Ast 448: CMB

Wayne Hu



Syllabus

This course will have be composed of 2 parts

e Lectures establishing a common denominator on CMB physics:
temperature anisotropy, polarization...

e Current topics of your own interests, culminating in a
presentation by you to the class

Prerequisites
e Cosmology - at least the advanced undergrad (Ryden) or
graduate level:
FRW cosmology
Thermal history
Inflation

Helpful:

e Radiative processes, GR, stat mech



CMB Temperature Anisotropy

e Planck map of the temperature anisotropy (first discovered by
COBE) from recombination:

—-300 —-200 —100 0 100 200 300
,UJKcmb



CMB Temperature Anisotropy

e Power spectrum shows characteristic scales where the intensity of
variations peak - reveals geometry and contents of the universe:
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CMB Parameter Inferences

e Spectrum constrains the matter-energy contents of the universe

e Planck 2018 results [arXiv:1807.06209]

TT+lowE TE+lowE EE+lowE TT,TE.EE+lowE TT,TE . EE+lowE+lensing  TT,TE,EE+lowE+Ilensing+BAO
Parameter 68% limits 68% limits 68% limits 68% limits 68% limits 68% limits

Qh?. . 0.02212+ 0.00022  0.02249 +£ 0.00025  0.0240 + 0.0012 0.02236 + 0.00015 0.02237 £ 0.00015 0.02242 + 0.00014

QhZ. . ... 0.1206 + 0.0021 0.1177 £ 0.0020 0.1158 + 0.0046 0.1202 + 0.0014 0.1200 + 0.0012 0.11933 + 0.00091
1006yc - . - . .. .. 1.04077 £ 0.00047  1.04139+£ 0.00049  1.03999 + 0.00089  1.04090 + 0.00031 1.04092 + 0.00031 1.04101 + 0.00029

T oo 0.0522 + 0.0080 0.0496 + 0.0085 0.0527 + 0.0090 0.05441'8:88;? 0.0544 + 0.0073 0.0561 + 0.0071
In(10'°Ay) . . . . ... 3.040+0.016 3.018ﬁ8:8%g 3.052+0.022 3.045+0.016 3.044+0.014 3.047+0.014

Mg o vve e 0.9626 + 0.0057 0.967+0.011 0.980 + 0.015 0.9649 + 0.0044 0.9649 + 0.0042 0.9665 + 0.0038

Hy [kms™'Mpc™'] .. 66.88+092 68.44+ 091 699+27 67.27 +0.60 67.36 £ 0.54 67.66 + 042



CMB Power Spectra

e Power spectra
of CMB

— temperature
— polarization

— lensing
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Tensor Power Spectrum

e Gravitational waves from inflation (yet to be detected)
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Ast 448

Set 1: Temperature Anisotropy



Schematic Outline

e Take apart features in the power spectrum
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Schematic Outline

e Take apart features in the power spectrum
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Last Scattering

JitkD )

e Angular distribution T
of radiation 1s the 3D k
temperature field

Doppler
effect

projected onto a shell
- surface of last scattering

e Shell radius
1s distance from the observer

JitkD )

to recombination: called
the last scattering surface

e Take the radiation
distribution at last scattering to also be described by an isotropic
temperature fluctuation field ©(x)



Angular Power Spectrum

e Take recombination to be instantaneous
O(h) = / 4D O(x)5(D — D,)

where D 1s the comoving distance and ), denotes recombination.

e Describe the temperature field by its Fourier moments

O(x) = / (Zﬂﬁg@(k)eik.x

e Orthogonality and Completeness (forward and inverse transform):

/d?’xei(kk/)'x = (2m)%5(k — k')

d3k 1k (x—x’ /
[k o) < g




Angular Power Spectrum

e Statistical homogeneity and 1sotropy

(O(x)O(x')) = C(lx — x|)

function of separation only

BO(x+d)O(x' +d)) = (0(x)O(x))

—k-x+1k’-x 7 . * k k/
| 57 | e I CRSETS)

- [ G [ G e o)

requires the 2pt Fourier correlation to be described by a power

spectrum

(©7(k)O(K)) = (27m)"d(k — k') Pr(k)



