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Set 2: Beyond the Primary Temperature Anisotropy

(Polarization, Inflation, Lensing, Boltzmann/Radiation-Transfer Eqn, Spectral Distortions...)

Wayne Hu



CMB Power Spectra

e Power spectra
of CMB

— temperature
— polarization

— lensing
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Stokes Parameters: A Brief Review

e Specific intensity is related to quadratic combinations of the
electric field.

e Define intensity matrix (time averaged over oscillations) (E ET)

e Hermitian matrix can be decomposed into Pauli matrices

1
P:<EET>:5([0'0+Q<73+U‘71_v"'?)7

where

1 0 0 1 0 —1 I 0
0'0 p— 70'1 p— 70'2 p— 70'3 —
0 1 1 0 1 0 0 —1

e Stokes parameters recovered as Tr(o;P)

e CMB specific: blackbody so units of brightness temperature for
Stokes parameters [ — O



Stokes Parameters

e Consider a general plane wave solution

E(ta Z) — El (ta Z)él + EQ(ta Z)é2
Ei(t,z) = A el eilkz—wt)
Es(t, z) = Ase™? el(kz—wt)

e Explicitly:

[ = (BB} + B:E3) = A} + A2

Q = (E\E} — EyE3) = Al — A;

U= (B\Ej + B2 Ef) = 2A, Ay cos(¢a — 1)

V = —i(E\E} — ExEY) = 24, Ay sin(¢s — ¢1)

so that the Stokes parameters define the state up to an
unobservable overall phase of the wave



Detection

e This suggests that T

€ €
abstractly there are two U omt 2

different ways to detect

polarization: separate

and difference orthogonal 81 82
modes (bolometers /, ()

or correlate the separated i
components (U, V). % Q S% ‘ v ‘ ,X\ ‘
O/

R
)

e In the correlator example the natural output would be U but one
can recover V' by introducing a phase lag ¢ = /2 on one arm, and
() by having the OMT pick out directions rotated by 7 /4.

e Likewise, in the bolometer example, one can rotate the polarizer
and also introduce a coherent front end to change V' to U.



Detection

e Techniques also differ in the systematics that can convert
unpolarized sky to fake polarization

e Differencing detectors are sensitive to relative gain fluctuations

e Correlation detectors are sensitive to cross coupling between the
arms

e More generally, the intended block diagram and systematic
problems map components of the polarization matrix onto others
and are kept track of through “Jones” or instrumental response
matrices Eq. = JE;,

Pdet — J]-Dan]L

where the end result 1s either a differencing or a correlation of the
Pdet-



Polarization

e Radiation field involves a directed quantity, the electric field
vector, which defines the polarization

e Consider a general plane wave solution
E(ta Z) — El (ta Z)él =+ EQ(t7 Z)éQ

Ei(t, z) = ReA;e1eibz—wt)

Es(t, z) = ReAye?2eilkz—wt)
or at z = 0 the field vector traces out an ellipse

E(t, O) E— Al COS(Cdt — le)él —+ AQ COS(CUt — ng)ég
with principal axes defined by
E(t,0) = A} cos(wt)é] — A} sin(wt)é,

so as to trace out a clockwise rotation for A7, A;, > 0



Polarization

e Define polarization angle

~/ ~ . A
€; = COs x€1 + Sl x€s

A

/ . A A
€, = — SIn Y€1 + COoS X €2

e Match

E(t,0) = A] coswt[cos y€; + sin yé,]
— A, cos wt|— sin y€; + cos x€s)
= Ai[cos ¢y cos wt + sin ¢ sin wt|e;

+ As|cos ¢ cos wt + sin ¢g sin wit|és




Polarization
e Define relative strength of two principal states
Al = Eycos A, = Eysinf3
e Characterize the polarization by two angles
Ajcos ¢y = Eycos fcosy, Ajqsin¢; = Eysin 8 sin vy,
Ay cos ¢y = Eycos fsin vy, Ay sin g = —FEjy sin 5 cos
Or Stokes parameters by
[ =E;, Q= Ejcos23cos2y
U= E5cos2Bsin2y, V = Ejsin2f

o So I? = (Q* + U? + V#, double angles reflect the spin 2 field or
headless vector nature of polarization



Polarization

Special cases

e If 3 = 0,7/2, 7w then only one principal axis, ellipse collapses to a
line and V' = 0 — linear polarization oriented at angle

If y=0,7/2,mthen ] =+Q and U =0
If y=n/4,37/4...then ] = +U and Q) =0-soU is Q) ina
frame rotated by 45 degrees

o If 5 = 7/4,3m/4, then principal components have equal strength

and F field rotatesonacircle: [ =+V and @ =U =0 —
circular polarization

e U/() = tan 2y defines angle of linear polarization and
V /I = sin 2 defines degree of circular polarization



Natural Light

e A monochromatic plane wave 1s completely polarized
P=Q*+U*+V?

e Polarization matrix 1s like a density matrix in quantum mechanics
and allows for pure (coherent) states and mixed states

e Suppose the total E;; field 1s composed of different (frequency)
components

Etot — Z Ei

e Then components decorrelate in time average

(BwEle) =Y (BE])) =Y (BE])

1 )



Natural Light

e So Stokes parameters of incoherent contributions add

I=) 1 Q=) Q U= U V=)V

and since individual (), U and V' can have either sign:
I* > Q? + U? + V72, all 4 Stokes parameters needed



Linear Polarization
o ) x (E1EY) — (EuE3), U o< (E1ES) + (EyEY).
e Counterclockwise rotation of axes by 6 = 45°
By = (B, —E)/V2, Ey,=(E,+E)/V?2

o U x (EE*) — (EyES), difference of intensities at 45° or '
e More generally, P transforms as a tensor under rotations and

Q' = cos(20)Q + sin(20)U

U' = —sin(20)Q + cos(20)U

or
Q' +iU = eT[Q + iU

acquires a phase under rotation and 1s a spin +2 object



Coordinate Independent Representation

2
4 B

0“= "0
IIIIIQ@ ST

>
‘E“

e Two directions: orientation of polarization N

and change in amplitude, i.e. () and

U 1n the basis of the Fourier wavevector
(pointing with angle ¢;) for small sections
of sky are called I~ and B components

