Ast 448

Set 1: CMB Statistics
 Wayne Hu

Stokes Parameters

- Specific intensity is related to quadratic combinations of the electric field.
- Define the intensity matrix (time averaged over oscillations) $\left\langle\mathbf{E} \mathbf{E}^{\dagger}\right\rangle$
- Hermitian matrix can be decomposed into Pauli matrices

$$
\mathbf{P}=\left\langle\mathbf{E} \mathbf{E}^{\dagger}\right\rangle=\frac{1}{2}\left(I \boldsymbol{\sigma}_{0}+Q \boldsymbol{\sigma}_{3}+U \boldsymbol{\sigma}_{1}-V \boldsymbol{\sigma}_{2}\right)
$$

where
$\boldsymbol{\sigma}_{0}=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right), \boldsymbol{\sigma}_{1}=\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right), \boldsymbol{\sigma}_{2}=\left(\begin{array}{cc}0 & -i \\ i & 0\end{array}\right), \boldsymbol{\sigma}_{3}=\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right)$

- Stokes parameters recovered as $\operatorname{Tr}\left(\sigma_{i} \mathbf{P}\right)$
- Choose units of temperature for Stokes parameters $I \rightarrow \Theta$

Stokes Parameters

- Consider a general plane wave solution

$$
\begin{aligned}
\mathbf{E}(t, z) & =E_{1}(t, z) \hat{\mathbf{e}}_{1}+E_{2}(t, z) \hat{\mathbf{e}}_{2} \\
E_{1}(t, z) & =A_{1} e^{i \phi_{1}} e^{i(k z-\omega t)} \\
E_{2}(t, z) & =A_{2} e^{i \phi_{2}} e^{i(k z-\omega t)}
\end{aligned}
$$

- Explicitly:

$$
\begin{aligned}
I & =\left\langle E_{1} E_{1}^{*}+E_{2} E_{2}^{*}\right\rangle=A_{1}^{2}+A_{2}^{2} \\
Q & =\left\langle E_{1} E_{1}^{*}-E_{2} E_{2}^{*}\right\rangle=A_{1}^{2}-A_{2}^{2} \\
U & =\left\langle E_{1} E_{2}^{*}+E_{2} E_{1}^{*}\right\rangle=2 A_{1} A_{2} \cos \left(\phi_{2}-\phi_{1}\right) \\
V & =-i\left\langle E_{1} E_{2}^{*}-E_{2} E_{1}^{*}\right\rangle=2 A_{1} A_{2} \sin \left(\phi_{2}-\phi_{1}\right)
\end{aligned}
$$

so that the Stokes parameters define the state up to an unobservable overall phase of the wave

Detection

- This suggests that abstractly there are two different ways to detect polarization: separate and difference orthogonal modes (bolometers I, Q) or correlate the separated components (U, V).

- In the correlator example the natural output would be U but one can recover V by introducing a phase lag $\phi=\pi / 2$ on one arm, and Q by having the OMT pick out directions rotated by $\pi / 4$.
- Likewise, in the bolometer example, one can rotate the polarizer and also introduce a coherent front end to change V to U.

Detection

- Techniques also differ in the systematics that can convert unpolarized sky to fake polarization
- Differencing detectors are sensitive to relative gain fluctuations
- Correlation detectors are sensitive to cross coupling between the arms
- More generally, the intended block diagram and systematic problems map components of the polarization matrix onto others and are kept track of through "Jones" or instrumental response matrices $\mathbf{E}_{\text {det }}=\mathbf{J E} \mathbf{E}_{\text {in }}$

$$
\mathbf{P}_{\mathrm{det}}=\mathbf{J} \mathbf{P}_{\mathrm{in}} \mathbf{J}^{\dagger}
$$

where the end result is either a differencing or a correlation of the $\mathbf{P}_{\mathrm{det}}$.

Polarization

- Radiation field involves a directed quantity, the electric field vector, which defines the polarization
- Consider a general plane wave solution

$$
\begin{aligned}
\mathbf{E}(t, z) & =E_{1}(t, z) \hat{\mathbf{e}}_{1}+E_{2}(t, z) \hat{\mathbf{e}}_{2} \\
E_{1}(t, z) & =\operatorname{Re} A_{1} e^{i \phi_{1}} e^{i(k z-\omega t)} \\
E_{2}(t, z) & =\operatorname{Re} A_{2} e^{i \phi_{2}} e^{i(k z-\omega t)}
\end{aligned}
$$

or at $z=0$ the field vector traces out an ellipse

$$
\mathbf{E}(t, 0)=A_{1} \cos \left(\omega t-\phi_{1}\right) \hat{\mathbf{e}}_{1}+A_{2} \cos \left(\omega t-\phi_{2}\right) \hat{\mathbf{e}}_{2}
$$

with principal axes defined by

$$
\mathbf{E}(t, 0)=A_{1}^{\prime} \cos (\omega t) \hat{\mathbf{e}}_{1}^{\prime}-A_{2}^{\prime} \sin (\omega t) \hat{\mathbf{e}}_{2}^{\prime}
$$

so as to trace out a clockwise rotation for $A_{1}^{\prime}, A_{2}^{\prime}>0$

Polarization

- Define polarization angle

$$
\begin{aligned}
& \hat{\mathbf{e}}_{1}^{\prime}=\cos \chi \hat{\mathbf{e}}_{1}+\sin \chi \hat{\mathbf{e}}_{2} \\
& \hat{\mathbf{e}}_{2}^{\prime}=-\sin \chi \hat{\mathbf{e}}_{1}+\cos \chi \hat{\mathbf{e}}_{2}
\end{aligned}
$$

- Match

$$
\begin{aligned}
\mathbf{E}(t, 0)= & A_{1}^{\prime} \cos \omega t\left[\cos \chi \hat{\mathbf{e}}_{1}+\sin \chi \hat{\mathbf{e}}_{2}\right] \\
& -A_{2}^{\prime} \cos \omega t\left[-\sin \chi \hat{\mathbf{e}}_{1}+\cos \chi \hat{\mathbf{e}}_{2}\right] \\
= & A_{1}\left[\cos \phi_{1} \cos \omega t+\sin \phi_{1} \sin \omega t\right] \hat{\mathbf{e}}_{1} \\
& +A_{2}\left[\cos \phi_{2} \cos \omega t+\sin \phi_{2} \sin \omega t\right] \hat{\mathbf{e}}_{2}
\end{aligned}
$$

Polarization

- Define relative strength of two principal states

$$
A_{1}^{\prime}=E_{0} \cos \beta \quad A_{2}^{\prime}=E_{0} \sin \beta
$$

- Characterize the polarization by two angles

$$
\begin{array}{ll}
A_{1} \cos \phi_{1}=E_{0} \cos \beta \cos \chi, & A_{1} \sin \phi_{1}=E_{0} \sin \beta \sin \chi \\
A_{2} \cos \phi_{2}=E_{0} \cos \beta \sin \chi, & A_{2} \sin \phi_{2}=-E_{0} \sin \beta \cos \chi
\end{array}
$$

Or Stokes parameters by

$$
\begin{aligned}
I & =E_{0}^{2}, \quad Q=E_{0}^{2} \cos 2 \beta \cos 2 \chi \\
U & =E_{0}^{2} \cos 2 \beta \sin 2 \chi, \quad V=E_{0}^{2} \sin 2 \beta
\end{aligned}
$$

- So $I^{2}=Q^{2}+U^{2}+V^{2}$, double angles reflect the spin 2 field or headless vector nature of polarization

Polarization

Special cases

- If $\beta=0, \pi / 2, \pi$ then only one principal axis, ellipse collapses to a line and $V=0 \rightarrow$ linear polarization oriented at angle χ

$$
\begin{aligned}
& \text { If } \chi=0, \pi / 2, \pi \text { then } I= \pm Q \text { and } U=0 \\
& \text { If } \chi=\pi / 4,3 \pi / 4 \ldots \text { then } I= \pm U \text { and } Q=0-\text { so } U \text { is } Q \text { in a } \\
& \text { frame rotated by } 45 \text { degrees }
\end{aligned}
$$

