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Set 2: Beyond the Primary Temperature Anisotropy
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CMB Power Spectra
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• Power spectra
of CMB

– temperature

– polarization

– lensing



Stokes Parameters: A Brief Review
• Specific intensity is related to quadratic combinations of the

electric field.

• Define intensity matrix (time averaged over oscillations) 〈EE†〉
• Hermitian matrix can be decomposed into Pauli matrices

P =
〈
EE†

〉
=

1

2
(Iσ0 +Qσ3 + U σ1 − V σ2) ,

where

σ0 =

 1 0

0 1

 ,σ1 =

 0 1

1 0

 ,σ2 =

 0 −i
i 0

 ,σ3 =

 1 0

0 −1


• Stokes parameters recovered as Tr(σiP)

• CMB specific: blackbody so units of brightness temperature for
Stokes parameters I → Θ



Stokes Parameters
• Consider a general plane wave solution

E(t, z) = E1(t, z)ê1 + E2(t, z)ê2

E1(t, z) = A1e
iφ1ei(kz−ωt)

E2(t, z) = A2e
iφ2ei(kz−ωt)

• Explicitly:

I = 〈E1E
∗
1 + E2E

∗
2〉 = A2

1 + A2
2

Q = 〈E1E
∗
1 − E2E

∗
2〉 = A2

1 − A2
2

U = 〈E1E
∗
2 + E2E

∗
1〉 = 2A1A2 cos(φ2 − φ1)

V = −i 〈E1E
∗
2 − E2E

∗
1〉 = 2A1A2 sin(φ2 − φ1)

so that the Stokes parameters define the state up to an
unobservable overall phase of the wave



Detection
.
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g2
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• This suggests that
abstractly there are two
different ways to detect
polarization: separate
and difference orthogonal
modes (bolometers I , Q)
or correlate the separated
components (U , V ).

• In the correlator example the natural output would be U but one
can recover V by introducing a phase lag φ = π/2 on one arm, and
Q by having the OMT pick out directions rotated by π/4.

• Likewise, in the bolometer example, one can rotate the polarizer
and also introduce a coherent front end to change V to U .



Detection
• Techniques also differ in the systematics that can convert

unpolarized sky to fake polarization

• Differencing detectors are sensitive to relative gain fluctuations

• Correlation detectors are sensitive to cross coupling between the
arms

• More generally, the intended block diagram and systematic
problems map components of the polarization matrix onto others
and are kept track of through “Jones” or instrumental response
matrices Edet = JEin

Pdet = JPinJ
†

where the end result is either a differencing or a correlation of the
Pdet.



Polarization
• Radiation field involves a directed quantity, the electric field

vector, which defines the polarization

• Consider a general plane wave solution

E(t, z) = E1(t, z)ê1 + E2(t, z)ê2

E1(t, z) = ReA1e
iφ1ei(kz−ωt)

E2(t, z) = ReA2e
iφ2ei(kz−ωt)

or at z = 0 the field vector traces out an ellipse

E(t, 0) = A1 cos(ωt− φ1)ê1 + A2 cos(ωt− φ2)ê2

with principal axes defined by

E(t, 0) = A′1 cos(ωt)ê′1 − A′2 sin(ωt)ê′2

so as to trace out a clockwise rotation for A′1, A
′
2 > 0



Polarization
.

e1

e'1e'2

e2

χ

E(t)

• Define polarization angle

ê′1 = cosχê1 + sinχê2

ê′2 = − sinχê1 + cosχê2

• Match

E(t, 0) = A′1 cosωt[cosχê1 + sinχê2]

− A′2 cosωt[− sinχê1 + cosχê2]

= A1[cosφ1 cosωt+ sinφ1 sinωt]ê1

+ A2[cosφ2 cosωt+ sinφ2 sinωt]ê2



Polarization
• Define relative strength of two principal states

A′1 = E0 cos β A′2 = E0 sin β

• Characterize the polarization by two angles

A1 cosφ1 = E0 cos β cosχ, A1 sinφ1 = E0 sin β sinχ,

A2 cosφ2 = E0 cos β sinχ, A2 sinφ2 = −E0 sin β cosχ

Or Stokes parameters by

I = E2
0 , Q = E2

0 cos 2β cos 2χ

U = E2
0 cos 2β sin 2χ , V = E2

0 sin 2β

• So I2 = Q2 + U2 + V 2, double angles reflect the spin 2 field or
headless vector nature of polarization



Polarization
Special cases

• If β = 0, π/2, π then only one principal axis, ellipse collapses to a
line and V = 0→ linear polarization oriented at angle χ

If χ = 0, π/2, π then I = ±Q and U = 0

If χ = π/4, 3π/4... then I = ±U and Q = 0 – so U is Q in a
frame rotated by 45 degrees

• If β = π/4, 3π/4, then principal components have equal strength
and E field rotates on a circle: I = ±V and Q = U = 0→
circular polarization

• U/Q = tan 2χ defines angle of linear polarization and
V/I = sin 2β defines degree of circular polarization



Natural Light
• A monochromatic plane wave is completely polarized
I2 = Q2 + U2 + V 2

• Polarization matrix is like a density matrix in quantum mechanics
and allows for pure (coherent) states and mixed states

• Suppose the total Etot field is composed of different (frequency)
components

Etot =
∑
i

Ei

• Then components decorrelate in time average〈
EtotE

†
tot

〉
=
∑
ij

〈
EiE

†
j

〉
=
∑
i

〈
EiE

†
i

〉



Natural Light
• So Stokes parameters of incoherent contributions add

I =
∑
i

Ii Q =
∑
i

Qi U =
∑
i

Ui V =
∑
i

Vi

and since individual Q, U and V can have either sign:
I2 ≥ Q2 + U2 + V 2, all 4 Stokes parameters needed



Linear Polarization
• Q ∝ 〈E1E

∗
1〉 − 〈E2E

∗
2〉, U ∝ 〈E1E

∗
2〉+ 〈E2E

∗
1〉.

• Counterclockwise rotation of axes by θ = 45◦

E1 = (E ′1 − E ′2)/
√

2 , E2 = (E ′1 + E ′2)/
√

2

• U ∝ 〈E ′1E
′∗
1 〉 − 〈E ′2E

′∗
2 〉, difference of intensities at 45◦ or Q′

• More generally, P transforms as a tensor under rotations and

Q′ = cos(2θ)Q+ sin(2θ)U

U ′ = − sin(2θ)Q+ cos(2θ)U

or

Q′ ± iU ′ = e∓2iθ[Q± iU ]

acquires a phase under rotation and is a spin ±2 object



Coordinate Independent Representation
. • Two directions: orientation of polarization

and change in amplitude, i.e. Q and
U in the basis of the Fourier wavevector
(pointing with angle φl) for small sections
of sky are called E and B components

E(l)± iB(l) = −
∫
dn̂[Q′(n̂)± iU ′(n̂)]e−il·n̂

= −e∓2iφl

∫
dn̂[Q(n̂)± iU(n̂)]e−il·n̂

• For the B-mode to not vanish, the
polarization must point in a direction not
related to the wavevector - not possible
for density fluctuations in linear theory

• Generalize to all-sky: eigenmodes of Laplace operator of tensor



Spin Harmonics
• Laplace Eigenfunctions

∇2
±2Y`m[σ3 ∓ iσ1] = −[l(l + 1)− 4]±2Y`m[σ3 ∓ iσ1]

• Spin s spherical harmonics: orthogonal and complete∫
dn̂sY

∗
`m(n̂)sY`′m′(n̂) = δ``′δmm′∑

`m

sY
∗
`m(n̂)sY`m(n̂′) = δ(φ− φ′)δ(cos θ − cos θ′)

where the ordinary spherical harmonics are Y`m = 0Y`m

• Given in terms of the rotation matrix

sY`m(βα) = (−1)m
√

2`+ 1

4π
D`
−ms(αβ0)



Polarization Multipoles
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Statistical Representation
• All-sky decomposition

[Q(n̂)± iU(n̂)] =
∑
`m

[E`m ± iB`m]±2Y`m(n̂)

• Power spectra

〈E∗`mE`m〉 = δ``′δmm′C
EE
`

〈B∗`mB`m〉 = δ``′δmm′C
BB
`

• Cross correlation

〈Θ∗`mE`m〉 = δ``′δmm′C
ΘE
`

others vanish if parity is conserved



Thomson Scattering
• Polarization state of radiation in direction n̂ described by the

intensity matrix
〈
Ei(n̂)E∗j (n̂)

〉
, where E is the electric field vector

and the brackets denote time averaging.

• Differential cross section

dσ

dΩ
=

3

8π
|Ê′ · Ê|2σT ,

where σT = 8πα2/3me is the Thomson cross section, Ê′ and Ê

denote the incoming and outgoing directions of the electric field or
polarization vector.