E) £iB(1) = - / da[Q' (1) + iU’ (1)) e 1™

_ e / FAIQ(R) & iU (R)]e~
e For the B-mode to not vanish, the
polarization must point in a direction not
related to the wavevector - not possible

for density fluctuations in linear theory

e Generalize to all-sky: eigenmodes of Laplace operator of tensor



Spin Harmonics

e Laplace Eigenfunctions

VQiQYEm[O'?, Fio| = —[l(l+1) —4]Y|o3 Fioq]

e Spin s spherical harmonics: orthogonal and complete

[ Y (8. Yo () = G
Z Y, (n)Yy,(n') =6(¢ — ¢')d(cosh — cos @)

where the ordinary spherical harmonics are Yy,,, = oY

e Given 1n terms of the rotation matrix

2€—|—1
47

snm(ﬁg) — (_1) (0450)



Polarization Multipoles
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Statistical Representation

e All-sky decomposition

Q1) +iU(R)] = > [Epm £ iBom]2Yim(0)

m

e Power spectra

<EZmE€m> — 5@8’5mm’ EEE

<BZmB€m> — 5@6’5mm’ KBB
e Cross correlation
<@ZmE€m> — 5%’5mm’C?E

others vanish if parity 1s conserved



Thomson Scattering

e Polarization state of radiation in direction n described by the
intensity matrix ( F;(n)E?(n)), where E is the electric field vector
and the brackets denote time averaging.

e Differential cross section

do
df)

where o = 8ma?/3m, is the Thomson cross section, E' and E

3 . .
= —W]E’-E\QJT,

denote the incoming and outgoing directions of the electric field or
polarization vector.

e Summed over angle and incoming polarization

> [l

1=1,2



Polarization Generation

y E—-mode

e Heuristic:

B—mode k —>

e But photon cannot be longitudinally polarized so that scattering

. . . . Quadrupole
incoming radiation shakes J

. . . Thomson

an electron 1n direction Scattering )

. ~ <
of electric field vector E’

Linear
Polarization

N)

e Radiates photon with
polarization also in direction E’

into 90° can only pass one polarization
e Linearly polarized radiation like polarization by reflection
e Unlike reflection of sunlight, incoming radiation 1s nearly 1sotropic
e Missing from direction orthogonal to original incoming direction

e Only quadrupole anisotropy generates polarization by Thomson
scattering



Polarized Radiative Transfer

e Source of linear polarization is the radiation quadrupole

e Quadrupolar structure transferred through plane wave or orbital
angular momentum onto polarization anisotropy

e Recall monopole and dipole emission structure — same procedure
except couple to s = +2, £ = 2:

+2Yon Yo = 12Yu—2ym - - - +2Y(042)m

temperature

last scattering surface




Polarization Transfer

e A polarization source function with £ = 2, modulated with plane
wave orbital angular momentum

e Scalars have no 5B mode contribution, vectors mostly 55 and tensor
comparable B and E

(a) Polarization Pattern (b) Multipole Power
1.0F ]

0.5 F




Acoustic Polarization

Break down of tight-coupling leads to quadrupole anisotropy of

k
7T,y ~ ;/U'Y
Scaling kp = (7/n.)Y? — 7 = k%,
Know: kps, ~ kpn, ~ 10

So:



Acoustic Polarization

e Gradient of velocity 1s along direction of wavevector, so
polarization 1s pure f~-mode

e Velocity 1s 90° out of phase with temperature — turning points of
oscillator are zero points of velocity:

© + VU  cos(ks); v, o< sin(ks)

e Polarization peaks are at troughs of temperature power



Cross Correlation

e Cross correlation of temperature and polarization

(© 4+ ¥)(v,) x cos(ks)sin(ks) o sin(2ks)
e Oscillation at twice the frequency

e Correlation: radial or tangential around hot spots

e Partial correlation: easier to measure if polarization data 1s noisy,
harder to measure if polarization data is high S/ or if bands do
not resolve oscillations

e Good check for systematics and foregrounds

e Comparison of temperature and polarization 1s proof against
features 1n 1nitial conditions mimicking acoustic features



Reionization

e Reionization causes
rescattering of radiation

e Suppresses temperature anisotopy
as e~ 7 and changes interpretation
of amplitude to A,e™%7

e Electron sees temperature
anisotropy on its recombination

surface

e For wavelengths that are comparable to the horizon at reionization,
a quadrupole moment

e Rescatters to a linear polarization that 1s correlated with the
Sachs-Wolfe temperature anisotropy



Reionization

e Amplitude of
CF* depends mainly on 7

e Shape of C/'* depends
on reionization history

Transfer function

e Horizon at earlier epochs

subtends a smaller angle,

higher multipole peak

e Precision measurements can constrain the reionization history to
be either low or high z dominated
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Inflation: Acceleration from Scalar Field

e Unlike a true cosmological V(9): potential energy

constant, the period

small
kinetic

of exponential expansion

Hubble

must end to produce ubl
friction

the hot big bang phase

e A cosmological constant is P
like potential energy - so 1imagine a ball rolling slowly 1n into a
valley eventually converting potential into kinetic energy

e Technically, this 1s a scalar field: where the position on the hill is ¢
and the height of the potential is V' (¢)

e In spacetime ¢(x,t) is a function of position: different spacetime
points can be at different field positions



Horizon Problem

e The horizon in a decelerating universe scales as 1 oc a1 3%)/2,
w > —1/3. For example in a matter dominated universe

N o q1/2

e CMB decoupled at a, = 107 so subtends an angle on the sky

T«
o

e So why is the CMB sky isotropic to 10™° in temperature if it is

=al/? ~0.03~2°

composed of ~ 10? causally disconnected regions

o If smooth by fiat, why are there 10° fluctuations correlated on
superhorizon scales



Flatness & Relic Problems

e Flatness problem: why is the radius of curvature larger than the
observable universe. (Before the CMB determinations, why 1s it at
least comparable to observable universe |x| < €),,)

2 and

e Also phrased as a coincidence problem: since px o< a™
om o< a3, why would they be comparable today — modern version

1s dark energy coincidence p, = const.

e Relic problem — why don’t relics like monopoles dominate the
energy density

e Inflation is a theory that solves all three problems at once and also
supplies a source for density perturbations



Accelerating Expansion

e In a matter or radiation dominated universe, the horizon grows as a
power law 1n a so that there 1s no way to establish causal contact
on a scale longer than the inverse Hubble length (1/aH, comoving
coordinates) at any given time: general for a decelerating universe