- If $\beta=\pi / 4,3 \pi / 4$, then principal components have equal strength and E field rotates on a circle: $I= \pm V$ and $Q=U=0 \rightarrow$ circular polarization
- $U / Q=\tan 2 \chi$ defines angle of linear polarization and $V / I=\sin 2 \beta$ defines degree of circular polarization

Natural Light

- A monochromatic plane wave is completely polarized $I^{2}=Q^{2}+U^{2}+V^{2}$
- Polarization matrix is like a density matrix in quantum mechanics and allows for pure (coherent) states and mixed states
- Suppose the total $\mathbf{E}_{\text {tot }}$ field is composed of different (frequency) components

$$
\mathbf{E}_{\mathrm{tot}}=\sum_{i} \mathbf{E}_{i}
$$

- Then components decorrelate in time average

$$
\left\langle\mathbf{E}_{\mathrm{tot}} \mathbf{E}_{\mathrm{tot}}^{\dagger}\right\rangle=\sum_{i j}\left\langle\mathbf{E}_{i} \mathbf{E}_{j}^{\dagger}\right\rangle=\sum_{i}\left\langle\mathbf{E}_{i} \mathbf{E}_{i}^{\dagger}\right\rangle
$$

Natural Light

- So Stokes parameters of incoherent contributions add

$$
I=\sum_{i} I_{i} \quad Q=\sum_{i} Q_{i} \quad U=\sum_{i} U_{i} \quad V=\sum_{i} V_{i}
$$

and since individual Q, U and V can have either sign:
$I^{2} \geq Q^{2}+U^{2}+V^{2}$, all 4 Stokes parameters needed

Linear Polarization

- $Q \propto\left\langle E_{1} E_{1}^{*}\right\rangle-\left\langle E_{2} E_{2}^{*}\right\rangle, U \propto\left\langle E_{1} E_{2}^{*}\right\rangle+\left\langle E_{2} E_{1}^{*}\right\rangle$.
- Counterclockwise rotation of axes by $\theta=45^{\circ}$

$$
E_{1}=\left(E_{1}^{\prime}-E_{2}^{\prime}\right) / \sqrt{2}, \quad E_{2}=\left(E_{1}^{\prime}+E_{2}^{\prime}\right) / \sqrt{2}
$$

- $U \propto\left\langle E_{1}^{\prime} E_{1}^{\prime *}\right\rangle-\left\langle E_{2}^{\prime} E_{2}^{\prime *}\right\rangle$, difference of intensities at 45° or Q^{\prime}
- More generally, \mathbf{P} transforms as a tensor under rotations and

$$
\begin{aligned}
& Q^{\prime}=\cos (2 \theta) Q+\sin (2 \theta) U \\
& U^{\prime}=-\sin (2 \theta) Q+\cos (2 \theta) U
\end{aligned}
$$

or

$$
Q^{\prime} \pm i U^{\prime}=e^{\mp 2 i \theta}[Q \pm i U]
$$

acquires a phase under rotation and is a spin ± 2 object

Coordinate Independent Representation

- Two directions: orientation of polarization and change in amplitude, i.e. Q and U in the basis of the Fourier wavevector (pointing with angle ϕ_{l}) for small sections of sky are called E and B components

$$
\begin{aligned}
E(\mathbf{l}) \pm i B(\mathbf{l}) & =-\int d \hat{\mathbf{n}}\left[Q^{\prime}(\hat{\mathbf{n}}) \pm i U^{\prime}(\hat{\mathbf{n}})\right] e^{-i \mathbf{l} \cdot \hat{\mathbf{n}}} \\
& =-e^{\mp 2 i \phi_{l}} \int d \hat{\mathbf{n}}[Q(\hat{\mathbf{n}}) \pm i U(\hat{\mathbf{n}})] e^{-i \mathbf{l} \cdot \hat{\mathbf{n}}}
\end{aligned}
$$

- For the B-mode to not vanish, the polarization must point in a direction not related to the wavevector - not possible
 for density fluctuations in linear theory
- Generalize to all-sky: eigenmodes of Laplace operator of tensor

Spin Harmonics

- Laplace Eigenfunctions

$$
\nabla_{ \pm 2}^{2} Y_{\ell m}\left[\boldsymbol{\sigma}_{3} \mp i \boldsymbol{\sigma}_{1}\right]=-[l(l+1)-4]_{ \pm 2} Y_{\ell m}\left[\boldsymbol{\sigma}_{3} \mp i \boldsymbol{\sigma}_{1}\right]
$$

- Spin s spherical harmonics: orthogonal and complete

$$
\begin{aligned}
\int d \hat{\mathbf{n}}_{s} Y_{\ell m}^{*}(\hat{\mathbf{n}})_{s} Y_{\ell^{\prime} m^{\prime}}(\hat{\mathbf{n}}) & =\delta_{\ell \ell^{\prime}} \delta_{m m^{\prime}} \\
\sum_{\ell m}{ }_{s} Y_{\ell m}^{*}(\hat{\mathbf{n}})_{s} Y_{\ell m}\left(\hat{\mathbf{n}}^{\prime}\right) & =\delta\left(\phi-\phi^{\prime}\right) \delta\left(\cos \theta-\cos \theta^{\prime}\right)
\end{aligned}
$$

where the ordinary spherical harmonics are $Y_{\ell m}={ }_{0} Y_{\ell m}$

- Given in terms of the rotation matrix

$$
{ }_{s} Y_{\ell m}(\beta \alpha)=(-1)^{m} \sqrt{\frac{2 \ell+1}{4 \pi}} D_{-m s}^{\ell}(\alpha \beta 0)
$$

Statistical Representation

- All-sky decomposition

$$
[Q(\hat{\mathbf{n}}) \pm i U(\hat{\mathbf{n}})]=\sum_{\ell m}\left[E_{\ell m} \pm i B_{\ell m}\right]_{ \pm 2} Y_{\ell m}(\hat{\mathbf{n}})
$$

- Power spectra

$$
\begin{aligned}
& \left\langle E_{\ell m}^{*} E_{\ell m}\right\rangle=\delta_{\ell \ell^{\prime}} \delta_{m m^{\prime}} C_{\ell}^{E E} \\
& \left\langle B_{\ell m}^{*} B_{\ell m}\right\rangle=\delta_{\ell \ell^{\prime}} \delta_{m m^{\prime}} C_{\ell}^{B B}
\end{aligned}
$$

- Cross correlation

$$
\left\langle\Theta_{\ell m}^{*} E_{\ell m}\right\rangle=\delta_{\ell \ell^{\prime}} \delta_{m m^{\prime}} C_{\ell}^{\Theta E}
$$

others vanish if parity is conserved

Planck Power Spectrum

B-modes: Auto \& Cross

CMB Blackbody

- COBE FIRAS revealed a blackbody spectrum at $T=2.725 \mathrm{~K}$ (or cosmological density $\Omega_{\gamma} h^{2}=2.471 \times 10^{-5}$)

GHz

CMB Blackbody

- CMB is a (nearly) perfect blackbody characterized by a phase space distribution function

$$
f=\frac{1}{e^{E / T}-1}
$$

where the temperature $T(\mathbf{x}, \hat{\mathbf{n}}, t)$ is observed at our position $\mathbf{x}=0$ and time t_{0} to be nearly isotropic with a mean temperature of $\bar{T}=2.725 \mathrm{~K}$

- Our observable then is the temperature anisotropy

$$
\Theta(\hat{\mathbf{n}}) \equiv \frac{T\left(0, \hat{\mathbf{n}}, t_{0}\right)-\bar{T}}{\bar{T}}
$$

- Given that physical processes essentially put a band limit on this function it is useful to decompose it into a complete set of harmonic coefficients