• Summed over angle and incoming polarization∑
i=1,2

∫
dn̂′

dσ

dΩ
= σT



Polarization Generation
. E–mode

B–modee–

Linear
Polarization

Thomson
Scattering

Quadrupole

x k

y

z

• Heuristic:
incoming radiation shakes
an electron in direction
of electric field vector Ê′

• Radiates photon with
polarization also in direction Ê′

• But photon cannot be longitudinally polarized so that scattering
into 90◦ can only pass one polarization

• Linearly polarized radiation like polarization by reflection

• Unlike reflection of sunlight, incoming radiation is nearly isotropic

• Missing from direction orthogonal to original incoming direction

• Only quadrupole anisotropy generates polarization by Thomson
scattering



Polarized Radiative Transfer
• Source of linear polarization is the radiation quadrupole

• Quadrupolar structure transferred through plane wave or orbital
angular momentum onto polarization anisotropy

• Recall monopole and dipole emission structure – same procedure
except couple to s = ±2, ` = 2:

±2Y2mY`0 → ±2Y(`−2)m . . . ±2Y(`+2)m
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Polarization Transfer
• A polarization source function with ` = 2, modulated with plane

wave orbital angular momentum

• Scalars have no B mode contribution, vectors mostly B and tensor
comparable B and E

.
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Acoustic Polarization
• Break down of tight-coupling leads to quadrupole anisotropy of

πγ ≈
k

τ̇
vγ

• Scaling kD = (τ̇ /η∗)
1/2 → τ̇ = k2

Dη∗

• Know: kDs∗ ≈ kDη∗ ≈ 10

• So:

πγ ≈
k

kD

1

10
vγ

∆P ≈
`

`D

1

10
∆T



Acoustic Polarization
• Gradient of velocity is along direction of wavevector, so

polarization is pure E-mode

• Velocity is 90◦ out of phase with temperature – turning points of
oscillator are zero points of velocity:

Θ + Ψ ∝ cos(ks); vγ ∝ sin(ks)

• Polarization peaks are at troughs of temperature power



Cross Correlation
• Cross correlation of temperature and polarization

(Θ + Ψ)(vγ) ∝ cos(ks) sin(ks) ∝ sin(2ks)

• Oscillation at twice the frequency

• Correlation: radial or tangential around hot spots

• Partial correlation: easier to measure if polarization data is noisy,
harder to measure if polarization data is high S/N or if bands do
not resolve oscillations

• Good check for systematics and foregrounds

• Comparison of temperature and polarization is proof against
features in initial conditions mimicking acoustic features



Reionization
. • Reionization causes

rescattering of radiation

• Suppresses temperature anisotopy
as e−τ and changes interpretation
of amplitude to Ase−2τ

• Electron sees temperature
anisotropy on its recombination
surface

• For wavelengths that are comparable to the horizon at reionization,
a quadrupole moment

• Rescatters to a linear polarization that is correlated with the
Sachs-Wolfe temperature anisotropy



Reionization
.
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• Amplitude of
CEE
` depends mainly on τ

• Shape of CEE
` depends

on reionization history

• Horizon at earlier epochs
subtends a smaller angle,
higher multipole peak

• Precision measurements can constrain the reionization history to
be either low or high z dominated



Polarized Landscape
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Inflation: Acceleration from Scalar Field
. V(φ): potential energy

φ

small
kinetic
energy

reheating

Hubble
friction

• Unlike a true cosmological
constant, the period
of exponential expansion
must end to produce
the hot big bang phase

• A cosmological constant is
like potential energy - so imagine a ball rolling slowly in into a
valley eventually converting potential into kinetic energy

• Technically, this is a scalar field: where the position on the hill is φ
and the height of the potential is V (φ)

• In spacetime φ(x, t) is a function of position: different spacetime
points can be at different field positions



Horizon Problem
• The horizon in a decelerating universe scales as η ∝ a(1+3w)/2,
w > −1/3. For example in a matter dominated universe

η ∝ a1/2

• CMB decoupled at a∗ = 10−3 so subtends an angle on the sky

η∗
η0

= a1/2
∗ ≈ 0.03 ≈ 2◦

• So why is the CMB sky isotropic to 10−5 in temperature if it is
composed of ∼ 104 causally disconnected regions

• If smooth by fiat, why are there 10−5 fluctuations correlated on
superhorizon scales



Flatness & Relic Problems
• Flatness problem: why is the radius of curvature larger than the

observable universe. (Before the CMB determinations, why is it at
least comparable to observable universe |ΩK | . Ωm)

• Also phrased as a coincidence problem: since ρK ∝ a−2 and
ρm ∝ a−3, why would they be comparable today – modern version
is dark energy coincidence ρΛ = const.

• Relic problem – why don’t relics like monopoles dominate the
energy density

• Inflation is a theory that solves all three problems at once and also
supplies a source for density perturbations



Accelerating Expansion
• In a matter or radiation dominated universe, the horizon grows as a

power law in a so that there is no way to establish causal contact
on a scale longer than the inverse Hubble length (1/aH , comoving
coordinates) at any given time: general for a decelerating universe

η =

∫
d ln a

1

aH(a)

• H2 ∝ ρ ∝ a−3(1+w), aH ∝ a−(1+3w)/2, critical value of w = −1/3,
the division between acceleration and deceleration determines
whether as the universe expands comoving observers leave or
come into causal contact

• Recall this is our fate in the current accelerating expansion –
observers that were once in causal contact will no longer be able to
communicate with each other due to the rapid expansion



Causal Contact
• True horizon always grows meaning that one always sees more and

more of the universe. But the comoving Hubble length decreases:
the difference in conformal time, the distance a photon can travel
between two epochs denoted by the scale factor decreases.
Regions that were in causal contact, leave causal contact.

• Horizon problem solved if the universe was in an acceleration
phase up to ηi and the conformal time since then is shorter than the
total conformal age

η0 � η0 − ηi
total distance� distance traveled since inflation

apparent horizon



Flatness & Relic
• Comoving radius of curvature is constant and can even be small

compared to the full horizon R� η0 yet still η0 � R� η0 − ηi
• In physical coordinates, the rapid expansion of the universe makes

the current observable universe much smaller than the curvature
scale

• Likewise, the number density of relics formed before the
accelerating (or inflationary) epoch is diluted to make them rare in
the current observable volume

• Common to place the zero point of (conformal) time at the end of
inflation η̃ ≡ η − ηi. Here conformal time is negative during
inflation and size reflects the distance a photon can travel from that
epoch to the end of inflation. To avoid confusion with the original
zero point η(a = 0) = 0 let’s call this η̃.



Sufficient Inflation
• If the accelerating component has equation of state w = −1, ρ =

const., H = Hi const. so that a ∝ exp(Ht)

η̃ =

∫ a

ai

d ln a
1

aH
= − 1

aHi

∣∣∣a
ai

≈ − 1

aHi

(ai � a)

• In particular, the current horizon scale H0η̃0 ≈ 1 exited the horizon
during inflation at

η̃0 ≈ H−1
0 =

1

aHHi

aH =
H0

Hi



Sufficient Inflation
• Given some energy scale for inflation that defines Hi, this tells us

what the scale factor aH was when the current horizon left the
horizon during inflation

• If we knew what the scale factor ai was at the end of inflation, we
could figure out the number of efolds N = ln(ai/aH) between
these two epochs

• A rough way to characterize this is to quote it in terms of an
effective temperature T ∝ TCMBa

−1 at the end of inflation

ln
ai
aH

= ln
TCMB

Ti

Hi

H0

= 65 + 2 ln

(
ρ

1/4
i

1014GeV

)
− ln

(
Ti

1010GeV

)
• So inflation lasted at least ∼ 60efolds - a more detailed calculation

would involve the epoch of reheating and g∗ factors, so Ti 6= Treheat



Scalar Fields
• Inflation ends when the field rolls sufficiently down the potential

that its kinetic energy becomes comparable to its potential energy

• The field then oscillates at the bottom of the potential and small
couplings to standard model particles “reheats” the universe
converting the inflaton energy into particles

• Due to the uncertainty principle in quantum mechanics, the field
cannot remain perfectly unperturbed

• The small field fluctuations mean that inflation ends at a slightly
different time at different points in space - leaving fluctuations in
the scale factor, which are curvature or gravitational potential
fluctuations

• Gravitational attraction into these potential wells forms all of the
structure in the universe



Scalar Fields
• Mathematically, the scalar field obeys the Klein-Gordon equation

in an expanding universe �φ = dV/dφ ≡ V ′

d2φ

dt2
+ 3H

dφ

dt
+ V ′ = 0

where V ′ = dV/dφ is the slope of the potential - the first and third
term look like the equations of motion of a ball rolling down a hill
- acceleration = gradient of potential

• The second dφ/dt term is a friction term provided by the
expansion - “Hubble friction” - just like particle numbers and
energy density dilute with the expansion, so too does the kinetic
energy of the scalar field.