Angular Power Spectrum

e Correlation function and power spectrum are Fourier conjugates

Cllx—x) = (0000 = [ 155 Pa(h

e Log weighted power spectrum determines variance

©00) = [ Gsri) = [ Fompr = [ A

A} = = Prf= Pr()

272

and 1s the contribution to the total variance per log interval in &

e A7 dimensionless, whereas Pr has dimensions of [L7], e.g.
(h~'Mpc)? for the power spectrum of a redshift survey



Angular Power Spectrum

e Temperature field

d°k
(2r)?
Multipole moments O(n) = ) |, O, Ys,

O(h) = (k)¢ P-n

e Orthogonality:

/ dAY} (R) Yo (B1) = SogrSummn

Completeness:
ZYM )Yem () = 6(¢ — ¢)5(cos 6 — cos )

e Statistical 1sotropy:

<@Zm @E’m’ > — 5%’ 5mm’ CE



Angular Power Spectrum

e Expand out plane wave in spherical coordinates

M PR = dr Y i jo(kD.)Y, (K) Yom (D)
m
e Aside: as in the figure, 1t will often be convenient when
considering a single k mode to orient the north pole to k. This
simplifies the decomposition since

- . 20 + 1
Yvﬁm(k) — }/ém(o) — 5m0




Angular Power Spectrum

e Power spectrum

d°k v, \
Opm = / (QW)S@(k)Zlm Je(kD,)Y, (k)

(00 Orm) :/(;ljr];?) (4m)%i " jo(k D) jor (kD) Yom (K)Y iy (K) Pr (k)

= 5gg/5mm/47'(' / dIn k]?(/{D*)A%(/{)

with [ 7 j7(z)dInz = 1/(20(¢ + 1)), slowly varying A7

e Angular power spectrum:

AmAZ(()D,) 2w
2000 4+1)  L(L+1)

Co = A% (¢/D,)



Angular Power Spectrum

e The log power spectrum (sometimes called D,)

00+ 1)
2T

so that a scale invariant spectrum A% =const is scale invariant in

Cg%A?r

the log power spectrum

e Related to the contribution to the variance per log interval in ¢

emem) = eoen) =3 X e =y g

1

with the two being equivalent if £ > 1



Thomson Scattering

e Thomson scattering of photons off of free electrons 1s the most
important CMB process with a cross section (averaged over
polarization states) of

87 a?
o —
3Im?2

e Density of free electrons in a fully 1onized x. = 1 universe

— 6.65 x 10™%°cm?

ne = (1-7Y,/2)xz.ny = 107°Qh*(1 + 2)’cm ™,

where Y, =~ 0.24 is the Helium mass fraction, creates a high
(comoving) Thomson opacity

T = N.OTa

where dots are conformal time 7 = [ dt/a derivatives and 7 is the
optical depth.



Tight Coupling Approximation
e Near recombination z ~ 10° and ,h* ~ 0.02, the (comoving)
mean free path of a photon

1
Ao = — ~ 2.5Mpc
T

small by cosmological standards!

e On scales A > A¢ photons are tightly coupled to the electrons by
Thomson scattering which in turn are tightly coupled to the
baryons by Coulomb interactions

e Specifically, their bulk velocities are defined by a single fluid
velocity v, = v, and the photons carry no anisotropy in the rest
frame of the baryons

e — No heat conduction or viscosity (anisotropic stress) in fluid



Full Equations of Motion

e Continuity

@:—§07—®, 51):—/{7?}5—3@
which expresses number conservation in the presence of velocity

divergence and local expansion, with p, = myn,

e Navier-Stokes (Euler + heat conduction, viscosity)

k
v, = k(O+V)— 6™~ T(vy — p)

@b = —gvb—l—k\lf+7'(v7 —Ub)/R

where the photon momentum changes due to pressure, gravity and
anisotropic stress 7, gradients (from radiation viscosity) and a
momentum exchange term with the baryons and are compensated
by the opposite term in the baryon Euler equation



Zeroth Order Approximation

e Momentum density of a fluid is (p + p)v, where p is the pressure
e Neglect the momentum density of the baryons