Spherical Harmonics

- Laplace Eigenfunctions

$$
\nabla^{2} Y_{\ell}^{m}=-[l(l+1)] Y_{\ell}^{m}
$$

- Orthogonal and complete

$$
\begin{aligned}
\int d \hat{\mathbf{n}} Y_{\ell}^{m *}(\hat{\mathbf{n}}) Y_{\ell^{\prime}}^{m^{\prime}}(\hat{\mathbf{n}}) & =\delta_{\ell \ell^{\prime}} \delta_{m m^{\prime}} \\
\sum_{\ell m} Y_{\ell}^{m *}(\hat{\mathbf{n}}) Y_{\ell}^{m}\left(\hat{\mathbf{n}}^{\prime}\right) & =\delta\left(\phi-\phi^{\prime}\right) \delta\left(\cos \theta-\cos \theta^{\prime}\right)
\end{aligned}
$$

Generalizable to tensors on the sphere (polarization), modes on a curved FRW metric

- Conjugation

$$
Y_{\ell}^{m *}=(-1)^{m} Y_{\ell}^{-m}
$$

Multipole Moments

- Decompose into multipole moments

$$
\Theta(\hat{\mathbf{n}})=\sum_{\ell m} \Theta_{\ell m} Y_{\ell}^{m}(\hat{\mathbf{n}})
$$

- So $\Theta_{\ell m}$ is complex but $\Theta(\hat{\mathbf{n}})$ real:

$$
\begin{aligned}
\Theta^{*}(\hat{\mathbf{n}}) & =\sum_{\ell m} \Theta_{\ell m}^{*} Y_{\ell}^{m *}(\hat{\mathbf{n}}) \\
& =\sum_{\ell m} \Theta_{\ell m}^{*}(-1)^{m} Y_{\ell}^{-m}(\hat{\mathbf{n}}) \\
& =\Theta(\hat{\mathbf{n}})=\sum_{\ell m} \Theta_{\ell m} Y_{\ell}^{m}(\hat{\mathbf{n}})=\sum_{\ell-m} \Theta_{\ell-m} Y_{\ell}^{-m}(\hat{\mathbf{n}})
\end{aligned}
$$

so m and $-m$ are not independent

$$
\Theta_{\ell m}^{*}=(-1)^{m} \Theta_{\ell-m}
$$

N-pt correlation

- Since the fluctuations are random and zero mean we are interested in characterizing the N-point correlation

$$
\left\langle\Theta\left(\hat{\mathbf{n}}_{1}\right) \ldots \Theta\left(\hat{\mathbf{n}}_{n}\right)\right\rangle=\sum_{\ell_{1} \ldots \ell_{n}} \sum_{m_{1} \ldots m_{n}}\left\langle\Theta_{\ell_{1} m_{1}} \ldots \Theta_{\ell_{n} m_{n}}\right\rangle Y_{\ell_{1}}^{m_{1}}\left(\hat{\mathbf{n}}_{1}\right) \ldots Y_{\ell_{n}}^{m_{n}}\left(\hat{\mathbf{n}}_{n}\right)
$$

- Statistical isotropy implies that we should get the same result in a rotated frame

$$
R\left[Y_{\ell}^{m}(\hat{\mathbf{n}})\right]=\sum_{m^{\prime}} D_{m^{\prime} m}^{\ell}(\alpha, \beta, \gamma) Y_{\ell}^{m^{\prime}}(\hat{\mathbf{n}})
$$

where α, β and γ are the Euler angles of the rotation and D is the Wigner function (note Y_{ℓ}^{m} is a D function)

$$
\left\langle\Theta_{\ell_{1} m_{1}} \ldots \Theta_{\ell_{n} m_{n}}\right\rangle=\sum_{m_{1}^{\prime} \ldots m_{n}^{\prime}}\left\langle\Theta_{\ell_{1} m_{1}^{\prime}} \ldots \Theta_{\ell_{n} m_{n}^{\prime}}\right\rangle D_{m_{1} m_{1}^{\prime}}^{\ell_{1}} \ldots D_{m_{n} m_{n}^{\prime}}^{\ell_{n}}
$$

N-pt correlation

- For any N-point function, combine rotation matrices (group multiplication; angular momentum addition) and orthogonality

$$
\sum_{m}(-1)^{m_{2}-m} D_{m_{1} m}^{\ell_{1}} D_{-m_{2}-m}^{\ell_{1}}=\delta_{m_{1} m_{2}}
$$

- The simplest case is the 2 pt function:

$$
\left\langle\Theta_{\ell_{1} m_{1}} \Theta_{\ell_{2} m_{2}}\right\rangle=\delta_{\ell_{1} \ell_{2}} \delta_{m_{1}-m_{2}}(-1)^{m_{1}} C_{\ell_{1}}
$$

where C_{ℓ} is the power spectrum. Check

$$
\begin{aligned}
& =\sum_{m_{1}^{\prime} m_{2}^{\prime}} \delta_{\ell_{1} \ell_{2}} \delta_{m_{1}^{\prime}-m_{2}^{\prime}}(-1)^{m_{1}^{\prime}} C_{\ell_{1}} D_{m_{1} m_{1}^{\prime}}^{\ell_{1}} D_{m_{2} m_{2}^{\prime}}^{\ell_{2}} \\
& =\delta_{\ell_{1} \ell_{2}} C_{\ell_{1}} \sum_{m_{1}^{\prime}}(-1)^{m_{1}^{\prime}} D_{m_{1} m_{1}^{\prime}}^{\ell_{1}} D_{m_{2}-m_{1}^{\prime}}^{\ell_{2}}=\delta_{\ell_{1} \ell_{2}} \delta_{m_{1}-m_{2}}(-1)^{m_{1}} C_{\ell_{1}}
\end{aligned}
$$

N-pt correlation

- Using the reality of the field

$$
\left\langle\Theta_{\ell_{1} m_{1}}^{*} \Theta_{\ell_{2} m_{2}}\right\rangle=\delta_{\ell_{1} \ell_{2}} \delta_{m_{1} m_{2}} C_{\ell_{1}}
$$

- If the statistics were Gaussian then all the N-point functions would be defined in terms of the products of two-point contractions, e.g.
$\left\langle\Theta_{\ell_{1} m_{1}} \Theta_{\ell_{2} m_{2}} \Theta_{\ell_{3} m_{3}} \Theta_{\ell_{4} m_{4}}\right\rangle=\delta_{\ell_{1} \ell_{2}} \delta_{m_{1} m_{2}} \delta_{\ell_{3} \ell_{4}} \delta_{m_{3} m_{4}} C_{\ell_{1}} C_{\ell_{3}}+$ perm.
- More generally we can define the isotropy condition beyond Gaussianity, e.g. the bispectrum

$$
\left\langle\Theta_{\ell_{1} m_{1}} \ldots \Theta_{\ell_{3} m_{3}}\right\rangle=\left(\begin{array}{ccc}
\ell_{1} & \ell_{2} & \ell_{3} \\
m_{1} & m_{2} & m_{3}
\end{array}\right) B_{\ell_{1} \ell_{2} \ell_{3}}
$$

CMB Temperature Fluctuations

- Angular Power Spectrum

Why $\ell^{2} C_{\ell} / 2 \pi$?