Scalar Fields
• Kinetic energy is

ρkinetic =
1

2

(
dφ

dt

)2

so, without the V ′ forcing term, how does the energy density
decay?

• Transform to ln a = N assuming H ≈ const.

d2φ

dt2
+ 3H

dφ

dt
= 0→ dφ

dt
∝ a−3

KE decays as ρkinetic ∝ a−6 = a−3(1+wkinetic), or wkinetic = +1

• Compare with the potential energy at fixed field position
wpotential = −1

• Total pressure: pφ = ρkinetic − ρpotential = 1/2(dφ/dt)2 − V



Scalar Fields
• As the field rolls it slowly loses total energy to friction, which

defines the slow roll parameter

εH = −d lnH

d ln a
=

3

2
(1 + wφ)

• Requirement that inflation last for the sufficient ∼60 efolds
requires that εH . 1/60� 1

• This requirement also means that εH must also be slowly varying
so as not to grow much during these 60 efolds

δ1 =
1

2

d ln εH
d ln a

− εH

with |δ1| � 1 (its defined this way since it also determines how
close the roll is to friction dominated 3Hdφ/dt ≈ −V ′)



Perturbation Generation
• Horizon scale 1/H during inflation acts like event horizon - things

that are separated by more than this distance leave causal contact

• Result of treating field fluctuations as a quantum simple harmonic
oscillator: uncertainty principle leads to inevitable fluctuations

• Fluctuations freeze in when the comoving wavelength λ = 2π/k

becomes larger than the comoving horizon 1/aH , so that parts of
the fluctuation are no longer in causal contact with itself, i.e. when
k ≈ aH

δφ ≈ H

2π

• We can also view this as a typical freezeout problem. Quantum
fluctuations behave as a simple harmonic oscillator with frequency
or rate ω ≈ k/a and freezeout occurs when ω = H , so k/a = H



Perturbation Generation
• Interpretation: universe is expanding quickly enough that various

parts of the wave cannot “find” each other to maintain
“equilibrium” (continue oscillating)

• Can heuristically understand the freezout value in the same way as
Hawking radiation from a black hole – virtual particles become
real when separated by the horizon

• Here H defines the horizon area (or in black hole language the
Hawking temperature) and dimensional analysis says the field
fluctuation must scale with H , the only dimensionful quantity

• Because H remains roughly constant during inflation the result is a
scale invariant spectrum of fluctuations

• Let’s prove this by analogy to the quantum harmonic oscillator



Perturbation Generation
• For a sufficiently flat potential and assuming slow roll, the field

perturbation δφ obeys the free Klein Gordon equation �δφ = 0

δ̈φ+ 2
ȧ

a
˙δφ+ k2δφ

where overdots are conformal time derivatives with η̃ = 0 as the
end of inflation

• We want to take out the effect of the expansion in the “friction”
term so by analogy to comoving coordinates define u = aδφ

ü+

(
k2 − ä

a

)
u = 0

and let’s further note that in slow roll H is nearly constant so

η̃ =

∫ a

aend

da

Ha2
≈ − 1

aH
,

ä

a
≈ 2

η̃2



Perturbation Generation
• Under these approximations

ü+

(
k2 − 2

η̃

)
u = 0

• Note that for subhorizon modes |kη̃| � 1 and u behaves as a
simple harmonic oscillator

ü+ k2u = 0

• Quantize the simple harmonic oscillator as in ordinary quantum
mechanics

û = u(k, η̃)â+ u∗(k, η̃)â†

where modefunction u(k, η̃) satisfies classical equation of motion



Perturbation Generation
• Creation and annihilation operators satisfy

[a, a†] = 1, a|0〉 = 0

• Field uncertainty principle: [x̂, q̂] = i→ [û, dû/dη̃] = i

u(k, η̃) =
1√
2k
e−ikη̃

• Equivalently, zero point fluctuations of ground state

〈u2〉 = 〈0|u†u|0〉 = 〈0|(u∗â† + uâ)(uâ+ u∗â†)|0〉
= 〈0|ââ†|0〉|u(k, η̃)|2

= 〈0|[â, â†] + â†â|0〉|u(k, η̃)|2

= |u(k, η̃)|2 =
1

2k



Perturbation Generation
• From these initial conditions, modefunction then has the exact

solution

u =
1√
2k

(
1− i

kη̃

)
e−ikη̃

• For |kη̃| � 1 (late times,� Hubble length) fluctuation freezes in

lim
|kη̃|→0

u = − 1√
2k

i

kη̃
≈ iHa√

2k3

δφ =
iH√
2k3

• Power spectrum of field fluctuations

∆2
δφ =

k3|δφ|2
2π2

=
H2

(2π)2



Curvature Fluctuation
• Field fluctuations change the scale factor at which inflation ends

R = −δ ln a = −d ln a

dt

dt

dφ
δφ = −H

2

2π

dt

dφ

. V(φ)

φ

Hubble
friction

end of inflation

δφ

R=-δa/a

• Using the equation
of state of φ we
can convert dφ/dt to εH

wφ =
pφ
ρφ

=
(dφ/dt)2/2− V
(dφ/dt)2/2 + V

≈ (dφ/dt)2

V
− 1

and H2 ≈ 8πGV/3 from Friedmann



Curvature Fluctuation
• So

εH ≈
3

2

(dφ/dt)2

V
≈ 4πG

(dφ/dt)2

H2

and the variance of fluctuations per log wavenumber d ln k

∆2
R ≡ 〈R2〉 ≈ H4

4π2

4πG

H2εH
≈ G

π

H2

εH

• Crucial point: curvature fluctuations are enhanced over field
fluctuations by the slowness of roll:

∆2
R ∝

∆2
φ

εH

• We shall see that this means the ratio of gravitational waves to
curvature fluctuations are suppressed by εH



Tilt
• Curvature power spectrum is scale invariant to the extent that H

and εH are constant

• Scalar spectral index

d ln ∆2
R

d ln k
≡ nS − 1 = 2

d lnH

d ln k
− d ln εH

d ln k

• Evaluate at horizon crossing where fluctuation freezes k = aH

d lnH

d ln k
≈ d lnH

d ln a
= −εH

d ln ε

d ln k
≈ d ln ε

d ln a
= 2(δ1 + εH)

• Tilt in the slow-roll approximation

nS − 1 = −4εH − 2δ1



Gravitational Waves
• Gravitational wave amplitude satisfies Klein-Gordon equation

(K = 0), same as scalar field

d2h+,×

dt2
+ 3H

dh+,×

dt
+
k2

a2
h+,× = 0 .

• Acquires quantum fluctuations in same manner as φ. Lagrangian
sets the normalization

• Scale-invariant gravitational wave amplitude

∆2
+,× = 16πG

H2

(2π)2

• Gravitational wave power ∝ H2 ∝ V ∝ E4
i where Ei is the energy

scale of inflation



Gravitational Waves
• Tensor-scalar ratio is therefore generally small

r ≡ 4
∆2

+

∆2
R

= 16εH

• Tensor tilt:

d ln ∆2
+

d ln k
≡ nT = 2

d lnH

d ln k
= −2εH

• Consistency relation between tensor-scalar ratio and tensor tilt

r = 16ε = −8nT

• Measurement of scalar tilt and gravitational wave amplitude
constrains inflationary model in the slow roll context

• Comparision of tensor-scalar ratio and tensor tilt tests the idea of
slow roll itself



Observability
• Gravitational waves from inflation can be measured via its imprint

on the polarization of the CMB
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Tensor Power
.