R = (Po +Pe)vs _ pot+po _ 3ps
(py + D)V pyt+Dpy Apy

Q 2
~ 0.0 ol ( a )
0.02 10-3

since p., o< T* is fixed by the CMB temperature 7' = 2.73(1 + 2)K
— OK substantially before recombination

e Neglect radiation in the expansion (not a good approx, just for
pedagogical start)

2
P _ 36 (Sl ( a )
Or 0.15 10—3

e Neglect gravity (obviously just for pedagogy)




Fluid Equations

e Density p, o< T* so define temperature fluctuation ©

0T

e Real space continuity equation

57 = —(1 +w,)kv,

: 1
@ — —gk?}7

e Euler equation (neglecting gravity)

. a kc?
Ufy = —(1 — Sw,y)a?}fy —+ m&y

3
Uy = kciidy = 3c’k©



Oscillator: Take One

e Combine these to form the simple harmonic oscillator equation
O+ k0 =0
where the sound speed 1s adiabatic

) _ 0Py _ Dy

C p—
0Py Pn

here ¢? = 1/3 since we are photon-dominated

e General solution:

O(0)
kc,

O(n) = O(0) cos(ks) + sin(ks)

where the sound horizon is defined as s = [ c.dn



Harmonic Extrema

e All modes are frozen in | (a) Peak Scales

Hil2 i Initial conditions (k<<7t/s..) ]

at recombination (denoted

with a subscript *)

>
+
o Temperature perturbations @
of different amplitude st peur (s
for different modes. “Hir 2nd peak (k=2m/s,) ]
e For the adiabatic 02 04 06 08

/8
(curvature mode) 1nitial conditions

e So solution



Harmonic Extrema

e Modes caught in the extrema of their oscillation will have
enhanced fluctuations

k.S, = nmw

yielding a fundamental scale or frequency, related to the inverse
sound horizon

kA:T(/S*

and a harmonic relationship to the other extremaas 1 : 2 : 3...



Peak LLocation

e The fundmental physical scale 1s translated into a fundamental
angular scale by simple projection according to the angular
diameter distance D 4

QA = )\A/DA
614 = ]CADA

e In a flat universe, the distance 1s ssmply D4 = D = 19 — 1. = 10,
the horizon distance, and k4 = 7/s, = V37 /My SO

(914%E
7o

e In a matter-dominated universe 1 o< a'/? so 04 ~ 1/30 ~ 2° or

gA ~ 200



Curvature

e In a curved

universe, the apparent g o \
or angular diameter : .
distance 1s no longer

the conformal distance

D4 = Rsin(D/R) # D A

e Objects in a closed

universe are further than
they appear! gravitational lensing of the background...

e Curvature scale of the universe must be substantially larger than
current horizon



Curvature

e Flat universe indicates critical
density and implies missing
energy given local measures of
the matter density “dark energy”

e [ also depends
on dark energy density {2pg and
equation of state w = ppg/pPpE.

e Expansion rate at recombination

100 -

r 02 04 06 08 10
Ll P

\ N Ll L
10 100 1000

or matter-radiation ratio enters into calculation of £ 4.



Fixed Deceleration Epoch

e CMB determination of matter density controls all determinations
in the deceleration (matter dominated) epoch

e Planck: Q,,h* = 0.1426 & 0.0025 — 1.7%

e Distance to recombination [, determined to %1.7% ~ 0.43%
(ACDM result 0.46%; Ah/h ~ —AQ,,h? /€, h?)
[more general: —0.11Aw — 0.48Alnh — 0.15AIn 2, — 1.4AIn Qo = 0]

e Expansion rate during any redshift in the deceleration epoch
determined to £1.7%

e Distance to any redshift in the deceleration epoch determined as

= dz
D(z) =D, —
D=0 [ i
e Volumes determined by a combination dV = D%4dQdz/H (z)

e Structure also determined by growth of fluctuations from z,




Doppler Eftect

e Bulk motion of fluid changes the observed temperature via

(AT) )
S — nNn-v
1 dop !

e Averaged over directions

(AT > vy
T rms \/§
e Acoustic solution

D —ﬁ@ = —3ch O(0)sin(ks)

V3 k k
= O(0)sin(ks)

Doppler shifts



Doppler Peaks?

e Doppler effect for the photon dominated system 1s of equal
amplitude and 7 /2 out of phase: extrema of temperature are
turning points of velocity

e Effects add in quadrature:

(%) = 0°(0)[cos®(ks) + sin*(ks)] = ©7(0)

e No peaks in k spectrum! However the Doppler effect carries an
angular dependence that changes its projection on the sky

n-v,xn-k



Doppler Peaks?

e Coordinates where z || k

YioYeo — Yiti0

recoupling j,Yyo: no peaks in Doppler effect

temperature

last scattering surface




Restoring Gravity

e Take a simple photon dominated system with gravity

e Continuity altered since a gravitational potential represents a
stretching of the spatial fabric that dilutes number densities —
formally a spatial curvature perturbation

e Think of this as a perturbation to the scale factor a — a(1 + ®) so
that the cosmogical redshift 1s generalized to
a a

- = -+
a a

so that the continuity equation becomes

. 1 .
@: —gkvv—q)



Restoring Gravity

e (Gravitational force in momentum conservation F = —mVW
generalized to momentum density modifies the Euler equation to

0 = k(O + 0)

e General relativity says that ® and W are the relativistic analogues
of the Newtonian potential and that & ~ —W.

e In our matter-dominated approximation, ¢ represents matter
density fluctuations through the cosmological Poisson equation

k*® = 4nGa’p,\,,

where the difference comes from the use of comoving coordinates
for k (a® factor), the removal of the background density into the
background expansion (pA,,) and finally a coordinate subtlety that
enters into the definition of A,



Constant Potentials

¢ In the matter dominated epoch potentials are constant because
infall generates velocities as v,, ~ knW

e Velocity divergence generates density perturbations as
A~ —knu, ~ —(kn)*W

e And density perturbations generate potential fluctuations

_ArGapA 3H26L2A A

)] ~ —
2 2 )2 (kn)2

~ —

keeping them constant. Note that because of the expansion, density
perturbations must grow to keep potentials constant.



Constant Potentials

e More generally, if stress perturbations are negligible compared
with density perturbations ( 0p < dp ) then potential will remain
roughly constant

e More specifically a variant called the Bardeen or comoving
curvature 1s strictly constant
5+ 3w

R = t ~ d
CONSY ™ 3T 80

where the approximation holds when w ~const.



Oscillator: Take Two

e Combine these to form the simple harmonic oscillator equation

. L2 .
@+éﬁ@:—§m—¢

e In a CDM dominated expansion ® = ¥ = 0. Also for photon
domination ¢? = 1/3 so the oscillator equation becomes

O+ U+ Ak2(O+ W) =0
e Solution is just an offset version of the original
O+ Ul(n) =[O + V](0) cos(ks)

e O + W is also the observed temperature fluctuation since photons
lose energy climbing out of gravitational potentials at
recombination



Effective Temperature

e Photons climb out of potential wells at last scattering
e Lose energy to gravitational redshifts

e Observed or effective temperature

O+ WV
e Effective temperature oscillates around zero with amplitude given
by the initial conditions

e Note: 1nitial conditions are set when the perturbation 1s outside of
horizon, need inflation or other modification to matter-radiation
FRW universe.

e GR says that initial temperature 1s given by initial potential



Sachs-Wolfe Eftect and the Magic 1/3

e A gravitational potential 1s a perturbation to the temporal
coordinate [formally a gauge transformation]

ot
t
e Convert this to a perturbation in the scale factor,

A 3(1-+w)/2
ol ap1/2

where w = p/p so that during matter domination

=V

oa 20t
a 3t
o CMB temperature is cooling as T o< a™ ! s0

5T 5 1
O+v="qU=—40=_U
A a 3



Sachs-Wolfe Normalization

e Use measurements of AT /T = 10~ in the Sachs-Wolfe effect to
infer A%

e Recall in matter domination ¥ = —3R /5
14 1 1
(L+1)C ~ AL~ A
2T 25

o Thus, amplitude of initial curvature fluctuations is A ~ 5 x 107

e Modern usage: acoustic peak measurements plus known radiation

transfer function is used to convert AT /T to Ag. Best measured at
k = 0.08 Mpc~! by Planck

e Current convention set in the WMAP era
lf ns—1
A%(k) = A, ( 1)
0.05Mpc
so Ay ~ 2.5 x 1077 (slightly smaller since red tilt n, — 1 ~ —0.04)