- Variance of the temperature fluctuation field

$$
\begin{aligned}
\langle\Theta(\hat{\mathbf{n}}) \Theta(\hat{\mathbf{n}})\rangle & =\sum_{\ell m} \sum_{\ell^{\prime} m^{\prime}}\left\langle\Theta_{\ell m} \Theta_{\ell^{\prime} m^{\prime}}^{*}\right\rangle Y_{\ell}^{m}(\hat{\mathbf{n}}) Y_{\ell^{\prime}}^{m^{\prime} *}(\hat{\mathbf{n}}) \\
& =\sum_{\ell} C_{\ell} \sum_{m} Y_{\ell}^{m}(\hat{\mathbf{n}}) Y_{\ell}^{m *}(\hat{\mathbf{n}}) \\
& =\sum_{\ell} \frac{2 \ell+1}{4 \pi} C_{\ell}
\end{aligned}
$$

via the angle addition formula for spherical harmonics

- For some range $\Delta \ell \approx \ell$ the contribution to the variance is

$$
\langle\Theta(\hat{\mathbf{n}}) \Theta(\hat{\mathbf{n}})\rangle_{\ell \pm \Delta \ell / 2} \approx \Delta \ell \frac{2 \ell+1}{4 \pi} C_{\ell} \approx \frac{\ell^{2}}{2 \pi} C_{\ell}
$$

- Conventional to use $\ell(\ell+1) / 2 \pi$ for reasons below

Cosmic Variance

- We only have access to our sky, not the ensemble average
- There are $2 \ell+1 \mathrm{~m}$-modes of given ℓ mode, so average

$$
\hat{C}_{\ell}=\frac{1}{2 \ell+1} \sum_{m} \Theta_{\ell m}^{*} \Theta_{\ell m}
$$

- $\left\langle\hat{C}_{\ell}\right\rangle=C_{\ell}$ but now there is a cosmic variance

$$
\sigma_{C_{\ell}}^{2}=\frac{\left\langle\left(\hat{C}_{\ell}-C_{\ell}\right)\left(\hat{C}_{\ell}-C_{\ell}\right)\right\rangle}{C_{\ell}^{2}}=\frac{\left\langle\hat{C}_{\ell} \hat{C}_{\ell}\right\rangle-C_{\ell}^{2}}{C_{\ell}^{2}}
$$

- For Gaussian statistics

$$
\begin{aligned}
\sigma_{C_{\ell}}^{2} & =\frac{1}{(2 \ell+1)^{2} C_{\ell}^{2}}\left\langle\sum_{m m^{\prime}} \Theta_{\ell m}^{*} \Theta_{\ell m} \Theta_{\ell m^{\prime}}^{*} \Theta_{\ell m^{\prime}}\right\rangle-1 \\
& =\frac{1}{(2 \ell+1)^{2}} \sum_{m m^{\prime}}\left(\delta_{m m^{\prime}}+\delta_{m-m^{\prime}}\right)=\frac{2}{2 \ell+1}
\end{aligned}
$$

Cosmic Variance

- Note that the distribution of \hat{C}_{ℓ} is that of a sum of squares of Gaussian variates
- Distributed as a χ^{2} of $2 \ell+1$ degrees of freedom
- Approaches a Gaussian for $2 \ell+1 \rightarrow \infty$ (central limit theorem)
- Anomalously low quadrupole is not that unlikely
- $\sigma_{C_{\ell}}$ is a useful quantification of errors at high ℓ
- Suppose C_{ℓ} depends on a set of cosmological parameters c_{i} then we can estimate errors of c_{i} measurements by error propagation

$$
\begin{aligned}
F_{i j} & =\operatorname{Cov}^{-1}\left(c_{i}, c_{j}\right)=\sum_{\ell \ell^{\prime}} \frac{\partial C_{\ell}}{\partial c_{i}} \operatorname{Cov}^{-1}\left(\mathrm{C}_{\ell}, \mathrm{C}_{\ell^{\prime}}\right) \frac{\partial C_{\ell^{\prime}}}{\partial c_{j}} \\
& =\sum_{\ell} \frac{(2 \ell+1)}{2 C_{\ell}^{2}} \frac{\partial C_{\ell}}{\partial c_{i}} \frac{\partial C_{\ell}}{\partial c_{j}}
\end{aligned}
$$

Idealized Statistical Errors

- Take a noisy estimator of the multipoles in the map

$$
\hat{\Theta}_{\ell m}=\Theta_{\ell m}+N_{\ell m}
$$

and take the noise to be statistically isotropic

$$
\left\langle N_{\ell m}^{*} N_{\ell^{\prime} m^{\prime}}\right\rangle=\delta_{\ell \ell^{\prime}} \delta_{m m^{\prime}} C_{\ell}^{N N}
$$

- Construct an unbiased estimator of the power spectrum $\left\langle\hat{C}_{\ell}\right\rangle=C_{\ell}$

$$
\hat{C}_{\ell}=\frac{1}{2 \ell+1} \sum_{m=-l}^{l} \hat{\Theta}_{\ell m}^{*} \hat{\Theta}_{\ell m}-C_{\ell}^{N N}
$$

- Covariance in estimator

$$
\operatorname{Cov}\left(C_{\ell}, C_{\ell^{\prime}}\right)=\frac{2}{2 \ell+1}\left(C_{\ell}+C_{\ell}^{N N}\right)^{2} \delta_{\ell \ell^{\prime}}
$$

Incomplete Sky

- On a small section of sky, the number of independent modes of a given ℓ is no longer $2 \ell+1$
- As in Fourier analysis, there are two limitations: the lowest ℓ mode that can be measured is the wavelength that fits in angular patch θ

$$
\ell_{\min }=\frac{2 \pi}{\theta}
$$

modes separated by $\Delta \ell<\ell_{\text {min }}$ cannot be measured independently

- Estimates of C_{ℓ} covary on a scale imposed by $\Delta \ell<\ell_{\text {min }}$
- Crude approximation: account only for the loss of independent modes by rescaling the errors rather than introducing covariance

$$
\operatorname{Cov}\left(C_{\ell}, C_{\ell^{\prime}}\right)=\frac{2}{(2 \ell+1) f_{\text {sky }}}\left(C_{\ell}+C_{\ell}^{N N}\right)^{2} \delta_{\ell \ell^{\prime}}
$$

Time Ordered Data

- Beyond idealizations like $\left|\Theta_{\ell m}\right|^{2}$ type C_{ℓ} estimators and $f_{\text {sky }}$ mode counting, basic aspects of data analysis are useful even for theorists
- Starting point is a string of "time ordered" data coming out of the instrument (post removal of systematic errors, data cuts)
- Begin with a model of the time ordered data as (implicit summation or matrix operation)

$$
\mathbf{d}=\mathbf{P \Theta}+\mathbf{n}
$$

where the elements of the vector Θ_{i} denotes pixelized positions indexed by i and the element of the data d_{t} is a time ordered stream indexed by t.

- Noise n_{t} is drawn from distribution with known power spectrum

$$
\left\langle n_{t} n_{t^{\prime}}\right\rangle=C_{d, t t^{\prime}}
$$

Design Matrix

- The design, pointing or projection matrix \mathbf{P} is the mapping between pixel space and the time ordered data
- Simplest incarnation: row with all zeros except one column which just says what point in the sky the telescope is pointing at that time

$$
\mathbf{P}=\left(\begin{array}{ccccc}
0 & 0 & 1 & \ldots & 0 \\
1 & 0 & 0 & \ldots & 0 \\
\ldots & \ldots & \ldots & \ldots & \ldots \\
0 & 0 & 1 & \ldots & 0
\end{array}\right)
$$

- If each pixel were only measured once in this way then the estimator of the map would just be the inverse of \mathbf{P}
- More generally encorporates differencing, beam, rotation (for polarization) and unequal coverage of pixels

Maximum Likelihood Mapmaking

- What is the best estimator of the underlying map Θ_{i} ?
- Likelihood function: the probability of getting the data given the theory $\mathcal{L}_{\text {theory }}($ data $) \equiv P$ [data|theory $]$. In this case, the theory is the vector of pixels Θ.

$$
\mathcal{L}_{\Theta}(\mathbf{d})=\frac{1}{(2 \pi)^{N_{t} / 2} \sqrt{\operatorname{det} \mathbf{C}_{d}}} \exp \left[-\frac{1}{2}(\mathbf{d}-\mathbf{P} \Theta)^{t} \mathbf{C}_{d}^{-1}(\mathbf{d}-\mathbf{P} \Theta)\right]
$$

- Bayes theorem says that $P[\Theta \mid \mathbf{d}]$, the probability that the temperatures are equal to Θ given the data, is proportional to the likelihood function times a prior $P(\Theta)$, taken to be uniform

$$
P[\boldsymbol{\Theta} \mid \mathbf{d}] \propto P[\mathbf{d} \mid \boldsymbol{\Theta}] \equiv \mathcal{L}_{\boldsymbol{\Theta}}(\mathbf{d})
$$