1/aH

1/aH• Gravitational waves obey
a Klein-Gordon like equation

• Like inflation, perturbations generated
by quantum fluctuations during inflation

• Freeze out at horizon crossing
during inflation an amplitude
that reflects the energy scale of inflation

∆2
+,× =

H2

2π2M2
Pl

∝ E4
i

• Gravitational waves remain frozen outside the horizon at constant
amplitude

• Oscillate inside the horizon and decay or redshift as radiation



Tensor Quadrupoles
.

crest

trough

trough

m=2

Tensors
(Gravity Waves)

• Changing transverse-traceless
distortion of space creates a
quadrupole CMB anisotropy
much like the distortion
of test ring of particles

• As the tensor mode enters the
horizon it imprints a quadrupole
temperature ` = 2,m = ±2 in plane wave coordinates k ‖ z
• Modes that cross before recombination: effect erased by

rescattering e−τ due to its isotropizing effect

• Modes that cross after recombination: integrate contributions
along the line of sight - tensor ISW effect



Tensor Temperature Power Spectrum
.
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• Resulting spectum,
near scale invariant out to
horizon at recombination ` < 100

• Suppressed on smaller scales or
higher multipoles ` > 100, weakly
degenerate with tilt

• When added to scalar spectrum, enhances large scale anisotropy
over small scale

• Shape of total temperature spectrum can place tight limit r < 0.1,
for power law curvature spectrum

• Smaller tensor-scalar ratios cannot be constrained by temperature
alone due the high cosmic variance of the low multipole specrum



Tensor Polarization Power Spectrum
. • Polarization of gravitational

wave determines the
quadrupole temperature anisotropy

• Scattering of quadrupole
temperature anisotropy generates
linear polarization aligned
with cold lobe

• Direction of CMB polarization is therefore determined by
gravitational wave polarization rather than direction of wavevector

• B-mode polarization when the amplitude is modulated by the
plane wave

• Requires scattering: two peaks - horizon at recombination and
reionization



Tensor Polarization Power Spectrum
• Measuring B-modes from gravitational waves determines the

energy scale of inflation

∆Bpeak ≈ 0.024

(
Ei

1016GeV

)2

µK

• Also generates E-mode polarization which, like temperature, is a
consistency check for r ∼ 0.1

• Projection is less sharp than for scalar E, so evading temperature
bounds by adding features to the curvature spectrum can be tested



Gravitational Lensing: Signal and Noise
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Gravitational Lensing
• In general relativity, masses curve space and bend the trajectory of

photons - for this discussion lets restore the different units of t and
x by restoring c - but note that is now does not represent the
coordinate speed of light

• Newtonian approximation to the line element, neglecting the
expansion (or in conformal coordinates)

ds2 = −(1 + 2Ψ/c2)c2dt2 + (1 + 2Φ/c2)dx2

• Photons travel on null geodesics (ds2 = 0) - so the coordinate
speed of light is

v =
dx

dt
≈ c

1 + Ψ/c2

1 + Φ/c2
≈ c(1− 2Φ/c2)



Gravitational Lensing
.

slower
faster

refraction

normal

• Coordinate speed of light slows
in the presence of mass due to
the warping of spacetime
as quantified by the gravitational potential

Can be modelled as an optics problem,
defines an effective index of refraction

n =
c

v
=

(
1− 2GM

rc2

)−1

≈ 1 +
2GM

rc2

• As light passes by the object, the change in the index of refraction
or delay of the propagation of wavefronts bends the trajectory

∇n = −2GM

r2c2
r̂



Strong Gravitational Lensing
.

lens
β

αso
ur

ce

ob
s

r0

dS dL

θ

image

y
• Calculation would

take the same form if we took
a nonrelativistic particle of
mass m and used Newtonian
mechanics - general relativity
just doubles it the deflection for light due to space curvature

• Deflection is small so integrate the transverse (⊥) deflection on the
unperturbed trajectory

φ = −
∫ ∞
−∞

dx∇⊥n =

∫ ∞
−∞

dx
2GMr0

(r2
0 + x2)

3/2
c2

=
4GM

r0c2



Lens Equation
• Given the thin lens deflection formula, the lens equation follows

from simple geometry

• Solve for the image position θ with respect to line of sight. Small
angle approximation

y ≈ (dS − dL)φ ≈ dS(θ − β)

• Substitute in deflection angle

(dS − dL)
4GM

r0c2
≈ dS(θ − β)

• Eliminate r0 = dL sin θ ≈ dLθ

• For cosmological distances replace d’s with angular diameter
distances DA



Lens Equation
.

β

so
ur

ce

ob
s

image

image

• Solve for θ to obtain the lens
equation

θ2 − βθ − 4GM

c2

(
dS − dL
dSdL

)
= 0

• A quadratic equation with two
solutions for the image position - two images

θ± =
β

2
± 1

2

√
β2 + 16

GM

c2

(
dS − dL
dSdL

)
• Sum of angles - second image has negative angle - opposite side of

lens

θ+ + θ− = β



Einstein Ring
. • If source

is aligned right behind the
lens β = 0 and the two images
merge into a ring - Einstein
ring - at an angular separation

θE =

√
4GM

c2

(
dS − dL
dSdL

)
• More generally, quasar is

lensed by the extended mass of a galaxy that is not perfectly
axially symmetric



Magnification
.

dθdφ
dβ

M

βθ

shear and
magnification

• Lens equation in terms
of Einstein radius

θ2 − βθ − θ2
E = 0

• Given an extended source that
covers an angular distance dβ will
have an image cover an angular
distance dθ± related by the
derivative dθ±/dβ

• The displacement in the image is purely radial so that the angular
scale of arc dφ remains unchanged.

• The surface area of the source βdβdφ thus becomes θ±dθ±dφ.



Cosmic Shear
• On even larger scales, the large-scale structure weakly shears

background images: weak lensing



Weak Gravitational Lensing
• Weak lensing is a surface brightness conserving remapping of

source to image planes by the gradient of the projected potential

φ(n̂) = 2

∫ η0

η∗

dη
(D∗ −D)

DD∗
Φ(Dn̂, η) .

such that the fields are remapped as

x(n̂)→ x(n̂ +∇φ) ,

where x ∈ {Θ, Q, U} temperature and polarization.

• Taylor expansion leads to product of fields and Fourier
mode-coupling



Flat-sky Treatment
• Talyor expand

Θ(n̂) = Θ̃(n̂ +∇φ)

= Θ̃(n̂) +∇iφ(n̂)∇iΘ̃(n̂) +
1

2
∇iφ(n̂)∇jφ(n̂)∇i∇jΘ̃(n̂) + . . .

• Fourier decomposition

φ(n̂) =

∫
d2l

(2π)2
φ(l)eil·n̂

Θ̃(n̂) =

∫
d2l

(2π)2
Θ̃(l)eil·n̂



Flat-sky Treatment
• Mode coupling of harmonics

Θ(l) =

∫
dn̂Θ(n̂)e−il·n̂

= Θ̃(l)−
∫

d2l1
(2π)2

Θ̃(l1)L(l, l1) ,

where

L(l, l1) = φ(l− l1) (l− l1) · l1

+
1

2

∫
d2l2

(2π)2
φ(l2)φ∗(l2 + l1 − l) (l2 · l1)(l2 + l1 − l) · l1 .

• Represents a coupling of harmonics separated by L ≈ 60 peak of
deflection power



Power Spectrum
• Power spectra

〈Θ∗(l)Θ(l′)〉 = (2π)2δ(l− l′) Cl ,

〈φ∗(l)φ(l′)〉 = (2π)2δ(l− l′) Cφφ
l ,

becomes

Cl =
(
1− l2R

)
C̃l +

∫
d2l1

(2π)2
C̃|l−l1|C

φφ
l1

[(l− l1) · l1]2 ,

where

R =
1

4π

∫
dl

l
l4Cφφ

l .



Smoothing Power Spectrum
.
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• If C̃l slowly varying
then two term cancel

C̃l

∫
d2l1

(2π)2
Cφφ
l (l · l1)2 ≈ l2RC̃l .

• So lensing acts to smooth
features in the power
spectrum. Smoothing
kernel is L ∼ 60 the peak of deflection power spectrum

• Because acoustic feature appear on a scale lA ∼ 300, smoothing is
a subtle effect in the power spectrum.

• Lensing generates power below the damping scale which directly
reflect power in deflections on the same scale



Secondaries: Gravitational
• Gravitational lensing is a gravitational CMB secondary

• Others are the ISW effect from dark energy and its Rees-Sciama
(RS) counterpart from nonlinear structure

ISW
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suppression
lensing
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Polarization Lensing
• Polarization field harmonics lensed similarly

[Q± iU ](n̂) = −
∫

d2l

(2π)2
[E ± iB](l)e±2iφlel·n̂

so that

[Q± iU ](n̂) = [Q̃± iŨ ](n̂ +∇φ)

≈ [Q̃± iŨ ](n̂) +∇iφ(n̂)∇i[Q̃± iŨ ](n̂)

+
1

2
∇iφ(n̂)∇jφ(n̂)∇i∇j[Q̃± iŨ ](n̂)



Polarization Power Spectra
• Carrying through the algebra

CEE
l =

(
1− l2R

)
C̃EE
l +

1

2

∫
d2l1

(2π)2
[(l− l1) · l1]2Cφφ

|l−l1|

× [(C̃EE
l1

+ C̃BB
l1

) + cos(4ϕl1)(C̃
EE
l1
− C̃BB

l1
)] ,

CBB
l =

(
1− l2R

)
C̃BB
l +

1

2

∫
d2l1

(2π)2
[(l− l1) · l1]2Cφφ

|l−l1|

× [(C̃EE
l1

+ C̃BB
l1

)− cos(4ϕl1)(C̃
EE
l1
− C̃BB

l1
)] ,

CΘE
l =

(
1− l2R

)
C̃ΘE
l +

∫
d2l1

(2π)2
[(l− l1) · l1]2Cφφ

|l−l1|

× C̃ΘE
l1

cos(2ϕl1) ,



Polarization Lensing
• Lensing generates B-modes out of the acoustic polaraization
E-modes contaminates gravitational wave signature if
Ei < 1016GeV.