Baryon Loading
e Baryons add extra mass to the photon-baryon fluid

e Controlling parameter 1s the momentum density ratio:

Py ¥ P zSOQth( a )
Py + Py 10-3

of order unity at recombination

R

e Momentum density of the joint system is conserved

(/07 - p'y)vv T (,Ob + pb)vb ~ (pv + Dy T+ Pb T ,07)?}7
= (1+ R)(py + py) vy



New Euler Equation

e Momentum density ratio enters as

(14 R)vyp] = kO + (14 R)kV
e Photon continuity remains the same

. 3 |
© = —g?},yb—q)

e Modification of oscillator equation

[(1+ R)O] + %/@2@ = —%/8(1 + RV — [(1 4 R)D]



Oscillator: Take Three

e Combine these to form the not-quite-so simple harmonic oscillator

equation
d : k2 d .
2 —2 27.2 2 9
—(c, 7O kO = ——WV —ci—(c. " P
CS d/r] (CS ) _|_ CS 3 CS d/r} (CS )
where ¢ = py/pp
2o 1
31+ R

e In a CDM dominated expansion ® = U = 0 and the adiabatic
approximation R /R < w = ke,

O+ (1+ R)V|(n) =04+ (14 R)¥](0)cos(ks)



Baryon Peak Phenomenology

e Photon-baryon

ratio enters in three ways
e Overall larger amplitude:

0 + (14 R)W](0) = %(1 +3R)T(0)

e Even-odd peak modulation of

effective temperature | /s

© + Upeass = [£(1+87) — 3R] S (0)
O+ U, — [0+ U, = [-63]%@(0)

e Shifting of the sound horizon down or /4 up

lyxVvV1I+ R



Photon Baryon Ratio Evolution

e Actual effects smaller since X evolves

e Oscillator equation has time evolving mass

, d

ch—n(cf@) +c2k*0 =0

e Effective mass is is m.z = 3¢, * = (1 + R)
e Adiabatic invariant

E 1 1
= §meﬁwA2 = 5308_21@03142 x A%(1+4 R)Y2 = const.

W

e Amplitude of oscillation A o< (1 + 1)~/ decays adiabatically as
the photon-baryon ratio changes



Baryons in the Power Spectrum
e Relative heights of peaks

T
100 - N
80 -
A~
N
=60 -
~ I
~
< |
40
20 |
I Quh2
- 002 004 006
111 I|

10



Oscillator: Take Three and a Half

e The not-quite-so simple harmonic oscillator equation 1s a forced
harmonic oscillator
k* d

((38_2@) —+ C§k2@ = —g\If — Czd—n(cs_2q))

d

¢ —

dn
changes 1n the gravitational potentials alter the form of the

acoustic oscillations

e If the forcing term has a temporal structure that is related to the
frequency of the oscillation, this becomes a driven harmonic
oscillator

e Term involving W is the ordinary gravitational force

e Term involving ® involves the ® term in the continuity equation as
a (curvature) perturbation to the scale factor



Potential Decay

e Matter-to-radiation ratio

P 24th2( a )
Pr 103

of order unity at recombination in a low {2,,, universe

e Radiation 1s not stress free and so impedes the growth of structure

20 = 4nGa’p, A\,

4

A, ~ 40 oscillates around a constant value, p, o< a~" so the

Netwonian curvature decays.

e General rule: potential decays if the dominant energy component
has substantial stress fluctuations, i.e. below the generalized sound
horizon or Jeans scale



Radiation Driving

e Decay 1s timed precisely to drive the oscillator - close to fully
coherent

[©+ Ul(n)| =1]1©+ T](0)+ AV — AD|

— %\p(o) —20(0)| = !§\If(0)|

NTATYT=
lA A‘ A\ /o :
dr]VI]; ' ' @+‘P ;

& L Dol
5 15 20
ks/mt

e 5x the amplitude of the Sachs-Wolfe effect!