1
= [ dl
' / naaH(a)

o H? xx poc a0+ qH oc a=(1+3w)/2 critical value of w = —1/3,

the division between acceleration and deceleration determines

whether as the universe expands comoving observers leave or
come 1nto causal contact

e Recall this 1s our fate in the current accelerating expansion —
observers that were once in causal contact will no longer be able to
communicate with each other due to the rapid expansion



Causal Contact

e True horizon always grows meaning that one always sees more and
more of the universe. But the comoving Hubble length decreases:
the difference in conformal time, the distance a photon can travel
between two epochs denoted by the scale factor decreases.
Regions that were 1n causal contact, leave causal contact.

e Horizon problem solved if the universe was in an acceleration
phase up to 7; and the conformal time since then 1s shorter than the
total conformal age

Mo > Mo — i

total distance > distance traveled since inflation

apparent horizon



Flatness & Relic

e Comoving radius of curvature 1s constant and can even be small
compared to the full horizon R < ng yet still ng > R > no — n;

e In physical coordinates, the rapid expansion of the universe makes
the current observable universe much smaller than the curvature
scale

e Likewise, the number density of relics formed before the
accelerating (or inflationary) epoch is diluted to make them rare in
the current observable volume

e Common to place the zero point of (conformal) time at the end of
inflation 7 = 1 — 7;. Here conformal time 1s negative during
inflation and size reflects the distance a photon can travel from that
epoch to the end of inflation. To avoid confusion with the original
zero point n(a = 0) = 0 let’s call this 7.



Sufficient Inflation

e If the accelerating component has equation of state w = —1, p =
const., H = H; const. so that a o< exp(Ht)

a

a;

. 1 1

= | dna— = —
1
G,HZ'

e In particular, the current horizon scale Hyng ~ 1 exited the horizon

(a; > a)

Y
Y

during inflation at




Sufficient Inflation

e Given some energy scale for inflation that defines H,, this tells us
what the scale factor ay was when the current horizon left the
horizon during inflation

e If we knew what the scale factor a; was at the end of inflation, we
could figure out the number of efolds N = In(a;/ay) between
these two epochs

e A rough way to characterize this is to quote it in terms of an
effective temperature 7" oc Tovpa ™' at the end of inflation

a; Tevs Hi pi/t T,
In-2L =1 — 65+ 21 ! 1
Yo ML oH, T (1014(}6\/ "\ 1010GeV

e So inflation lasted at least ~ 60efolds - a more detailed calculation

would involve the epoch of reheating and g, factors, so 1T; # T cheat



Scalar Fields

Inflation ends when the field rolls sufficiently down the potential
that 1ts kinetic energy becomes comparable to its potential energy

The field then oscillates at the bottom of the potential and small
couplings to standard model particles “reheats” the universe
converting the inflaton energy into particles

Due to the uncertainty principle in quantum mechanics, the field
cannot remain perfectly unperturbed

The small field fluctuations mean that inflation ends at a slightly
different time at different points in space - leaving fluctuations in
the scale factor, which are curvature or gravitational potential
fluctuations

Gravitational attraction into these potential wells forms all of the
structure in the universe



Scalar Fields

e Mathematically, the scalar field obeys the Klein-Gordon equation
in an expanding universe (¢ = dV/d¢p = V'
d’¢ do
T2 +3H a7 +V' =0
where V' = dV/d¢ is the slope of the potential - the first and third
term look like the equations of motion of a ball rolling down a hill
- acceleration = gradient of potential

e The second d¢/dt term is a friction term provided by the
expansion - “Hubble friction” - just like particle numbers and
energy density dilute with the expansion, so too does the kinetic
energy of the scalar field.



Scalar Fields

1 (de\”
Pkinetic — 9 At

so, without the V'’ forcing term, how does the energy density

e Kinetic energy 1s

decay?

e Transform to Ina = NV assuming H =~ const.

d*¢ do d¢
LTI e SN
gz TP TV

KE decays as pyinetic X a8 = a3 Wkinetic) | or wiipetic = +1
e Compare with the potential energy at fixed field position
Wpotential — —1

o Total Pressure. Py — Pkinetic — Ppotential — 1/2(d§b/dt)2 -V



Scalar Fields

e As the field rolls it slowly loses total energy to friction, which
defines the slow roll parameter

B dlnH_?)(lJr )
H = dlna 2 We

e Requirement that inflation last for the sufficient ~60 efolds
requires that ey < 1/60 < 1

e This requirement also means that e ; must also be slowly varying
so as not to grow much during these 60 efolds

- ldlney
2 dlna

with |d;| < 1 (its defined this way since it also determines how
close the roll is to friction dominated 3Hd¢/dt ~ —V")

01




Perturbation Generation

e Horizon scale 1/H during inflation acts like event horizon - things
that are separated by more than this distance leave causal contact

e Result of treating field fluctuations as a quantum simple harmonic
oscillator: uncertainty principle leads to inevitable fluctuations

e Fluctuations freeze in when the comoving wavelength A = 27 /k
becomes larger than the comoving horizon 1/aH, so that parts of

the fluctuation are no longer in causal contact with itself, 1.e. when
k~aH

H
59~

e We can also view this as a typical freezeout problem. Quantum
fluctuations behave as a simple harmonic oscillator with frequency
or rate w = k/a and freezeout occurs when w = H,so k/a = H



Perturbation Generation

e Interpretation: universe 1s expanding quickly enough that various
parts of the wave cannot “find” each other to maintain
“equilibrium” (continue oscillating)

e Can heuristically understand the freezout value in the same way as
Hawking radiation from a black hole — virtual particles become
real when separated by the horizon

e Here H defines the horizon area (or in black hole language the
Hawking temperature) and dimensional analysis says the field
fluctuation must scale with //, the only dimensionful quantity

e Because H remains roughly constant during inflation the result 1s a
scale 1nvariant spectrum of fluctuations

e Let’s prove this by analogy to the quantum harmonic oscillator



Perturbation Generation

e For a sufficiently flat potential and assuming slow roll, the field
perturbation 0¢ obeys the free Klein Gordon equation [10¢ = 0