Original Lensed BLensed E



Reconstruction from the CMB
• Correlation between Fourier moments for a fixed lens reflect

lensing potential

〈x(l)x′(l′)〉CMB = fα(l, l′)φ(l + l′) ,

where x ∈ temperature, polarization fields and fα is a fixed weight
that reflects geometry

• Each pair forms a noisy estimate of the potential or projected mass
- just like a pair of galaxy shears

• Minimum variance weight all pairs to form an estimator of the
lensing mass

• Averaging over lenses restore statistical isotropy so that the power
spectrum still describes the two point correlation - in this sense
lensing produces non-Gaussianity, not statistical anisotropy



Reconstruction from the CMB
• With high signal-to-noise B-maps, here 1µK′, quadratic

reconstruction signal-to-noise dominated by EB combination

• Use two-point correlations in reconstruction map to measure
lensing power spectrum

• Use reconstruction to subtract out lensing contamination of
gravitational wave B modes

5

Lensing Potential TT Reconstruction EB Reconstruction



CMB Power Spectra
.
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End of 2021 Lectures
• Supplemental notes follow:

Boltzmann Equation and Radiative Transfer

Black Body Formation and Spectral Distortions

SZ effect and Secondaries



Boltzmann Equation
• Now let’s examine some of the formalism behind the previous

results with an aim of also understanding

Thermalization: formation of the blackbody

Compton y and µ distortions: SZ effect as first step to
thermalization with a hot electron plasma

• First let’s connect it with other astro and particle courses where
you have encountered these issues:

Radiative transfer

Particle transport

and applied it to

Fluid mechanics

Thermal relics of big bang



Astro-Particle Dictionary
Astrophysicists and physicist use different words to describe same
thing:

• Specific intensity Iν = 4πν3f ↔ phase space distribution f

Iν = ∆E/∆t∆ν∆ΩdA: “energy per unit everything”

• Surface brightness conservation↔ Liouville equation

• Absorption, emission, scattering↔ Collision term

• Einstein relations↔ Single matrix element

• Radiative transfer equation↔ Boltzmann equation

• Eddington approximation↔ Fluid approximation

• Moments of Iν ↔ Radiative viscosity

• Rosseland Approximation↔ Tight coupling approximation



Liouville Equation
.

t1

∆x ∆q

∆q(t1-t2)/m

t2• In absence of
interactions, particle conservation
implies that the phase
space distribution is invariant
along the trajectory of the particles

• Follow an element in ∆x with
spread ∆q. For example for non relativistic particles a spread in
velocity of ∆v = ∆q/m.

• After a time δt the low velocity tail will lag the high velocity tail
by δx = ∆vδt = ∆qδt/m

• For ultrarelativistic particles v = c and ∆v = 0, so obviously true



Liouville Equation
• The phase space element can shear but preserves area ∆x∆q

• This remains true under Lorentz and even a general coordinate
transform

• Therefore df/dt = 0 or f is conserved when evaluated along the
path of the particles

• Liouville Equation: f ∝ Iν/ν
3 and ds = cdt

df

dt
= 0→ dIν

ds
= 0

if frequency is also conserved on the path

• This is the microphysical origin of surface brightness conservation
(cf. lensing) – macro it is that flux ∝ r−2 and angular surface area
∝ r−2. Now what happens when frequency changes along the
path...



Liouville Equation
• In general, expand out the total derivative

df

dt
=
∂f

∂t
+
∑
i

(
dxi
dt

∂f

∂xi
+
dqi
dt

∂f

∂qi

)
= 0

• The spatial gradient terms are responsible for flow of particles in
and out of a fixed volume

• The momentum derivative terms are responsible for redshift
effects, including surface brightness diminishing as (1 + z)4.



Boltzmann Equation
• Heuristically

df

dt
= particle sources - sinks

dIν
ds

= emission - absorption

the r.h.s. is called the collision term and given as C[f ]

• Collision term: integrate over the phase space of incoming
particles, connect to outgoing state with the matrix element of the
transition M

• Form:

C[f ] =

∫
d(phase space)[ energy-momentum conservation]

× |M |2[emission− absorption]



Boltzmann Equation
• Emission - absorption term involves the particle occupation of the

various states

• For concreteness: take f to be the photon distribution function

• Interaction (γ +
∑
i↔∑

µ); sums are over all incoming and
outgoing other particles

photon

other i states

other μ statesother μ states

f

fi

photon

other i states

f

fi

fμfμ
μ        MM

absorptionemission

γ + i

• [emission-absorption] + = boson; − = fermion

ΠiΠµfµ(1± fi)(1± f)− ΠiΠµ(1± fµ)fif



Boltzmann Equation
• Photon Emission: fµ(1± fi)(1 + f)

fµ: proportional to number of emitters

(1± fi): if final state is occupied and a fermion, process blocked;
if boson the process enhanced

(1 + f): final state factor for photons: “1”: spontaneous emission
(remains if f = 0); “+f”: stimulated and proportional to the
occupation of final photon

• Photon Absorption: −(1± fµ)fif

(1± fµ): if final state is occupied and fermion, process blocked; if
boson the process enhanced

fi: proportional to number of absorbers

f : proportional to incoming photons



Boltzmann Equation
• If interactions are rapid they will establish an equilibrium

distribution where the distribution functions no longer change
C[feq] = 0

• Solve by inspection

ΠiΠµfµ(1± fi)(1± f)− ΠiΠµ(1± fµ)fif = 0

• Try fa = (e−Ea/T ∓ 1)−1 so that (1± fa) = e−Ea/T (e−Ea/T ∓ 1)−1

e−
∑

(Ei+E)/T − e−
∑
Eµ/T = 0

and energy conservation says E +
∑
Ei =

∑
Eµ, so identity is

satisified if the constant T is the same for all species



Boltzmann Equation
• If the interaction does not create or destroy particles of type f (or

types i, µ...) then the distribution

feq = (e−(E−µ)/T ∓ 1)−1

also solves the equilibrium equation: e.g. a scattering type reaction

γE + i→ γE′ + j∑
Ei + (E − µ) =

∑
Ej + (E ′ − µ) = 0

since the chemical potential µ does not depend on the photon
energy, likewise if f is a fermion

• Not surprisingly, this is the Fermi-Dirac distribution for fermions
and the Bose-Einstein distribution for bosons



Boltzmann Equation
• Even more generally, for a single reaction, the other species can

carry chemical potentials too so long as∑
µi + µ =

∑
µν

the law of mass action is satisfied

• This general rule applies to interactions that freely create or
destroy the particles - e.g. γ + e− → 2γ + e−

µe + µ = µe + 2µ→ µ = 0

so that the chemical potential is driven to zero if particle number is
not conserved in interaction



Poor Man’s Boltzmann Equation
• Non expanding medium

∂f

∂t
= Γ (f − feq)

where Γ is some rate for collisions

• Add in expansion in a homogeneous medium

∂f

∂t
+
dq

dt

∂f

∂q
= Γ (f − feq)

(q ∝ a−1 → 1

q

dq

dt
= −1

a

da

dt
= H)

∂f

∂t
−H ∂f

∂ ln q
= Γ (f − feq)

• So equilibrium will be maintained if collision rate exceeds
expansion rate Γ > H



Boltzmann Equation
• To actually compute the collision term or interaction rates: matrix
|M |2 or analogously the cross section for absorption defines all
processes (the physical content of the Einstein relations)

• Expect that σ ∝ |M |2

• Integration over momentum state converts f ’s to n’s



Line Transition
• Example: a line transition from single lower i = 1 state to upper
µ = 2 state assuming that outgoing states are not occupied

• Absorption: −(1± fµ)fif → −n1f , |M |2 → σ, 2hν3f/c2 → Iν
so that αν |true absorption = n1σ

• Emission: fµ(1± fi)(1 + f)→ n2(1 + f) = n2 + n2f so that
spontaneous emission jν ∼ n2σ · 2ν3h/c2 and stimulated emission
is negative absorption with αν |stim emiss ∼ −n2σ

• Implies a source function

Sν = jν/αν ∼
1

n1/n2 − 1

2hν3

c2



Line Transition
• More generally, the full Einstein relationship is

Sν = jν/αν =
1

(n1g2/n2g1 − 1)

2hν3

c2

where degeneracy factors appear for levels that have multiple states

• Interactions drive Iν to Sν which nulls the rhs radiative trans. eqn.