Maximum Likelihood Mapmaking

- Maximizing the likelihood of Θ is simple since the log-likelihood is quadratic - it is equivalent to minimizing the variance of the estimator
- Differentiating the argument of the exponential with respect to Θ and setting to zero leads immediately to the estimator

$$
\begin{aligned}
\left(\mathbf{P}^{\mathrm{t}} \mathbf{C}_{d}^{-1} \mathbf{P}\right) \hat{\boldsymbol{\Theta}} & =\mathbf{P}^{\mathrm{t}} \mathbf{C}_{d}^{-1} \mathbf{d} \\
\hat{\boldsymbol{\Theta}} & =\left(\mathbf{P}^{\mathrm{t}} \mathbf{C}_{d}^{-1} \mathbf{P}\right)^{-1} \mathbf{P}^{\mathrm{t}} \mathbf{C}_{d}^{-1} \mathbf{d}
\end{aligned}
$$

which is unbiased

$$
\langle\hat{\boldsymbol{\Theta}}\rangle=\left(\mathbf{P}^{\mathrm{t}} \mathbf{C}_{d}^{-1} \mathbf{P}\right)^{-1} \mathbf{P}^{\mathrm{t}} \mathbf{C}_{d}^{-1} \mathbf{P} \boldsymbol{\Theta}=\boldsymbol{\Theta}
$$

Maximum Likelihood Mapmaking

- And has the covariance

$$
\begin{aligned}
\mathbf{C}_{N} & \equiv\left\langle\hat{\boldsymbol{\Theta}} \Theta^{t}\right\rangle-\hat{\boldsymbol{\Theta}} \boldsymbol{\Theta}^{t} \\
& =\left(\mathbf{P}^{\mathrm{t}} \mathbf{C}_{d}^{-1} \mathbf{P}\right)^{-1} \mathbf{P}^{\mathrm{t}} \mathbf{C}_{d}^{-1}\left\langle\mathbf{d d}^{\mathrm{t}}\right\rangle \mathbf{C}_{d}^{-\mathrm{t}} \mathbf{P}\left(\mathbf{P}^{\mathrm{t}} \mathbf{C}_{d}^{-1} \mathbf{P}\right)^{-\mathrm{t}}-\hat{\boldsymbol{\Theta}} \boldsymbol{\Theta}^{t} \\
& =\left(\mathbf{P}^{\mathrm{t}} \mathbf{C}_{d}^{-1} \mathbf{P}\right)^{-1} \mathbf{P}^{\mathrm{t}} \mathbf{C}_{d}^{-\mathrm{t}} \mathbf{P}\left(\mathbf{P}^{\mathrm{t}} \mathbf{C}_{d}^{-1} \mathbf{P}\right)^{-\mathrm{t}} \\
& =\left(\mathbf{P}^{\mathrm{t}} \mathbf{C}_{d}^{-1} \mathbf{P}\right)^{-1}
\end{aligned}
$$

The estimator can be rewritten using the covariance matrix as a renormalization that ensures an unbiased estimator

$$
\hat{\boldsymbol{\Theta}}=\mathbf{C}_{N} \mathbf{P C}_{d}^{-1} \mathbf{d}
$$

- Given the large dimension of the time ordered data, direct matrix manipulation is unfeasible. A key simplifying assumption is the stationarity of the noise, that $C_{d, t t^{\prime}}$ depends only on $t-t^{\prime}$ (temporal statistical homogeneity)

Foregrounds

- Maximum likelihood mapmaking can be applied to the time streams of multiple observations frequencies N_{ν} and hence obtain multiple maps
- A cleaned CMB map can be obtained by modeling the maps as

$$
\hat{\Theta}_{i}^{\nu}=A_{i}^{\nu} \Theta_{i}+n_{i}^{\nu}+f_{i}^{\nu}
$$

where $A_{i}^{\nu}=1$ if all the maps are at the same resolution (otherwise, embed the beam as in the pointing matrix; f_{i}^{ν} is the foreground model - e.g. a set of sky maps and a spectrum for each foreground, or more generally including a covariance matrix between frequencies due to varying spectral index

- 5 foregrounds: synchrotron, free-free, radio pt sources, at low frequencies and dust and IR pt sources at high frequencies.

Pixel Likelihood Function

- The next step in the chain of inference is to go from the map to the power spectrum
- In the most idealized form (no beam) we model

$$
\Theta_{i}=\sum_{\ell m} \Theta_{\ell m} Y_{\ell m}\left(\mathbf{n}_{i}\right)
$$

and using the angle addition formula

$$
\sum_{m} Y_{\ell m}^{*}\left(\mathbf{n}_{i}\right) Y_{\ell m}\left(\mathbf{n}_{j}\right)=\frac{2 \ell+1}{4 \pi} P_{\ell}\left(\hat{\mathbf{n}}_{i} \cdot \hat{\mathbf{n}}_{j}\right)
$$

with averages now including realizations of the signal

$$
\left\langle\hat{\Theta}_{i} \hat{\Theta}_{j}\right\rangle \equiv C_{\Theta, i j}=C_{N, i j}+C_{S, i j}
$$

Pixel Likelihood Function

- Pixel covariance matrix for the signal characterizes the sample variance of Θ_{i} through the power spectrum C_{ℓ}

$$
C_{S, i j} \equiv\left\langle\Theta_{i} \Theta_{j}\right\rangle=\sum_{\ell} \frac{2 \ell+1}{4 \pi} C_{\ell} P_{\ell}\left(\hat{\mathbf{n}}_{i} \cdot \hat{\mathbf{n}}_{j}\right)
$$

- More generally the sky map is convolved with a beam and so the power spectrum is multiplied by the square of the beam transform
- From the pixel likelihood function we can now directly use Bayes' theorem to get the posterior probability of cosmological parameters c upon which the power spectrum depends

$$
\mathcal{L}_{\mathbf{c}}(\boldsymbol{\Theta})=\frac{1}{(2 \pi)^{N_{p} / 2} \sqrt{\operatorname{det} \mathbf{C}_{\Theta}}} \exp \left(-\frac{1}{2} \boldsymbol{\Theta}^{\mathrm{t}} \mathbf{C}_{\Theta}^{-1} \boldsymbol{\Theta}\right)
$$

where N_{p} is the number of pixels in the map.

Pixel Likelihood Function

- Generalization of the Fisher matrix, curvature of the log Likelihood function

$$
F_{a b} \equiv-\left\langle\frac{\partial^{2} \ln \mathcal{L}_{\mathbf{c}}(\boldsymbol{\Theta})}{\partial c_{a} \partial c_{b}}\right\rangle
$$

- Cramer-Rao theorem says that \mathbf{F}^{-1} gives the minimum variance for an unbiased estimator of \mathbf{c}.
- Correctly propagates effects of pixel weights, noise - generalizes straightforwardly to polarization (E, B mixing etc)

Power Spectrum

- It is computationally convenient and sufficient at high ℓ to divide this into two steps: estimate the power spectrum \hat{C}_{ℓ} and approximate the likelihood function for \hat{C}_{ℓ} as the data and $C_{\ell}(c)$ as the model.
- In principle we can just use Bayes' theorem to get the maximum likelihood estimator \hat{C}_{ℓ} and the joint posterior probability distribution or covariance
- Although the pixel likelihood is Gaussian in the anisotropies Θ_{i} it is not in C_{ℓ} and so the "mapmaking" procedure above does not work

Power Spectrum

- MASTER approach is to use harmonic transforms on the map, mask and all
- Masked pixels multiply the map in real space and convolve the multipoles in harmonic space - so these pseudo- C_{ℓ} 's are convolutions on the true C_{ℓ} spectrum
- Invert the convolution to form an unbiased estimator and propagate the noise and approximate the $\mathcal{L}_{C_{\ell}}\left(\hat{C}_{\ell}\right)$
- Now we can use Bayes' theorem with C_{ℓ} parameterized by cosmological parameters \mathbf{c} to find the joint posterior distribution of c
- Still computationally expensive to integrate likelihood over a multidimensional cosmological parameter space