5é + 2256 + k266
a
where overdots are conformal time derivatives with 7 = 0 as the

end of inflation

e We want to take out the effect of the expansion in the “friction”
term so by analogy to comoving coordinates define u = ao¢

u+<ﬁ—9>u—o
a

and let’s further note that in slow roll f is nearly constant so

~ “ da 1 a 2
= ~ -~
a

a2~ aH’ ~ 52
0., Ha aH 7



Perturbation Generation

e Under these approximations

2
u—l—(k2—j)u:0
Ui

e Note that for subhorizon modes |k7| > 1 and u behaves as a
stmple harmonic oscillator

i+ Eku=0

e Quantize the simple harmonic oscillator as in ordinary quantum
mechanics

o = u(k,n)a+u*(k,7)a’

where modefunction u(k, 77) satisfies classical equation of motion



Perturbation Generation

e Creation and annihilation operators satisty

a,a'] =1, al0) =0
e Field uncertainty principle: |z, | =@ — |4, du/dn] =i

1 -
u(k, i) = —m=c

V2k

e Equivalently, zero point fluctuations of ground state

(u?) = (0|u'u|0) = (0|(w*a’ + ua)(ua + u*a")|0)
= (0]aa|0)|u(k, 7)”
= {

0l[a,a'] + a'al0) u(k, 7)[*

1
— |lu(k. 7| = —



Perturbation Generation

e From these initial conditions, modefunction then has the exact
solution

1 ? -
U= ——[1—-—)e
V2k ( kn)
e For |kn| < 1 (late times, > Hubble length) fluctuation freezes in
, | ) 1Ha
lim v = —

k7| —0 VoE ki /283
1 H
S —
¢ v/ 2k3

e Power spectrum of field fluctuations

k3|5¢‘2 B H2
om2  (27)2

2



Curvature Fluctuation

e Field fluctuations change the scale factor at which inflation ends

dlna dt H? dt
e dt do o do
e Using the equation V(9)

of state of ¢ we
can convert d¢/dt to ey

Hubble

Wy = Pe friction
Pg end of inflation
_ (de/at)?/2 -V 7
(do/dt)?/2 +V
_ (ofd?
V

and H? ~ 87GV/3 from Friedmann



Curvature Fluctuation

e SO

3(do/d)? _ (do/di)?
v T

and the variance of fluctuations per log wavenumber d In k

€Eg ~

N H* 47G NGH2

A2 H%ey 7 eq

A} = (R?)

e Crucial point: curvature fluctuations are enhanced over field
fluctuations by the slowness of roll:
2
A% o ﬁ
€H
e We shall see that this means the ratio of gravitational waves to
curvature fluctuations are suppressed by ey



Tilt
e Curvature power spectrum 1s scale invariant to the extent that

and ey are constant

e Scalar spectral index

din A% | din H dlney
dlnk °7 " “dlnk  dlnk
e Evaluate at horizon crossing where fluctuation freezes £ = a
dinH dinH
dlnk  dlna "
dlne dlne
~ = 2
dnk ~ ding 20T e

e Tilt in the slow-roll approximation

ns—lz —46_[_[—2(51



Gravitational Waves

e Gravitational wave amplitude satisfies Klein-Gordon equation
(K = 0), same as scalar field

dhy dhy . k?
dt2 —|_ 3H dt —|_ gh.hx — O .

e Acquires quantum fluctuations in same manner as ¢. Lagrangian

sets the normalization

e Scale-invariant gravitational wave amplitude

HQ
(27)

e Gravitational wave power o« H? oc V o< E} where Ej is the energy

A%, = 167G

scale of inflation



Gravitational Waves

e Tensor-scalar ratio 1s therefore generally small

2

— +
T:4A—% — 16€H

e Tensor tilt:

dIn A® dln H
- T =np =2 - = —2epqg

dln k

e Consistency relation between tensor-scalar ratio and tensor tilt

r = 16e = —8nr

e Measurement of scalar tilt and gravitational wave amplitude

constrains inflationary model in the slow roll context

e Comparision of tensor-scalar ratio and tensor tilt tests the 1dea of

slow roll itself



Observability

e Gravitational waves from inflation can be measured via its imprint
on the polarization of the CMB
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Tensor Power

e Gravitational waves obey Vall
a Klein-Gordon like equation J\,@\N
e Like inflation, perturbations generated

by quantum fluctuations during inflation 1/aH

e Freeze out at horizon crossing
during inflation an amplitude
that reflects the energy scale of inflation

A2 = H*
X 27T2M}2)1

x E}

e Gravitational waves remain frozen outside the horizon at constant
amplitude

e Oscillate inside the horizon and decay or redshift as radiation



Tensor Quadrupoles

e Changing transverse-traceless
distortion of space creates a
quadrupole CMB anisotropy
much like the distortion
of test ring of particles

Tensors
(Gravity Waves)

e As the tensor mode enters the
horizon it imprints a quadrupole
temperature ¢ = 2, m = +2 in plane wave coordinates k || z

e Modes that cross before recombination: effect erased by
rescattering e~ due to 1ts 1sotropizing effect

e Modes that cross after recombination: integrate contributions
along the line of sight - tensor ISW effect



Tensor Temperature Power Spectrum

e Resulting spectum,
near scale invariant out to

N=50

e

N=60

a iO (r0.002

to-Scalar Rat
0.00 0.05 0.10 0.15 0.20 0.25

horizon at recombination ¢ < 100

Tensor-to-Scalar

e Suppressed on smaller scales or

higher multipoles ¢ > 100, weakly

0.94 0.96 0.98 1.00

degenerate with tilt Primordia Tit (n)

e When added to scalar spectrum, enhances large scale anisotropy
over small scale

e Shape of total temperature spectrum can place tight limit r < 0.1,
for power law curvature spectrum

e Smaller tensor-scalar ratios cannot be constrained by temperature
alone due the high cosmic variance of the low multipole specrum



Tensor Polarization Power Spectrum

e Polarization of gravitational
wave determines the
quadrupole temperature anisotropy

e Scattering of quadrupole
temperature anisotropy generates
linear polarization aligned
with cold lobe

e Direction of CMB polarization is therefore determined by
gravitational wave polarization rather than direction of wavevector

e [-mode polarization when the amplitude 1s modulated by the
plane wave

e Requires scattering: two peaks - horizon at recombination and
reionization



Tensor Polarization Power Spectrum

e Measuring 5-modes from gravitational waves determines the
energy scale of inflation

E  \°
AB, ... ~ 0.024 - K
peak (1016(}6\/) K

e Also generates F/-mode polarization which, like temperature, 1s a
consistency check for r» ~ 0.1

e Projection 1s less sharp than for scalar [/, so evading temperature
bounds by adding features to the curvature spectrum can be tested