• Likewise collisions drive f to some equilibrium distribution and
then remains constant thereafter in spite of further collisions→
black body distribution

• Now let’s turn to the Boltzmann equation relevant for CMB



Compton Collision Term
• Collision term for compton scattering (set ~ = c = k = 1 and

neglect Pauli blocking and polarization)

C[f ] =
1

2E(pf )

∫
d3pi

(2π)3

1

2E(pi)

∫
d3qf
(2π)3

1

2E(qf )

∫
d3qi

(2π)3

1

2E(qi)

× (2π)4δ(pf + qf − pi − qi)|M |2

× {fe(qi)f(pi)[1 + f(pf )]− fe(qf )f(pf )[1 + f(pi)]}

where the matrix element is calculated in field theory and is
Lorentz invariant. In terms of the rest frame α = e2/~c (cf. Klein
Nishina Cross Section)

|M |2 = 2(4π)2α2

[
E(pi)

E(pf )
+
E(pf )

E(pi)
− sin2 β

]
with β as the rest frame scattering angle



Liouville Equation
• In absence of scattering, the phase space distribution of photons in

each polarization state a is conserved along the propagation path

• Rewrite variables in terms of the photon propagation direction
q = qn̂, so fa(x, n̂, q, η) and

D

Dη
fa(x, n̂, q, η) = 0 =

(
∂

∂η
+
dx

dη
· ∂
∂x

+
dn̂

dη
· ∂
∂n̂

+
dq

dη
· ∂
∂q

)
fa

• For simplicity, assume spatially flat universe K = 0 then
dn̂/dη = 0 and dx = n̂dη

ḟa + n̂ · ∇fa + q̇
∂

∂q
fa = 0

• The spatial gradient describes the conversion from inhomogeneity
to anisotropy and the q̇ term the gravitational sources.



Photon Moments
• The photon stress-energy tensor is given by moments of

distribution function

T µν = g

∫
d3q

(2π)3

qµqν
E(q)

f

• ` = 0 Boltzmann moment is continuity equation: Θ
(0)
0 = δργ/4ργ

• ` = 1 moment is Navier-Stokes equation with Θ
(m)
1 = v

(m)
γ and

Θ
(0)
2 =

5

12
(1− 3K/k2)1/2Π(0)

γ

and similarly up to normalization for vector and tensor cases



Geometrical Projection
• Main content of Liouville equation is purely geometrical and

describes the projection of inhomogeneities into anisotropies

• Spatial gradient term hits plane wave:

n̂ · ∇eik·x = in̂ · keik·x = i

√
4π

3
kY 0

1 (n̂)eik·x

• Dipole term adds to angular dependence through the addition of
angular momentum√

4π

3
Y 0

1 Y
m
` =

κm`√
(2`+ 1)(2`− 1)

Y m
`−1 +

κm`+1√
(2`+ 1)(2`+ 3)

Y m
`+1

where κm` =
√
`2 −m2 is given by Clebsch-Gordon coefficients.



Temperature Hierarchy
• Absorb recoupling of angular momentum into evolution equation

for normal modes

Θ̇
(m)
` = k

[
κm`

2`+ 1
Θ

(m)
`−1 −

κm`+1

2`+ 3
Θ

(m)
`+1

]
− τ̇Θ

(m)
` + S

(m)
`

where S(m)
` are the gravitational (and later scattering sources;

added scattering suppression of anisotropy)

• An originally isotropic ` = 0 temperature perturbation will
eventually become a high order anisotropy by “free streaming” or
simple projection

• Original CMB codes solved the full hierarchy equations out to the
` of interest.



Gravitational Source
• Either extract the source S(m)

` from these associations or by noting
that the geodesic equation gives the redshifting term,
gµν = a2(ηµν + hµν)

q̇

q
= − ȧ

a
− 1

2
ninj ḣij − niḣ0i −

1

2
ni∇ih00

• We can further separate out the pieces of the metric fluctuation hij
in a 3+1 ADM split

h00 = −2A, h0i = −Bi, hij = 2HLδij + 2HT ij

and Fourier decompose these metric perturbation fields in their
scalar (0), vector (1), and tensor (2) components



Source Terms
• Temperature source terms S(m)

l (rows ±|m|; flat assumption
τ̇Θ

(0)
0 − Ḣ(0)

L τ̇ v
(0)
b + Ḃ(0) τ̇P (0) − 2

3
Ḣ

(0)
T

0 τ̇ v
(±1)
b + Ḃ(±1) τ̇P (±1) −

√
3

3
Ḣ

(±1)
T

0 0 τ̇P (±2) − Ḣ(±2)
T


where τ̇ ≡ neσTa terms are Thomson scattering sources with

P (m) ≡ 1

10
(Θ

(m)
2 −

√
6E

(m)
2 )

• Polarization source terms are generated through Thomson
scattering from temperature quadrupoles

dσT
dΩ

=
3

8π
|Ê′ · Ê|2σT ,



Polarized Source Term
.

Thomson 
Scattering

Θ

e

e

e

e

e-

'

'

• Heuristically, incoming
photon electric field accelerates
electron in the same direction
and radiates out a photon whose
polarization is given by projection
of this direction in transverse plane

• Consider scattering by 90 degrees: photons coming in from the
left/right supply one polarization state, in/out of page the other

• A quadrupole temperature anisotropy in left/right vs top/bottom
leads to net linear polarization

• Polarization source term

E (m)
` = −τ̇

√
6P (m)δ`,2 B(m)

` = 0



Quadrupole Source Term
.

m=0 m=1
m=2v

v

Compression
(Scalars) Vorticity

(Vectors)

Gravity Waves
(Tensors)

ê1

ê2

k

• Each type leads to quadrupoles with different azimuthal symmetry,
polarization aligned with cold lobe

• For the vector and tensor cases, the breaking of azimuthal
symmetry leads to B-mode polarization



Gravitational Wave Observability
• A gravitational wave makes a quadrupolar (transverse-traceless)

distortion to metric

• Just like the scale factor or spatial curvature, a temporal variation
in its amplitude leaves a residual temperature variation in CMB
photons – here anisotropic

• Before recombination, anisotropic variation is eliminated by
scattering

• Gravitational wave temperature effect drops sharply at the horizon
scale at recombination - distorts the spectrum

• Source to polarization goes as τ̇ /ḢT and peaks at the horizon not
damping scale

• B modes since symmetry of plane wave broken by the transverse
nature of gravity wave polarization



Truncated Hierarchy
• CMBFast introduced the hybrid truncated hierarchy, integral

solution technique

• Formal integral solution contains sources that are not external to
system but defined through the Boltzmann hierarchy itself

• Solution: recall the fluid approximation where interactions
suppress all but the ` = 0 (density) and ` = 1 (velocity) terms

• CMBFast extends this idea by solving a truncated hierarchy of
equations, e.g. out to ` = 25 with non-reflecting boundary
conditions

• For completeness, we explicitly derive the scattering source term
via polarized radiative transfer in the last part of the notes



Polarized Radiative Transfer
• Define a specific intensity “vector”: Iν = (Θ‖,Θ⊥, U, V ) where

Θ = Θ‖ + Θ⊥, Q = Θ‖ −Θ⊥

dIν
dη

= τ̇(Sν − Iν)

.

Thomson 
Scattering

Θ

e

e

e

e

e-

'

'

• Thomson collision
based on differential cross section

dσT
dΩ

=
3

8π
|Ê′ · Ê|2σT ,



Polarized Radiative Transfer
• Ê′ and Ê denote the incoming and outgoing directions of the

electric field or polarization vector.