MCMC

- Monte Carlo Markov Chain (MCMC)
- Start with a set of cosmological parameters \mathbf{c}^{m}, compute likelihood
- Take a random step in parameter space to \mathbf{c}^{m+1} of size drawn from a multivariate Gaussian (a guess at the parameter covariance matrix) \mathbf{C}_{c} (e.g. from the crude Fisher approximation or the covariance of a previous short chain run). Compute likelihood.
- Draw a random number between 0,1 and if the likelihood ratio exceeds this value take the step (add to Markov chain); if not then do not take the step (add the original point to the Markov chain). Repeat.
- Given Bayes' theorem the chain is then a sampling of the joint posterior probability density of the parameters

Parameter Errors

- Can compute any statistic based on the probability distribution of parameters
- For example, compute the mean and variance of a given parameter

$$
\begin{gathered}
\bar{c}_{i}=\frac{1}{N_{M}} \sum_{m=1}^{N_{M}} c_{i}^{m} \\
\sigma^{2}\left(c_{i}\right)=\frac{1}{N_{M}-1} \sum_{m=1}^{N_{M}}\left(c_{i}^{m}-\bar{c}_{i}\right)^{2}
\end{gathered}
$$

- Trick is in assuring burn in (not sensitive to initial point), step size, and convergence
- Usually requires running multiple chains. Typically tens of thousands of elements per chain.

Inhomogeneity vs Anisotropy

- Θ is a function of position as well as direction but we only have access to our position
- Light travels at the speed of light so the radiation we receive in direction $\hat{\mathbf{n}}$ was $\left(\eta_{0}-\eta\right) \hat{\mathbf{n}}$ at conformal time η
- Inhomogeneity at a distance appears as an anisotopy to the observer
- We need to transport the radiation from the initial conditions to the observer
- This is done with the Boltzmann or radiative transfer equation
- In the absence of scattering, emission or absorption the Boltzmann equation is simply

$$
\frac{D f}{D t}=0
$$

Last Scattering

- Angular distribution of radiation is the 3 D temperature field projected onto a shell
- surface of last scattering
- Shell radius
is distance from the observer to recombination: called the last scattering surface

- Take the radiation distribution at last scattering to also be described by an isotropic temperature fluctuation field $\Theta(\mathbf{x})$

Integral Solution to Radiative Transfer

- Formal solution for specific intensity $I_{\nu}=2 h \nu^{3} f / c^{2}$

$$
I_{\nu}(0)=I_{\nu}(\tau) e^{-\tau}+\int_{0}^{\tau} d \tau^{\prime} S_{\nu}\left(\tau^{\prime}\right) e^{-\tau^{\prime}}
$$

- Specific intensity I_{ν} attenuated by absorption and replaced by source function, attenuated by absorption from foreground matter
- Θ satisfies the same relation for a blackbody

Angular Power Spectrum

- Take recombination to be instantaneous: $d \tau e^{-\tau}=d D \delta\left(D-D_{*}\right)$ and the source to be the local temperature inhomogeneity

$$
\Theta(\hat{\mathbf{n}})=\int d D \Theta(\mathbf{x}) \delta\left(D-D_{*}\right)
$$

where D is the comoving distance and D_{*} denotes recombination.

- Describe the temperature field by its Fourier moments

$$
\Theta(\mathbf{x})=\int \frac{d^{3} k}{(2 \pi)^{3}} \Theta(\mathbf{k}) e^{i \mathbf{k} \cdot \mathbf{x}}
$$

- Note that Fourier moments $\Theta(\mathbf{k})$ have units of volume k^{-3}
- 2 point statistics of the real-space field are translationally and rotationally invariant
- Described by power spectrum

Spatial Power Spectrum

- Translational invariance

$$
\begin{aligned}
& \left\langle\Theta\left(\mathbf{x}^{\prime}\right) \Theta(\mathbf{x})\right\rangle=\left\langle\Theta\left(\mathbf{x}^{\prime}+\mathbf{d}\right) \Theta(\mathbf{x}+\mathbf{d})\right\rangle \\
& \int \frac{d^{3} k}{(2 \pi)^{3}} \frac{d^{3} k^{\prime}}{(2 \pi)^{3}}\left\langle\Theta^{*}\left(\mathbf{k}^{\prime}\right) \Theta(\mathbf{k})\right\rangle e^{i \mathbf{k} \cdot \mathbf{x}-i \mathbf{k}^{\prime} \cdot \mathbf{x}^{\prime}} \\
& =\int \frac{d^{3} k}{(2 \pi)^{3}} \frac{d^{3} k^{\prime}}{(2 \pi)^{3}}\left\langle\Theta^{*}\left(\mathbf{k}^{\prime}\right) \Theta(\mathbf{k})\right\rangle e^{i \mathbf{k} \cdot \mathbf{x}-i \mathbf{k}^{\prime} \cdot \mathbf{x}^{\prime}+i\left(\mathbf{k}-\mathbf{k}^{\prime}\right) \cdot \mathbf{d}}
\end{aligned}
$$

So two point function requires $\delta\left(\mathbf{k}-\mathbf{k}^{\prime}\right)$; rotational invariance says coefficient depends only on magnitude of k not its direction

$$
\left\langle\Theta(\mathbf{k})^{*} \Theta\left(\mathbf{k}^{\prime}\right)\right\rangle=(2 \pi)^{3} \delta\left(\mathbf{k}-\mathbf{k}^{\prime}\right) P_{T}(k)
$$

Note that $\Theta(\mathbf{k}), \delta\left(\mathbf{k}-\mathbf{k}^{\prime}\right)$ have units of volume and so P_{T} must have units of volume

Dimensionless Power Spectrum

- Variance

$$
\begin{aligned}
\sigma_{\Theta}^{2} & \equiv\langle\Theta(\mathbf{x}) \Theta(\mathbf{x})\rangle=\int \frac{d^{3} k}{(2 \pi)^{3}} P_{T}(k) \\
& =\int \frac{k^{2} d k}{2 \pi^{2}} \int \frac{d \Omega}{4 \pi} P_{T}(k) \\
& =\int d \ln k \frac{k^{3}}{2 \pi^{2}} P_{T}(k)
\end{aligned}
$$

- Define power per logarithmic interval

$$
\Delta_{T}^{2}(k) \equiv \frac{k^{3} P_{T}(k)}{2 \pi^{2}}
$$

- This quantity is dimensionless.

Angular Power Spectrum

- Temperature field

$$
\Theta(\hat{\mathbf{n}})=\int \frac{d^{3} k}{(2 \pi)^{3}} \Theta(\mathbf{k}) e^{i \mathbf{k} \cdot D_{*} \hat{\mathbf{n}}}
$$

- Multipole moments $\Theta(\hat{\mathbf{n}})=\sum_{\ell m} \Theta_{\ell m} Y_{\ell m}$
- Expand out plane wave in spherical coordinates

$$
e^{i \mathbf{k} D_{*} \cdot \hat{\mathbf{n}}}=4 \pi \sum_{\ell m} i^{\ell} j_{\ell}\left(k D_{*}\right) Y_{\ell m}^{*}(\mathbf{k}) Y_{\ell m}(\hat{\mathbf{n}})
$$

- Angular moment

$$
\Theta_{\ell m}=\int \frac{d^{3} k}{(2 \pi)^{3}} \Theta(\mathbf{k}) 4 \pi i^{\ell} j_{\ell}\left(k D_{*}\right) Y_{\ell m}^{*}(\mathbf{k})
$$

Angular Power Spectrum

- Power spectrum

$$
\begin{aligned}
\left\langle\Theta_{\ell m}^{*} \Theta_{\ell^{\prime} m^{\prime}}\right\rangle & =\int \frac{d^{3} k}{(2 \pi)^{3}}(4 \pi)^{2} i^{\ell-\ell^{\prime}} j_{\ell}\left(k D_{*}\right) j_{\ell^{\prime}}\left(k D_{*}\right) Y_{\ell m}(\mathbf{k}) Y_{\ell^{\prime} m^{\prime}}^{*}(\mathbf{k}) P_{T}(k) \\
& =\delta_{\ell \ell^{\prime}} \delta_{m m^{\prime}} 4 \pi \int d \ln k j_{\ell}^{2}\left(k D_{*}\right) \Delta_{T}^{2}(k)
\end{aligned}
$$

with $\int_{0}^{\infty} j_{\ell}^{2}(x) d \ln x=1 /(2 \ell(\ell+1))$, slowly varying Δ_{T}^{2}

- Angular power spectrum:

$$
C_{\ell}=\frac{4 \pi \Delta_{T}^{2}\left(\ell / D_{*}\right)}{2 \ell(\ell+1)}=\frac{2 \pi}{\ell(\ell+1)} \Delta_{T}^{2}\left(\ell / D_{*}\right)
$$

- Not surprisingly, a relationship between $\ell^{2} C_{\ell} / 2 \pi$ and Δ_{T}^{2} at $\ell \gg 1$. By convention use $\ell(\ell+1)$ to make relationship exact
- This is a property of a thin-shell isotropic source, now generalize.