Gravitational Lensing: Signal and Noise
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Gravitational Lensing

e In general relativity, masses curve space and bend the trajectory of
photons - for this discussion lets restore the different units of ¢ and
x by restoring c - but note that 1s now does not represent the
coordinate speed of light

e Newtonian approximation to the line element, neglecting the
expansion (or in conformal coordinates)

ds* = —(1+2¥/cH)dt* + (1 + 20 /c*)da?

e Photons travel on null geodesics (ds* = 0) - so the coordinate
speed of light 1s

dx 1+ W/c?
” ~

— ~ c(l — 20/
dt Cl—I—CID/c2 cl /)




Gravitational Lensing

e Coordinate speed of light slows refraction
in the presence of mass due to
the warping of spacetime
as quantified by the gravitational potential

Can be modelled as an optics problem,
defines an effective index of refraction

C 2GM\ ! 2GM
n=-=1,1- > ~ 1+ >
Trc TrcC

U

e As light passes by the object, the change 1n the index of refraction
or delay of the propagation of wavefronts bends the trajectory

2GM

T262

A

r

Vn =




Strong Gravitational Lensing

e Calculation would e image
take the same form if we took ~ g{¥
L . =L
a nonrelativistic particle of 2

mass m and used Newtonian

mechanics - general relativity
just doubles it the deflection for light due to space curvature

e Deflection i1s small so integrate the transverse (L) deflection on the
unperturbed trajectory

% % 2G M AGM
¢——/ dwi—/ do—2GM0 4G

—00 —00 (7"8 —+ 1’2)3/2 C2 7QOC2




Lens Equation

e Given the thin lens deflection formula, the lens equation follows
from simple geometry

e Solve for the image position 6 with respect to line of sight. Small
angle approximation

y = (ds —dr)¢ =~ ds(6 — B)
e Substitute in deflection angle

AGM

(ds —dp)—— =~ ds(0 — )

ToC
e Eliminate ro = dysinf ~ d;0

e For cosmological distances replace d’s with angular diameter
distances D 4



Lens Equation

.. Image

e Solve for 6 to obtain the lens
equation

g dOM (ds—dL) L,

ource

S

2 dde

e A quadratic equation with two

solutions for the i1mage position - two 1mages

6 GM (dg—d
9, == 241
£ 7 9 2 b=+ 6(:2 ded;

e Sum of angles - second 1image has negative angle - opposite side of

lens

9+ﬁ+‘@_3::ﬁ



Einstein Ring

e If source
1s aligned right behind the
lens 8 = 0 and the two images
merge into a ring - Einstein
ring - at an angular separation

g _ [AGM (ds—d;
B 2 ded;

e More generally, quasar 1s

lensed by the extended mass of a galaxy that is not perfectly
axially symmetric



Magnification

Lens equation in terms
of Einstein radius

62 — 8O — 62 = 0

Given an extended source that
covers an angular distance df will
have an 1image cover an angular
distance df. related by the
derivative df /df3

The displacement in the 1image 1s purely radial so that the angular
scale of arc d¢ remains unchanged.

The surface area of the source 5dSd¢ thus becomes 6.Ldf0.Ldo.



Cosmic Shear

e On even larger scales, the large-scale structure weakly shears

ing

weak lens

background 1images
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Weak Gravitational Lensing

e Weak lensing 1s a surface brightness conserving remapping of
source to image planes by the gradient of the projected potential

1o D*—D X
o) =2 [ an Sy,

such that the fields are remapped as

r(n) = x(n+ Vo),

where x € {©, (), U} temperature and polarization.

e Taylor expansion leads to product of fields and Fourier
mode-coupling



Flat-sky Treatment

e Talyor expand

~

O(n) =6n + Vo)
= O(1) + Vio(0) V'O () + £ Vio() V,0(0) V'O (M) + ..

e Fourier decomposition




Flat-sky Treatment

e Mode coupling of harmonics

where
LLL)=¢o01-1)1-1) L
1 d?1
T 2 / (277)22 o(l)¢*(la+ 1L =1 (L-L)(L+L -1 L.

e Represents a coupling of harmonics separated by L ~ 60 peak of

deflection power



Power Spectrum

e Power spectra

(O (e()) = (2m)*(1-1) ¢,
(¢*(Me(l)) = (2m)?6(1 1) 77,

becomes
2 ~ d211 ~ 2
Cl — (]._Z R) Cl_l_ (271_) Cll 11|C [(].—]_1) ].1] ,
where
R = dl cee.

47T [



Smoothing Power Spectrum

o If éz slowly varying 102 £ | ]
then two term cancel 1010k .

S f lensed ;

~ d211 N % 10-11 = T unlensed \ 3
C, wa(l : 11)2 ~ Z2RCZ Ak P :
(27’(’)2 10—125— \ 3

e So lensing acts to smooth 1013é—
features in the power [ ||||||1|0 L1 |||||1|(lO L1 ||||1|(|)(|)0 L1 1]

spectrum. Smoothing
kernel 1s L ~ 60 the peak of deflection power spectrum

e Because acoustic feature appear on a scale [4 ~ 300, smoothing is
a subtle effect in the power spectrum.

e Lensing generates power below the damping scale which directly
reflect power in deflections on the same scale



Secondaries: Gravitational

e Gravitational lensing is a gravitational CMB secondary

e Others are the ISW effect from dark energy and its Rees-Sciama
(RS) counterpart from nonlinear structure

100: T LA | T T 1 1T 1T 11r1] T LA B B B R L
suppression
lensin
AIOE n gn _: F
L ||'| 1F
N—’ ¢\ Iy II B i
S I » 1 11l
< i
1 - 1 %
[ 1 :
[ 1
1
1
!
0.1 AV




Polarization Lensing

e Polarization field harmonics lensed similarly

d?l

- +2i¢y 1B
27)° E+iB|(1)e™""e

Qi@ -~ |
so that
(Q £iU](n) = [Q £iU|(h + V)
~ [Q +4U)(h) + Vip(0)V[Q + U] (1)

+ %Vﬂ(fl)vg'@b(ﬁ)vivj Q£iU](n)



Polarization Power Spectra
e Carrying through the algebra

. 1 [ d?1
BB 5 BB 1 ol
G = (1 -FR) 7 + 5/ e (1= 1) - LICE,

X [(CEF 4- CPB) 4 cos(4¢1, ) (CFE — CEPY),

CBB — (1 —2R) CBB L [ L 1—1,)-1,]2C%?
[ T ( o ) [ + 5 (27_‘_)2[( o 1) | 1] 11—11 |

x [(CFF + CPPY — cos(4¢) ) (CEF — CPPY]

. d?1
CPF = (1= PR)CP + [ Gl -1 PR,

X C’SE cos(2¢y, ),



Polarization Lensing

e Lensing generates B-modes out of the acoustic polaraization

F/-modes contaminates gravitational wave signature if
E; < 101GeV.