• Thomson scattering by 90 deg: Θ⊥ → Θ⊥ but Θ‖ does not scatter

• More generally if β is the scattering angle

Sν =
3

8π

∫
dΩ′


cos2 β 0 0 0

0 1 0 0

0 0 cos β 0

0 0 0 cos β

 I′ν

• But to calculate Stokes parameters in a fixed coordinate system
must rotate into the scattering basis, scatter and rotate back out to
the fixed coordinate system



Thomson Collision Term
• The U → U ′ transfer follows by writing down the polarization

vectors in the 45◦ rotated basis

Ê1 =
1√
2

(Ê‖ + Ê⊥), Ê2 =
1√
2

(Ê‖ − Ê⊥)

• Define the temperature in this basis

Θ1 ∝ |Ê1 · Ê1|2Θ′1 + |Ê1 · Ê2|2Θ′2

∝ 1

4
(cos β + 1)2Θ′1 +

1

4
(cos β − 1)2Θ′2

Θ2 ∝ |Ê2 · Ê2|2Θ′2 + |Ê2 · Ê1|2Θ′1

∝ 1

4
(cos β + 1)2Θ′2 +

1

4
(cos β − 1)2Θ′1

or Θ1 −Θ2 ∝ cos β(Θ′1 −Θ′2)



Scattering Matrix
• Transfer matrix of Stokes state T ≡ (Θ, Q+ iU , Q− iU )

T ∝ S(β)T′

S(β) =
3

4


cos2 β + 1 −1

2
sin2 β −1

2
sin2 β

−1
2

sin2 β 1
2
(cos β + 1)2 1

2
(cos β − 1)2

−1
2

sin2 β 1
2
(cos β − 1)2 1

2
(cos β + 1)2


normalization factor of 3 is set by photon conservation in scattering



Scattering Matrix
• Transform to a fixed basis, by a rotation of the incoming and

outgoing states T = R(ψ)T where

R(ψ) =


1 0 0

0 e−2iψ 0

0 0 e2iψ


giving the scattering matrix

R(−γ)S(β)R(α) = (1)

1

2

√
4π

5


Y 0
2 (β, α) + 2

√
5Y 0

0 (β, α) −
√

3
2
Y −2
2 (β, α) −

√
3
2
Y 2
2 (β, α)

−
√
6 2Y

0
2 (β, α)e

2iγ 3 2Y
−2
2 (β, α)e2iγ 3 2Y

2
2 (β, α)e

2iγ

−
√
6−2Y

0
2 (β, α)e

−2iγ 3−2Y
−2
2 (β, α)e−2iγ 3−2Y

2
2 (β, α)e

−2iγ


(2)



Addition Theorem for Spin Harmonics
• Spin harmonics are related to rotation matrices as

sY
m
` (θ, φ) =

√
2`+ 1

4π
D`−ms(φ, θ, 0)

Note: for explicit evaluation sign convention differs from usual
(e.g. Jackson) by (−1)m

• Multiplication of rotations∑
m′′

D`mm′′(α2, β2, γ2)D`m′′m(α1, β1, γ1) = D`mm′(α, β, γ)

• Implies

∑
m

s1
Y m∗
` (θ′, φ′) s2

Y m
` (θ, φ) = (−1)s1−s2

√
2`+ 1

4π s2
Y −s1` (β, α)eis2γ



Sky Basis
• Scattering into the state (rest frame)

Cin[T] = τ̇

∫
dn̂′

4π
R(−γ)S(β)R(α)T(n̂′) ,

= τ̇

∫
dn̂′

4π
(Θ′, 0, 0) +

1

10
τ̇

∫
dn̂′

2∑
m=−2

P(m)(n̂, n̂′)T(n̂′) .

where the quadrupole coupling term is P(m)(n̂, n̂′) =


Y m∗2 (n̂′)Y m2 (n̂) −

√
3
2 2Y

m∗
2 (n̂′)Y m2 (n̂) −

√
3
2 −2Y

m∗
2 (n̂′)Y m2 (n̂)

−
√
6Y m∗2 (n̂′) 2Y

m
2 (n̂) 3 2Y

m∗
2 (n̂′) 2Y

m
2 (n̂) 3−2Y

m∗
2 (n̂′) 2Y

m
2 (n̂)

−
√
6Y m∗2 (n̂′)−2Y

m
2 (n̂) 3 2Y

m∗
2 (n̂′)−2Y

m
2 (n̂) 3−2Y

m∗
2 (n̂′)−2Y

m
2 (n̂)

 ,

expression uses angle addition relation above. We call this term
CQ.



Scattering Matrix
• Full scattering matrix involves difference of scattering into and out

of state

C[T] = Cin[T]− Cout[T]

• In the electron rest frame

C[T] = τ̇

∫
dn̂′

4π
(Θ′, 0, 0)− τ̇T + CQ[T]

which describes isotropization in the rest frame. All moments have
e−τ suppression except for isotropic temperature Θ0.
Transformation into the background frame simply induces a dipole
term

C[T] = τ̇

(
n̂ · vb +

∫
dn̂′

4π
Θ′, 0, 0

)
− τ̇T + CQ[T]



Integral Solution
• Hierarchy equation simply represents geometric projection,

exactly as we have seen before in the projection of temperature
perturbations on the last scattering surface

• In general, the solution describes the decomposition of the source
S

(m)
` with its local angular dependence as seen at a distance D.

• Proceed by decomposing the angular dependence of the plane
wave

eik·x =
∑
`

(−i)`
√

4π(2`+ 1)j`(kD)Y 0
` (n̂)

• Recouple to the local angular dependence of Gm
`

Gm
`s =

∑
`

(−i)`
√

4π(2`+ 1)α
(m)
`s`

(kD)Y m
` (n̂)



Integral Solution
• Projection kernels:

α
(m=0)
`s=0` ≡ j` α

(m=0)
`s=1` ≡ j′`

• Integral solution:

Θ
(m)
` (k, η0)

2`+ 1
=

∫ η0

0

dηe−τ
∑
`s

S
(m)
`s

α
(m)
`s`

(k(η0 − η))

• Power spectrum:

C` = 4π

∫
dk

k

k3

2π2

∑
m

〈Θ(m)∗
` Θ

(m)
` 〉

(2`+ 1)2

• Integration over an oscillatory radial source with finite width -
suppression of wavelengths that are shorter than width leads to
reduction in power by k∆η/` in the “Limber approximation”



Polarization Hierarchy
• In the same way, the coupling of a gradient or dipole angular

momentum to the spin harmonics leads to the polarization
hierarchy:

Ė
(m)
` = k

[
2κ
m
`

2`− 1
E

(m)
`−1 −

2m

`(`+ 1)
B

(m)
` − 2κ

m
`+1

2`+ 3
E

(m)
`+1

]
− τ̇E(m)

` + E(m)
`

Ḃ
(m)
` = k

[
2κ
m
`

2`− 1
B

(m)
`−1 +

2m

`(`+ 1)
E

(m)
` − 2κ

m
`+1

2`+ 3
B

(m)
`+1

]
− τ̇B(m)

` + B(m)
`

where 2κ
m
` =

√
(`2 −m2)(`2 − 4)/`2 is given by the

Clebsch-Gordon coefficients and E , B are the sources (scattering
only).

• Note that for vectors and tensors |m| > 0 and B modes may be
generated from E modes by projection. Cosmologically B(m)

` = 0



Polarization Integral Solution
• Again, we can recouple the plane wave angular momentum of the

source inhomogeneity to its local angular dependence directly

E
(m)
` (k, η0)

2`+ 1
=

∫ η0

0

dηe−τE(m)
`s

ε
(m)
`s`

(k(η0 − η))

B
(m)
` (k, η0)

2`+ 1
=

∫ η0

0

dηe−τE(m)
`s

β
(m)
`s`

(k(η0 − η))

• Power spectrum XY = ΘΘ,ΘE,EE,BB:

CXY
` = 4π

∫
dk

k

k3

2π2

∑
m

〈X(m)∗
` Y

(m)
` 〉

(2`+ 1)2

• We shall see that the only sources of temperature anisotropy are
` = 0, 1, 2 and polarization anisotropy ` = 2

• In the basis of ẑ = k̂ there are only m = 0,±1,±2 or scalar,
vector and tensor components



Polarization Sources
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Polarization Transfer
• A polarization source function with ` = 2, modulated with plane

wave orbital angular momentum

• Scalars have no B mode contribution, vectors mostly B and tensor
comparable B and E

.
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Thermalization and Spectral Distortions
• Full Boltzmann equation with Compton scattering (set
~ = c = k = 1 and neglect Pauli blocking and polarization)

∂f

∂t
=

1

2E(pf )

∫
d3pi

(2π)3

1

2E(pi)

∫
d3qf
(2π)3

1

2E(qf )

∫
d3qi

(2π)3

1

2E(qi)

× (2π)4δ(pf + qf − pi − qi)|M |2

× {fe(qi)f(pi)[1 + f(pf )]− fe(qf )f(pf )[1 + f(pi)]}

where the matrix element is calculated in field theory and is
Lorentz invariant. In terms of the rest frame α = e2/~c (c.f. Klein
Nishina Cross Section)

|M |2 = 2(4π)2α2

[
E(pi)

E(pf )
+
E(pf )

E(pi)
− sin2 β

]
with β as the rest frame scattering angle



Kompaneets Equation
• The Kompaneets equation is the radiative transfer equation in the

limit that electrons are thermal

fe = e−(m−µ)/Tee−q
2/2mTe

[
ne = e−(m−µ)/Te

(
mTe
2π

)3/2
]

