗`mΘ`′m′〉 =

∫
d3k

(2π)3
(4π)2(i)`−`

′
j`(kD∗)j`′(kD∗)Y

∗
`m(k)Y`′m′(k)PT (k)

= δ``′δmm′4π

∫
d ln k j2

` (kD∗)∆
2
T (k)

with
∫∞

0
j2
` (x)d lnx = 1/(2`(`+ 1)), slowly varying ∆2

T



COBE Normalization
• Angular power spectrum:

C` =
4π∆2

T (`/D∗)

2`(`+ 1)
=

2π

`(`+ 1)
∆2
T (`/D∗)

• `(`+ 1)C`/2π = ∆2
T is commonly used log power

• Sachs-Wolfe effect says ∆2
T = ∆2

Φ/9

• Observed number

∆2
T =

(
28µK

2.725× 106µK

)2

∆2
Φ ≈ 9× 10−10

at recombination



COBE Normalization
• Today:

∆2
Φ ≈ 9× 10−10g2(a)T 2(k)

(
k

H0

)n−1

• Density field

k2Φ = 4πGa2∆ρ

=
3

2
H2

0 Ωm∆/a

∆2
Φ =

9

4

(
H0

k

)4

Ω2
ma
−2∆2

∆

∆2
∆ = (2× 10−5)2

(
k

H0

)n+3

Ω−2
m a2g2(a)T 2(k)



Normalization Convention
• Current density field on the horizon scale k = H0

δH = 2× 10−5Ω−1
m g(a = 1)

• In a ΛCDM model, a detailed fit gives

δH = 1.94× 10−5Ω−0.785−0.05 ln Ωm
m e−0.95(n−1)−0.169(n−1)2

since growth factor is smaller in a low Ωm model and
normalization scale is not exactly the horizon scale

• In the future (abount now) the COBE normalization will be
superceded by CMB peak normalization



Power Spectrum
• 2dF data

• Power spectrum defines large scale structure observables: galaxy
clustering, velocity field, Lyα forest clustering, cosmic shear



Velocity field
• Continuity gives the velocity from the density field as

v = −∆̇/k = −aH
k

d∆

d ln a

= −aH
k

∆
d ln(ag)

d ln a

• In a ΛCDM model or open model d ln(ag)/d ln a ≈ Ω0.6
m

• Measuring both the density field and the velocity field (through
distance determination and redshift) allows a measurement of Ωm

• Practically one measures β = Ω0.6
m /b where b is a bias factor for

the tracer of the density field, i.e. with galaxy numbers δn/n = b∆

• Can also measure this factor from the redshift space power
spectrum - the Kaiser effect where clustering in the radial direction
is apparently enhanced by gravitational infall



Lyman-α Forest
• QSO spectra absorbed by neutral hydrogen through the Lyα

transition.

• Lack of complete absorption, known as the lack of a
Gunn-Peterson trough indicates that the universe is nearly fully
ionized out to the highest redshift quasar z ∼ 6; recently SDSS
QSO implies z ∼ 6 is the end of the reionization epoch

• In ionization equilibrium, the Gunn-Peterson optical depth is a
tracer of the underlying baryon density which itself is a tracer of
the dark matter τGP ∝ ρbT

−0.7 with T (ρb).

• Clustering in the Lyα forest reflects the underlying linear power
spectrum as calibrated through simulations



Gravitational Lensing
• Gravitational potentials along the line of sight n̂ to some source at

comoving distance Ds lens the images according to (flat universe)

φ(n̂) = 2

∫
dD

Ds −D
DDs

Φ(Dn̂, η(D))

remapping image positions as

n̂I = n̂S +∇n̂φ(n̂)

• Since absolute source position is unknown, use image distortion
defined by the Jacobian matrix

∂nIi
∂nSj

= δij + ψij



Weak Lensing
• Small image distortions described by the convergence κ and shear

components (γ1, γ2)

ψij =

(
κ− γ1 −γ2

−γ2 κ+ γ1

)
where∇n̂ = D∇ and

ψij = 2

∫
dD

D(Ds −D)

Ds

∇i∇jΦ(Dn̂, η(D))

• In particular, through the Poisson equation the convergence
(measured from shear) is simply the projected mass

κ =
3

2
ΩmH

2
0

∫
dD

D(Ds −D)

Ds

∆(Dn̂, η(D))

a