Generalized Source

- For example, if the emission surface is moving with respect to the observer then radiation has an intrinsic dipole pattern at emission

- More generally, we know the Y_{ℓ}^{m} 's are a complete angular basis and plane waves are complete spatial basis
- Local source distribution decomposed into plane-wave modulated multipole moments

$$
S_{\ell}^{(m)}(-i)^{\ell} \sqrt{\frac{4 \pi}{2 \ell+1}} Y_{\ell}^{m}(\hat{\mathbf{n}}) \exp (i \mathbf{k} \cdot \mathbf{x})
$$

where prefactor is for convenience when fixing $\hat{\mathbf{z}}=\hat{\mathbf{k}}$

Generalized Source

- So general solution is for a single source shell is

$$
\Theta(\hat{\mathbf{n}})=\sum_{\ell m} S_{\ell}^{(m)}(-i)^{\ell} \sqrt{\frac{4 \pi}{2 \ell+1}} Y_{\ell}^{m}(\hat{\mathbf{n}}) \exp \left(i \mathbf{k} \cdot D_{*} \hat{\mathbf{n}}\right)
$$

and for a source that is a function of distance

$$
\Theta(\hat{\mathbf{n}})=\int d D e^{-\tau} \sum_{\ell m} S_{\ell}^{(m)}(D)(-i)^{\ell} \sqrt{\frac{4 \pi}{2 \ell+1}} Y_{\ell}^{m}(\hat{\mathbf{n}}) \exp (i \mathbf{k} \cdot D \hat{\mathbf{n}})
$$

- Note that unlike the isotropic source, we have two pieces that depend on $\hat{\mathbf{n}}$
- Observer sees the total angular structure

$$
Y_{\ell}^{m}(\hat{\mathbf{n}}) e^{i \mathbf{k} D_{*} \cdot \hat{\mathbf{n}}}=4 \pi \sum_{\ell^{\prime} m^{\prime}} i^{\ell^{\prime}} j_{\ell^{\prime}}\left(k D_{*}\right) Y_{\ell^{\prime}}^{m^{\prime} *}(\mathbf{k}) Y_{\ell^{\prime}}^{m^{\prime}}(\hat{\mathbf{n}}) Y_{\ell}^{m}(\hat{\mathbf{n}})
$$

Generalized Source

- We extract the observed multipoles by the addition of angular momentum $Y_{\ell^{\prime}}^{m^{\prime}}(\hat{\mathbf{n}}) Y_{\ell}^{m}(\hat{\mathbf{n}}) \rightarrow Y_{L}^{M}(\hat{\mathbf{n}})$
- Radial functions become linear sums over j_{ℓ} with the recoupling (Clebsch-Gordan) coefficients
- These radial weight functions carry important information about how spatial fluctuations project onto angular fluctuations - or the sharpness of the angular transfer functions
- Same is true of polarization - source is Thomson scattering
- Polarization has an intrinsic quadrupolar distribution, recoupled by orbital angular momentum into fine scale polarization anisotropy
- Formal integral solution to the Boltzmann or radiative transfer equation
- Source functions also follow from the Boltzmann equation

Polarization Basis

- Define the angularly dependent Stokes perturbation

$$
\Theta(\mathbf{x}, \hat{\mathbf{n}}, \eta), \quad Q(\mathbf{x}, \hat{\mathbf{n}}, \eta), \quad U(\mathbf{x}, \hat{\mathbf{n}}, \eta)
$$

- Decompose into normal modes: plane waves for spatial part and spherical harmonics for angular part

$$
\begin{aligned}
G_{\ell}^{m}(\mathbf{k}, \mathbf{x}, \hat{\mathbf{n}}) & \equiv(-i)^{\ell} \sqrt{\frac{4 \pi}{2 \ell+1}} Y_{\ell}^{m}(\hat{\mathbf{n}}) \exp (i \mathbf{k} \cdot \mathbf{x}) \\
{ }_{ \pm 2} G_{\ell}^{m}(\mathbf{k}, \mathbf{x}, \hat{\mathbf{n}}) & \equiv(-i)^{\ell} \sqrt{\frac{4 \pi}{2 \ell+1}} \pm 2 Y_{\ell}^{m}(\hat{\mathbf{n}}) \exp (i \mathbf{k} \cdot \mathbf{x})
\end{aligned}
$$

- In a spatially curved universe generalize the plane wave part
- For a single \mathbf{k} mode, choose a coordinate system $\hat{\mathbf{z}}=\hat{\mathbf{k}}$

Normal Modes

- Temperature and polarization fields

$$
\begin{aligned}
\Theta(\mathbf{x}, \hat{\mathbf{n}}, \eta) & =\int \frac{d^{3} k}{(2 \pi)^{3}} \sum_{\ell m} \Theta_{\ell}^{(m)} G_{\ell}^{m} \\
{[Q \pm i U](\mathbf{x}, \hat{\mathbf{n}}, \eta) } & =\int \frac{d^{3} k}{(2 \pi)^{3}} \sum_{\ell m}\left[E_{\ell}^{(m)} \pm i B_{\ell}^{(m)}\right]_{ \pm 2} G_{\ell}^{m}
\end{aligned}
$$

- For each \mathbf{k} mode, work in coordinates where $\mathbf{k} \| \mathbf{z}$ and so $m=0$ represents scalar modes, $m= \pm 1$ vector modes, $m= \pm 2$ tensor modes, $|m|>2$ vanishes. Since modes add incoherently and $Q \pm i U$ is invariant up to a phase, rotation back to a fixed coordinate system is trivial.

Liouville Equation

- In absence of scattering, the phase space distribution of photons in each polarization state a is conserved along the propagation path
- Rewrite variables in terms of the photon propagation direction $\mathbf{q}=q \hat{\mathbf{n}}$, so $f_{a}(\mathbf{x}, \hat{\mathbf{n}}, q, \eta)$ and

$$
\frac{D}{D \eta} f_{a}(\mathbf{x}, \hat{\mathbf{n}}, q, \eta)=0=\left(\frac{\partial}{\partial \eta}+\frac{d \mathbf{x}}{d \eta} \cdot \frac{\partial}{\partial \mathbf{x}}+\frac{d \hat{\mathbf{n}}}{d \eta} \cdot \frac{\partial}{\partial \hat{\mathbf{n}}}+\frac{d q}{d \eta} \cdot \frac{\partial}{\partial q}\right) f_{a}
$$

- For simplicity, assume spatially flat universe $K=0$ then $d \hat{\mathbf{n}} / d \eta=0$ and $d \mathbf{x}=\hat{\mathbf{n}} d \eta$

$$
\dot{f}_{a}+\hat{\mathbf{n}} \cdot \nabla f_{a}+\dot{q} \frac{\partial}{\partial q} f_{a}=0
$$

- The spatial gradient describes the conversion from inhomogeneity to anisotropy and the \dot{q} term the gravitational sources.