=

(
2π

mTe

)3/2

nee
−q2/2mTe

and assume that the energy transfer is small (non-relativistic
electrons, Ei � m)

Ef − Ei
Ei

� 1 [O(Te/m,Ei/m)]

second order Doppler effect Te ∝ 〈v2〉 and electron recoil



Kompaneets Equation
• Kompaneets equation has derivatives of f because of this

expansion

∂f

∂t
= neσT

(
Te
m

)
1

x2

∂

∂x

[
x4

(
∂f

∂x
+ f(1 + f)

)]
x = E/Te

• Equilibrium solution must still be a Bose-Einstein distribution
∂f/∂t = 0 [

x4

(
∂f

∂x
+ f(1 + f)

)]
= K

∂f

∂x
+ f(1 + f) =

K

x4



Kompaneets Equation
• Assume that as x→ 0, f → 0 then K = 0 and

df

dx
= −f(1 + f) → df

f(1 + f)
= dx

ln
f

1 + f
= −x+ c → f

1 + f
= e−x+c

f =
e−x+c

1− e−x+c
=

1

ex−c − 1



Kompaneets Equation
• More generally, no evolution in the number density

nγ ∝
∫
d3pf ∝

∫
dxx2f

∂nγ
∂t
∝
∫
dxx2 1

x2

∂

∂x

[
x4

(
∂f

∂x
+ f(1 + f)

)]
∝ x4

[
∂f

∂x
+ f(1 + f)

]∞
0

= 0

• Energy evolution R ≡ neσT (Te/m)

ρ = 2

∫
d3p

(2π)3
Ef = 2

∫
p3dp

2π2
f =

T 4
e

π2

∫
x3dxf

∂ρ

∂t
=
T 4
e

π2
R

∫
dxx

∂

∂x

[
x4

(
∂f

∂x
+ f(1 + f)

)]



Kompaneets Equation
• Integrate by parts

∂ρ

∂t
= −T

4
e

π2
R

∫
dxx4

(
∂f

∂x
+ f(1 + f)

)
=
T 4
e

π2
R

∫
dx4x3f − T 4

e

π2
R

∫
dxx4f(1 + f)

= 4Rρ− T 4
e

π2
R

∫
dxx4f(1 + f)

Change in energy is difference between Doppler and recoil

• If f is a Bose-Einstein distribution at temperature Tγ

∂f

∂xγ
= −f(1 + f) xγ =

E

Tγ∫
dxx4f(1 + f) = −

∫
dxx4 ∂f

∂xγ
=

∫
dx4x3 dx

dxγ
f



Kompaneets Equation
• Radiative transfer equation for energy density

∂ρ

∂t
= 4neσT

Te
m

[
1− Tγ

Te

]
ρ

1

ρ

∂ρ

∂t
= 4neσT

(Te − Tγ)
m

• The analogue to the optical depth for energy transfer is the
Compton y parameter

dτ = neσtdt = neσTds

dy =
(Te − Tγ)

m
dτ

• Notice dy ∝ neTeds, i.e. y is the line of sight integral of the
electron gas pressure pe = neTe



Kompaneets Equation
• Radiative transfer equation for spectral distortion

• Rewrite Kompaneets equation with y as the time variable

• Assume that initial distribution is a blackbody at temperature
Tγ 6= Te on the RHS

• Integrate in the y � 1 limit

∆f

f
= −yxγexγ

(
4− xγ coth

xγ
2

)
• Deficit in Rayleigh-Jeans (= −2y), excess in Wien, null at
xγ = 3.83 or 217GHz

• “Compton-y” spectral distortion



SZ effect
• Example: hot X-ray cluster with kT ∼ keV and the CMB:
Te � Tγ

• Inverse Compton scattering transfers energy to the photons while
conserving the photon number

• Optically thin conditions: low energy photons boosted to high
energy leaving a deficit in the number density in the RJ tail and an
enhancement in the Wien tail called a Compton-y distortion — see
problem set

• Compton scattering off high energy electrons can give low energy
photons a large boost in energy but cannot create the photons in
the first place



Kompaneets Equation
• Numerical solution of the Kompaneets equation going from a

Compton-y distortion to a chemical potential distortion of a
blackbody

y–distortion

µ-distortion
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Black Body Formation
.

Δ
T/

T e
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p/Te

μ-distortion

blackbody

z/105=3.5
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z*

• After z ∼ 106, photon creating
processes γ + e− ↔ 2γ + e−

and bremmstrahlung
e− + p↔ e− + p+ γ

drop out of equilibrium
for photon energies E ∼ T .

• Compton scattering remains
effective in redistributing energy via exchange with electrons

• Out of equilibrium processes like decays leave residual photon
chemical potential imprint

• Observed black body spectrum places tight constraints on any that
might dump energy into the CMB



Bremmstrahlung
• Bemsstrahlung can be characterized by a collision term like the

Kompaneets equation (k = ~ = c = 1, x = hν/kTe)

Cff [f ] =

√
2

π

(
Te
m

)−1/2

Z2αT−3
e nineσTgff

e−x

x3
[1− (ex − 1)f ]

note that emission and absorption is balanced only if
f = 1/(ex − 1), a true blackbody (no chemical potential)



CMB Blackbody
• COBE FIRAS revealed a blackbody spectrum at T = 2.725K (or

cosmological density Ωγh
2 = 2.471× 10−5)
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Secondaries: Scattering
• Scattering secondaries: modulated Doppler effect and

Sunyaev-Zeldovich effect

• SZ effect from hot gas in halos: associate a temperature (or better,
a pressure profile) to each halo in simulations or semi-analytically
in the halo model
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Numerical Mass Function
• Cumulative halo abundance as function of mass: exponential

suppression at high mass, exponential sensitivity to amplitude of
linear structure σ8.
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The Halo Model
• NFW halos, of abundance nM given by mass function, clustered

according to the halo bias b(M) and the linear theory P (k)

• Power spectrum example:
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SZ Halo Model
• Instead of the mass profile of NFW use the pressure profile (e.g.

from hydrostatic equilibrium)

• Simple example to get scaling of assigning a virial temperature to
a halo of mass M

• Solve for velocity dispersion for a self gravitating system

σ =

(
3

5

GM

R

)1/2

• Associate the average kinetic energy with a temperature, called the
virial temperature

1

2
µmHσ

2 =
3

2
kTvirial

where µ is the mean molecular weight.



SZ Halo Model
• Solve for virial temperature

Tvirial =
µmHσ

2

3k
=
µmH

5k

GM

R
≈ µmH

5k
GM2/3

(
4πρ

3

)1/3

• Mass dependence Tvirial ∝M2/3 further weights the SZ
contribution to the high mass end

• Mass function says that the abundance of high mass haloes is
exponentially sensitive to the linear power spectrum

• SZ power spectrum extremely sensitive to amplitude of linear
power spectrum, i.e. σ8

• Unfortunately, also highly sensitive to astrophysical assumptions
in obtaining the gas pressure



Secondaries: SZ effect
• Halo model + simple virial temperature scaling
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Linear Doppler Effect
• Linear Doppler effect does not contribute when wave is transverse

to line of sight

but linear Local Temperature Doppler Effect
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Cancellation
.

overdensity

e— velocity redshifted γ

blueshifted γ

Observer

Cancellation
Reionization Surface

• During reionization,
velocities reach v ∼ 10−3

but Doppler ∆T/T � vτ .

• In linear theory each plane
wave contributes both
positive and negative
line of sight contributions
which cancel over the
extended duration of
reionization

• This behavior is typical for
secondaries: Limber approximation of the radiative transfer
integral solution - suppression of small scale contributions



Doppler Modulation
.

overdensity,
ionization patch,
cluster...

e-  velocity unscattered

blueshifted

Observer

Reionization Surface

• For large scale
velocity fields, the
probability of scattering
can be modulated on small
scales ∆T/T ∼ v δτ .

• If modulation is from small
scale density fluctuations
in the (quasi)linear regime:
Ostriker-Vishniac effect

• If modulation is from
collapsed objects: kinetic
SZ effect

• If modulation is from ionization fluctuations: patchy or
inhomogeneous ionization effect



Patchy Reionization
.

coherent velocity

• Models of
reionization
predict size
and correlation
of ionization
bubbles

• In extended
Press-Schechter
model, predict
bubbles in same way as predict halos

• Power spectrum of ionization fluctuation and large scale velocity
fields predict modulated temperature (and polarization) secondary
power spectra



Secondaries: Modulated Doppler
• Modulated Doppler effect contributes blackbody fluctuations

beyond the damping tail
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