Original Lensed E Lensed B



Reconstruction from the CMB

e Correlation between Fourier moments for a fixed lens reflect
lensing potential

(zM2'())ems = fa(LT)o(1+1),

where x € temperature, polarization fields and f,, is a fixed weight
that reflects geometry

e Each pair forms a noisy estimate of the potential or projected mass
- just like a pair of galaxy shears

e Minimum variance weight all pairs to form an estimator of the
lensing mass

e Averaging over lenses restore statistical 1sotropy so that the power
spectrum still describes the two point correlation - in this sense
lensing produces non-Gaussianity, not statistical anisotropy



Reconstruction from the CMB

e With high signal-to-noise B-maps, here 1K', quadratic
reconstruction signal-to-noise dominated by EB combination

e Use two-point correlations in reconstruction map to measure
lensing power spectrum

e Use reconstruction to subtract out lensing contamination of

gravitational wave B modes

Lensing Potential TT Reconstruction EB Reconstruction



CMB Power Spectra

e Power spectra
of CMB

— temperature
— polarization

— lensing
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End of 2021 Lectures

e Supplemental notes follow:
Boltzmann Equation and Radiative Transfer
Black Body Formation and Spectral Distortions

SZ. effect and Secondaries



Boltzmann Equation

e Now let’s examine some of the formalism behind the previous
results with an aim of also understanding

Thermalization: formation of the blackbody
Compton y and p distortions: SZ effect as first step to
thermalization with a hot electron plasma
e First let’s connect it with other astro and particle courses where
you have encountered these 1ssues:
Radiative transfer
Particle transport
and applied it to
Fluid mechanics

Thermal relics of big bang



Astro-Particle Dictionary

Astrophysicists and physicist use different words to describe same
thing:
e Specific intensity I, = 4wv° f <+ phase space distribution f
I, = AE/AtAvAQdA: “energy per unit everything”
e Surface brightness conservation <+ Liouville equation
e Absorption, emission, scattering <+ Collision term
e Einstein relations <+ Single matrix element
e Radiative transfer equation <> Boltzmann equation
e Eddington approximation <> Fluid approximation
e Moments of /, <> Radiative viscosity

e Rosseland Approximation <+ Tight coupling approximation



Liouville Equation

e In absence of

interactions, particle conservation —

implies that the phase

space distribution 1s invariant —
along the trajectory of the particles

e Follow an element in Ax with
spread Aq. For example for non relativistic particles a spread in
velocity of Av = Ag/m.

e After a time o0t the low velocity tail will lag the high velocity tail
by dx = Avdt = Aqdt/m

e For ultrarelativistic particles v = ¢ and Av = 0, so obviously true



Liouville Equation

e The phase space element can shear but preserves area AxAq

e This remains true under Lorentz and even a general coordinate
transform

e Therefore df /dt = 0 or f is conserved when evaluated along the
path of the particles

e Liouville Equation: f oc I,/v° and ds = cdt

df i,
—_— = O —
i ds

if frequency is also conserved on the path

0

e This 1s the microphysical origin of surface brightness conservation
(cf. lensing) — macro it is that flux oc »—2 and angular surface area
o r~2. Now what happens when frequency changes along the
path...



Liouville Equation

e In general, expand out the total derivative

df of dz; 0f dg; 0f \
dt +Z<dt@xz dt@qi)_o

e The spatial gradient terms are responsible for flow of particles in
and out of a fixed volume

e The momentum derivative terms are responsible for redshift
effects, including surface brightness diminishing as (1 + 2)*.



Boltzmann Equation

e Heuristically

d . .
pri particle sources - sinks
dl,
ds
the r.h.s. is called the collision term and given as C'[ f|

= emission - absorption

e Collision term: integrate over the phase space of incoming
particles, connect to outgoing state with the matrix element of the
transition M

e Form:

C|f] = / d(phase space)| energy-momentum conservation|

x | M|?[emission — absorption]



Boltzmann Equation

e Emission - absorption term involves the particle occupation of the
various states

e For concreteness: take f to be the photon distribution function

e Interaction (y + ) 7 <> ) u); sums are over all incoming and
outgoing other particles

emission y % absorption
w<«—Yy+ l
other u states \ / other u states
other i states other i states
e [emission-absorption] + = boson; — = fermion

ILIL f,(1 £ f) (1 £ f) = ILIL(1 £ fu)fif



Boltzmann Equation
e Photon Emission: f,(1 £ f;)(1 + f)
/,.: proportional to number of emitters

(1 & f;): if final state is occupied and a fermion, process blocked;
if boson the process enhanced

(1 + f): final state factor for photons: “1”: spontaneous emission
(remains if f = 0); “+ f”’: stimulated and proportional to the
occupation of final photon

e Photon Absorption: —(1 + f,)f:f

(1 £ f,): if final state is occupied and fermion, process blocked; if
boson the process enhanced

f;: proportional to number of absorbers

f: proportional to incoming photons



Boltzmann Equation

e If interactions are rapid they will establish an equilibrium
distribution where the distribution functions no longer change

C[feq] =0
e Solve by inspection
o Try f, = (e7FP/T 1)~ sothat (1 £ f,) = e Fa/T (e~ Fa/T 3 1)1

o~ S(EAE)/T _ o~ S EJT _

and energy conservation says £ + Y FE; = ) F,, so identity is
satisified if the constant 7' is the same for all species



Boltzmann Equation

e If the interaction does not create or destroy particles of type f (or
types ¢, ut...) then the distribution

fog = (T 1)~

also solves the equilibrium equation: e.g. a scattering type reaction

YE+ 11— Yp + ]

Y Ei+(E—p)=Y Ej+(E —pu) =0

since the chemical potential ¢ does not depend on the photon
energy, likewise if f is a fermion

e Not surprisingly, this is the Fermi-Dirac distribution for fermions
and the Bose-Einstein distribution for bosons



Boltzmann Equation

e Even more generally, for a single reaction, the other species can
carry chemical potentials too so long as

the law of mass action 1s satisfied

e This general rule applies to interactions that freely create or
destroy the particles -e.g. v+ e~ — 2y 4+ e~
e + 1t = ple + 210 = p1 =0

so that the chemical potential 1s driven to zero if particle number 1s
not conserved 1n interaction