Geometrical Projection

- Main content of Liouville equation is purely geometrical and describes the projection of inhomogeneities into anisotropies
- Spatial gradient term hits plane wave:

$$
\hat{\mathbf{n}} \cdot \nabla e^{i \mathbf{k} \cdot \mathbf{x}}=i \hat{\mathbf{n}} \cdot \mathbf{k} e^{i \mathbf{k} \cdot \mathbf{x}}=i \sqrt{\frac{4 \pi}{3}} k Y_{1}^{0}(\hat{\mathbf{n}}) e^{i \mathbf{k} \cdot \mathbf{x}}
$$

- Dipole term adds to angular dependence through the addition of angular momentum
$\sqrt{\frac{4 \pi}{3}} Y_{1}^{0} Y_{\ell}^{m}=\frac{\kappa_{\ell}^{m}}{\sqrt{(2 \ell+1)(2 \ell-1)}} Y_{\ell-1}^{m}+\frac{\kappa_{\ell+1}^{m}}{\sqrt{(2 \ell+1)(2 \ell+3)}} Y_{\ell+1}^{m}$
where $\kappa_{\ell}^{m}=\sqrt{\ell^{2}-m^{2}}$ is given by Clebsch-Gordon coefficients.

Temperature Hierarchy

- Absorb recoupling of angular momentum into evolution equation for normal modes

$$
\dot{\Theta}_{\ell}^{(m)}=k\left[\frac{\kappa_{\ell}^{m}}{2 \ell+1} \Theta_{\ell-1}^{(m)}-\frac{\kappa_{\ell+1}^{m}}{2 \ell+3} \Theta_{\ell+1}^{(m)}\right]-\dot{\tau} \Theta_{\ell}^{(m)}+S_{\ell}^{(m)}
$$

where $S_{\ell}^{(m)}$ are the gravitational (and later scattering sources; added scattering suppression of anisotropy)

- An originally isotropic $\ell=0$ temperature perturbation will eventually become a high order anisotropy by "free streaming" or simple projection
- Original CMB codes solved the full hierarchy equations out to the ℓ of interest.

Integral Solution

- Hierarchy equation simply represents geometric projection, exactly as we have seen before in the projection of temperature perturbations on the last scattering surface
- In general, the solution describes the decomposition of the source $S_{\ell}^{(m)}$ with its local angular dependence as seen at a distance D.
- Proceed by decomposing the angular dependence of the plane wave

$$
e^{i \mathbf{k} \cdot \mathbf{x}}=\sum_{\ell}(-i)^{\ell} \sqrt{4 \pi(2 \ell+1)} j_{\ell}(k D) Y_{\ell}^{0}(\hat{\mathbf{n}})
$$

- Recouple to the local angular dependence of G_{ℓ}^{m}

$$
G_{\ell_{s}}^{m}=\sum_{\ell}(-i)^{\ell} \sqrt{4 \pi(2 \ell+1)} \alpha_{\ell_{s} \ell}^{(m)}(k D) Y_{\ell}^{m}(\hat{\mathbf{n}})
$$

Integral Solution

- Projection kernels:

$$
\alpha_{\ell_{s}=0 \ell}^{(m=0)} \equiv j_{\ell} \quad \alpha_{\ell_{s}=1 \ell}^{(m=0)} \equiv j_{\ell}^{\prime}
$$

- Integral solution:

$$
\frac{\Theta_{\ell}^{(m)}\left(k, \eta_{0}\right)}{2 \ell+1}=\int_{0}^{\eta_{0}} d \eta e^{-\tau} \sum_{\ell_{s}} S_{\ell_{s}}^{(m)} \alpha_{\ell_{s} \ell}^{(m)}\left(k\left(\eta_{0}-\eta\right)\right)
$$

- Power spectrum:

$$
C_{\ell}=4 \pi \int \frac{d k}{k} \frac{k^{3}}{2 \pi^{2}} \sum_{m} \frac{\left\langle\Theta_{\ell}^{(m) *} \Theta_{\ell}^{(m)}\right\rangle}{(2 \ell+1)^{2}}
$$

- Integration over an oscillatory radial source with finite width suppression of wavelengths that are shorter than width leads to reduction in power by $k \Delta \eta / \ell$ in the "Limber approximation"

Polarization Hierarchy

- In the same way, the coupling of a gradient or dipole angular momentum to the spin harmonics leads to the polarization hierarchy:
$\dot{E}_{\ell}^{(m)}=k\left[\frac{2 \kappa_{\ell}^{m}}{2 \ell-1} E_{\ell-1}^{(m)}-\frac{2 m}{\ell(\ell+1)} B_{\ell}^{(m)}-\frac{2 \kappa_{\ell+1}^{m}}{2 \ell+3} E_{\ell+1}^{(m)}\right]-\dot{\tau} E_{\ell}^{(m)}+\mathcal{E}_{\ell}^{(m)}$
$\dot{B}_{\ell}^{(m)}=k\left[\frac{2 \kappa_{\ell}^{m}}{2 \ell-1} B_{\ell-1}^{(m)}+\frac{2 m}{\ell(\ell+1)} E_{\ell}^{(m)}-\frac{2 \kappa_{\ell+1}^{m}}{2 \ell+3} B_{\ell+1}^{(m)}\right]-\dot{\tau} B_{\ell}^{(m)}+\mathcal{B}_{\ell}^{(m)}$
where ${ }_{2} \kappa_{\ell}^{m}=\sqrt{\left(\ell^{2}-m^{2}\right)\left(\ell^{2}-4\right) / \ell^{2}}$ is given by the
Clebsch-Gordon coefficients and \mathcal{E}, \mathcal{B} are the sources (scattering only).
- Note that for vectors and tensors $|m|>0$ and B modes may be generated from E modes by projection. Cosmologically $\mathcal{B}_{\ell}^{(m)}=0$

Polarization Integral Solution

- Again, we can recouple the plane wave angular momentum of the source inhomogeneity to its local angular dependence directly

$$
\begin{aligned}
& \frac{E_{\ell}^{(m)}\left(k, \eta_{0}\right)}{2 \ell+1}=\int_{0}^{\eta_{0}} d \eta e^{-\tau} \mathcal{E}_{\ell_{s}}^{(m)} \epsilon_{\ell_{s} \ell}^{(m)}\left(k\left(\eta_{0}-\eta\right)\right) \\
& \frac{B_{\ell}^{(m)}\left(k, \eta_{0}\right)}{2 \ell+1}=\int_{0}^{\eta_{0}} d \eta e^{-\tau} \mathcal{E}_{\ell_{s}}^{(m)} \beta_{\ell_{s} \ell}^{(m)}\left(k\left(\eta_{0}-\eta\right)\right)
\end{aligned}
$$

- Power spectrum $X Y=\Theta \Theta, \Theta E, E E, B B$:

$$
C_{\ell}^{X Y}=4 \pi \int \frac{d k}{k} \frac{k^{3}}{2 \pi^{2}} \sum_{m} \frac{\left\langle X_{\ell}^{(m) *} Y_{\ell}^{(m)}\right\rangle}{(2 \ell+1)^{2}}
$$

- We shall see that the only sources of temperature anisotropy are $\ell=0,1,2$ and polarization anisotropy $\ell=2$
- In the basis of $\hat{\mathbf{z}}=\hat{\mathbf{k}}$ there are only $m=0, \pm 1, \pm 2$ or scalar, vector and tensor components

Polarization Sources

Polarization Transfer

- A polarization source function with $\ell=2$, modulated with plane wave orbital angular momentum
- Scalars have no B mode contribution, vectors mostly B and tensor comparable B and E

Polarization Transfer

- Radial mode functions characterize the projection from $k \rightarrow \ell$ or inhomogeneity to anisotropy
- Compared to the scalar T monopole source:
scalar T dipole source very broad
tensor T quadrupole, sharper
scalar E polarization, sharper
tensor E polarization, broad
tensor B polarization, very broad
- These properties determine whether features in the k-mode spectrum, e.g. acoustic oscillations, intrinsic structure, survive in the anisotropy