External Potential Approach

e Solution to homogeneous equation

(14 R) Ycos(ks), (1 + R)™Y4sin(ks)

e Give the general solution for an external potential by propagating
impulsive forces

(1+ R)V*0(n) = ©(0)cos(ks) + g [@(O) + iR(O)@(O) sin ks

]
+ g / df (1 + R')**sin[ks — ks']F (1)
0

where

oo . . 2
Fe_b_ 5 _Fy
1+ R 3

e Useful if general form of potential evolution 1s known



Matter-Radiation in the Power Spectrum

e Coherent approximation is exact
for a photon-baryon fluid but
reality 1s reduced to ~ 4 X
because neutrino contribution
1s free streaming not fluid like

e Neutrinos drive the oscillator
less efficiently and also slightly

change the phase of the oscillation

e Actual initial conditions are © + W = W /2 for radiation
domination but comparison to matter dominated SW correct

e With 3 peaks, it 1s possible to solve for both the baryons and dark
matter densities, providing a calibration for the sound horizon

e Higher peaks check consistency with assumptions: e.g. extra
relativistic d.o.f.s



Damping
e Tight coupling equations assume a perfect fluid: no viscosity, no

heat conduction

e Fluid imperfections are related to the mean free path of the
photons 1n the baryons

L' where 7 = n.ora

Ao =T
1s the conformal opacity to Thomson scattering

e Dissipation related to diffusion length: random walk approx

Ap = VNI = 1/ e Ao = Ve

the geometric mean between the horizon and mean free path
e \c/n. ~ %, so expect peaks > 3 to be affected by dissipation

e ./m enters here and 7 1n the acoustic scale — expansion rate and
extra relativistic species



Equations of Motion

e Continuity

@:—gvv—cb, 5b:—k?}b—3q)

where the photon equation remains unchanged and the baryons
follow number conservation with p, = myn,

e Navier-Stokes (Euler + heat conduction, viscosity)

k
v, = k(@4 V) — 6™~ T(vy — Vp)
?.Jb = —gvb—l—kqf—kj'(’(},y—?]b)/R

where the photons gain an anisotropic stress term 7., from radiation
viscosity and a momentum exchange term with the baryons and
are compensated by the opposite term in the baryon Euler equation



Viscosity

e Viscosity 1s generated from radiation streaming from hot to cold
regions

e Expect

k
T~ N~ U~ —
Y 77_

generated by streaming, suppressed by scattering in a wavelength
of the fluctuation. Radiative transfer says

k
7Tfy ~ ZAU?J,Y ;

where A, = 16/15

kK k
’l.}fy — k(@ —|— \If) — §AU—,U7

T



Oscillator: Penultimate Take
e Adiabatic approximation (w > a/a)

: k
O ~ —g’l}fy
e Oscillator equation contains a O damping term
d : k% k* d :
2 —2 s 2 2 2 —2
— O A,©+Ek%°c,© = ——WVU — ¢l — o
CS dT] (CS ) —|_ 7_ —I_ CS 3 CS dT] (CS )

e Heat conduction term similar in that it 1s proportional to v., and is
suppressed by scattering % /7. Expansion of Euler equations to
leading order in k7 gives

R2
T 1+R
since the effects are only significant if the baryons are dynamically

Ap

important



Oscillator: Final Take

e Final oscillator equation

d . k22 . k2 d .
2 (¢7%0 STA, + A0 + K220 = —— U — 2— (¢
g (670) + AL+ A0+ KO = — 0 — i (")

e Solve 1n the adiabatic approximation

O exp(i/wdn)

k*c?
—w® A 2 (A, + Ap)iw + ke =0
T




Dispersion Relation

e Solve

w? = k*c {1 + ig(AU + Ah)}

o,
— t+ke, [1+=-—(A, + A
W C _ —|—27_( + h)]

I 1 ke
— tkc, |1 £+ = SAU A
| ;5 (Aot h)]

e Exponentiate

1 2
exp(i/wdn) = T ex Xp —kQ/dU§CT.S(Av + Ap)]

= =" exp[—(k/kp)?]

e Damping 1s exponential under the scale £ p




Diffusion Scale

e Diffusion wavenumber

k2/d1 1 16 R
b= YR T R\ T 1+ R)

e Limiting forms

116 1

. _2 _ o o

R0 = 51 )
1 1
. _2 - _ e
A k= G/dn%

e Geometric mean between horizon and mean free path as expected
from a random walk

2T 2T
Ap = =5~ ()2

kp /6