Poor Man’s Boltzmann Equation

e Non expanding medium

Ji
=T (f = fuo

where ' 1s some rate for collisions

e Add in expansion in a homogeneous medium

8f dq@f
ot dt@ (f_feQ)
1 1eg _ lda _
(g oca “qdt adt = H)
of af
E_Hamq_r(f_feOI)

e So equilibrium will be maintained 1if collision rate exceeds
expansion rate I' > H



Boltzmann Equation

e To actually compute the collision term or interaction rates: matrix
| M|? or analogously the cross section for absorption defines all
processes (the physical content of the Einstein relations)

e Expect that o oc |M|?

e Integration over momentum state converts f’s to n’s



[Line Transition

e Example: a line transition from single lower ¢« = 1 state to upper
1+ = 2 state assuming that outgoing states are not occupied

o Absorption: —(1 & f,)fif — —n1f, |M|* — 0,20 f/c* — 1,

so that y |true absorption — 1110

e Emission: f,(1+ fi)(1+ f) = n2(1 4+ f) = ny + naf so that
spontaneous emission j, ~ nyo - 2v°h / c? and stimulated emission
is negative absorption with o, |sim emiss ~ —7N20

e Implies a source function

1 2h3

ni/ng —1 ¢

SI/ :ju/az/ ~



[Line Transition

e More generally, the full Einstein relationship is

1 2hv3
(n1g2/n2gr — 1) 2

Sz/ :jl//Oél/ —

where degeneracy factors appear for levels that have multiple states
e Interactions drive [, to S, which nulls the rhs radiative trans. eqn.

e Likewise collisions drive f to some equilibrium distribution and
then remains constant thereafter in spite of further collisions —
black body distribution

e Now let’s turn to the Boltzmann equation relevant for CMB



Compton Collision Term

e Collision term for compton scattering (set h = c =k = 1 and
neglect Pauli blocking and polarization)

1 d’p; 1 d*q 1 d3q; 1
= 5B | apamey | @ 2E(q) | e
x (2m)*0(ps + a5 — pi — @) | M|
X {fe(@) f(i) 1+ f(pg)] — felap) f(pp)[L + f(pi)] }

where the matrix element is calculated 1n field theory and 1s

Lorentz invariant. In terms of the rest frame o = e*/hic (cf. Klein
Nishina Cross Section)

E(p;) 4 E(pf)

E(py)  Epi)

with 3 as the rest frame scattering angle

IM|? = 2(4m)*a? — sin* 3



Liouville Equation

e In absence of scattering, the phase space distribution of photons in
each polarization state a 1s conserved along the propagation path

e Rewrite variables in terms of the photon propagation direction
q = ¢n, 50 fo(x,1,¢,7) and

D 0O dx 0 dn 0  dq 8)]”

n_Ja 7A77 = 0= a_ > T a__ ) ~
an(ann) (877+d77 8X+dn 3n+d77 d0q

e For simplicity, assume spatially flat universe K = 0 then

dn/dn = 0 and dx = ndn

ﬁﬁﬁlvﬁ+q ﬁ—O

e The spatial gradient describes the conversion from inhomogeneity
to anisotropy and the ¢ term the gravitational sources.



Photon Moments

e The photon stress-energy tensor 1s given by moments of
distribution function

L °q q¢"q,
T”‘9/<2w>3E<q>f

e / = (0 Boltzmann moment is continuity equation: @80) = 0p-/4p-
o ¢ = 1 moment is Navier-Stokes equation with ©\"” = 4™ and

(0)_5 2\1/217(0
O, _E(l—SK/k)/Hy

and similarly up to normalization for vector and tensor cases



Geometrical Projection

e Main content of Liouville equation 1s purely geometrical and
describes the projection of inhomogeneities into anisotropies

e Spatial gradient term hits plane wave:

. . 4 .
n- Ve** = in - ke™™ = i/ %leo(fl)eZk'x

e Dipole term adds to angular dependence through the addition of
angular momentum

4 K" K"
—YOYm: 14 Y’riL + (+1 Ym
V3t T Jeirnei-n Y Jeir @iy

where k7' = /(2 — m? is given by Clebsch-Gordon coefficients.




Temperature Hierarchy

e Absorb recoupling of angular momentum into evolution equation
for normal modes

S (m) K Am)  Rep .Am) | a(m)
0" =k 2€+1@“ 2€+3@f+1 — 70, + 5,

where Sém) are the gravitational (and later scattering sources;
added scattering suppression of anisotropy)

e An originally isotropic £ = 0 temperature perturbation will
eventually become a high order anisotropy by “free streaming” or
simple projection

e Original CMB codes solved the full hierarchy equations out to the
¢ of interest.



Gravitational Source

e Either extract the source Sém) from these associations or by noting
that the geodesic equation gives the redshifting term,

G = @* (M + Ty
gz—a—innjhw—’nho@_an v'L'h()()

e We can further separate out the pieces of the metric fluctuation 7,
in a 3+1 ADM split

hoo = —2A, ho; = —B;, hyj = 2Hp0;; + 2Hr;

and Fourier decompose these metric perturbation fields in their
scalar (0), vector (1), and tensor (2) components



Source Terms

e Temperature source terms Sl(m)

; flat assumption

(00 —HY #”+BO PO 20
PV 4 BED 4 pED _ B FED
\ 0 0 FPE) — g

where 7 = n.ora terms are Thomson scattering sources with

1
P = 1O( — V6E™)

e Polarization source terms are generated through Thomson
scattering from temperature quadrupoles

dO’T

3 A A
R ——— D DK
df) 87T| or,



Polarized Source Term

e Heuristically, incoming |
photon electric field accelerates | e Thomson
electron in the same direction o\ | Peatering
and radiates out a photon whose !
polarization is given by projection B G
of this direction in transverse plane [

e Consider scattering by 90 degrees: photons coming in from the
left/right supply one polarization state, in/out of page the other

e A quadrupole temperature anisotropy in left/right vs top/bottom
leads to net linear polarization

e Polarization source term

e = —i/6P™g,,  BI™ =0



Quadrupole Source Term

|\

Gravity Waves
(Tensors)

/’

Compression
(Scalars)

m=1

Vorticity
(Vectors)

m=2 /

N

e Each type leads to quadrupoles with different azimuthal symmetry,
polarization aligned with cold lobe

e For the vector and tensor cases, the breaking of azimuthal
symmetry leads to 5-mode polarization



Gravitational Wave Observability

e A gravitational wave makes a quadrupolar (transverse-traceless)
distortion to metric

e Just like the scale factor or spatial curvature, a temporal variation
in 1ts amplitude leaves a residual temperature variation in CMB
photons — here anisotropic

e Before recombination, anisotropic variation 1s eliminated by
scattering

e Gravitational wave temperature effect drops sharply at the horizon
scale at recombination - distorts the spectrum

e Source to polarization goes as 7/ Hr and peaks at the horizon not
damping scale

e 3 modes since symmetry of plane wave broken by the transverse
nature of gravity wave polarization



Truncated Hierarchy

e CMBPFast introduced the hybrid truncated hierarchy, integral
solution technique

e Formal integral solution contains sources that are not external to
system but defined through the Boltzmann hierarchy itself

e Solution: recall the fluid approximation where interactions
suppress all but the £ = 0 (density) and ¢ = 1 (velocity) terms

e CMBPFast extends this 1dea by solving a truncated hierarchy of
equations, e.g. out to £ = 25 with non-reflecting boundary
conditions

e For completeness, we explicitly derive the scattering source term
via polarized radiative transfer in the last part of the notes



Polarized Radiative Transfer

o Define a specific intensity “vector”™: I, = (0,0, U, V') where
@:@|\+@l’Q:@|l — 0O,

dl,
=7(S, — 1
d77 ( 4 V)
e Thomson collision Ae;I
based on differential cross section e- Thomson
Te > \' Scattering
dO'T 3 ‘E/ E‘Q ©
- = . g
dQ) ST o v




Polarized Radiative Transfer

E’ and E denote the incoming and outgoing directions of the
electric field or polarization vector.

Thomson scattering by 90 deg: ©;, — ©, but © does not scatter

More generally if (3 is the scattering angle

((30825 0 0 0 \
0 1 0 0
s, =~ [ ao I
8T 0 0 cosfB 0

\ 0 0 0 6085)

But to calculate Stokes parameters in a fixed coordinate system

must rotate into the scattering basis, scatter and rotate back out to
the fixed coordinate system



Thomson Collision Term

e The U — U’ transfer follows by writing down the polarization
vectors 1n the 45° rotated basis

A 1 . A
E, = E(EII +E1), E, =

e Define the temperature in this basis

%(E ~E))

0, x |E; - E{|?0 + |E; - E, |6,
1

1
x Z(COSB +1)*0 + Z(COSB —1)%6,

O, x |E, - By 20, + |E, - E, 26,
1 1
x Z(COS@ +1)*0, + Z(cosﬁ —1)%@]

or @1 — @2 X COS 6(6/1 _ 6/2)



Scattering Matrix
e Transfer matrix of Stokes state T' = (O, () + U, Q) — :U)

T oc S(8)T"
3 / cos” B+ 1 —2sin’ 8 —Lsin? 3 \
S(6) = 1 —% sin” %(Cosﬁ + 1)? %(COSB — 1)
\ —% sin? %(cosﬁ — 1)2 %(0056 4+ 1)2 )

normalization factor of 3 1s set by photon conservation in scattering



Scattering Matrix

e Transform to a fixed basis, by a rotation of the incoming and
outgoing states T = R(v)T where

(1

Ry)=10 e

\ 0

giving the scattering matrix

R(—7)S(B)R(a) =

. Y2(8, @) + 2v5Y5 (8, @)

s\ & —V6,Y5 (B, a)e*™
—\/6—23/20(5704)6_27;7

0

0

0 )
0
o201 )

(1)
—\/gyf (57 Oé)
3 2Y22 (57 a)e2i7

3 —2Y22 (8, 04)6_%
(2)



Addition Theorem for Spin Harmonics

e Spin harmonics are related to rotation matrices as

20 1
Y70, 6) = || =D u(6,0,0)

Note: for explicit evaluation sign convention differs from usual
(e.g. Jackson) by (—1)™

e Multiplication of rotations
ZD m’’ 042752772) mlaa, B1,71) = Dfnm/(@,@ﬁ)

e Implies

mx [/ n/ / m 51—S82 2€ T 1 —81 159
Z 31Y£ ( 7¢) SQYvﬁ ((97¢) — (_1) 47T SQYE (ﬁ,@)e !

m




Sky Basis

e Scattering into the state (rest frame)

dn’

T =
Cin|T] =17 y

—R(—7)S(B)R(a)T (1),

/d (©,0,0) + —T/d ZP"”)ﬁﬁ T(n') .

m=—2

where the quadrupole coupling term is P™) (fi, h’) =

V) YR) /) Y R) /S e () Ye ()
—VOYZ™(0) Y3 () 3,Y3M(R),Y5M(R) 3 LY (), Y5 ()
—\/_Y2m*( )—2Y2 ( ) 32Y2m*( ) Yo" ( ) 3—2Y2m*( )—QYQ ( )

expression uses angle addition relation above. We call this term
Co.

Y



Scattering Matrix

e Full scattering matrix involves difference of scattering into and out
of state

e In the electron rest frame

CIT) =+ [ T5(0/,0,0) ~ T+ Col1]

which describes 1sotropization in the rest frame. All moments have
e~ suppression except for isotropic temperature ©y.
Transformation into the background frame simply induces a dipole
term

C[T] = + (n vb+/—@’ 0 0) — 7T + Cg[T]



Integral Solution

e Hierarchy equation simply represents geometric projection,
exactly as we have seen before in the projection of temperature
perturbations on the last scattering surface

e In general, the solution describes the decomposition of the source
S ém) with its local angular dependence as seen at a distance D.

e Proceed by decomposing the angular dependence of the plane
wave

1% = 3 (=) V/Ar(0+ 1) (kD)Y? ()

e Recouple to the local angular dependence of G*

Gy = (—i)'\/4Ar (20 + 1)oyy (kD)Y{™ (1)




Integral Solution

Projection kernels:

m=0) . m=0)
O‘é :oe) — J¢ O‘és_w) =N

Integral solution:

0y (k, o) L (m) _(m)
el U SUR AT TR

S

Power spectrum:

dk k3 (0™ 0™

Cp=dr | &
T ke (201 1)

Integration over an oscillatory radial source with finite width -
suppression of wavelengths that are shorter than width leads to
reduction in power by kAn/¢ in the “Limber approximation”



Polarization Hierarchy

e In the same way, the coupling of a gradient or dipole angular
momentum to the spin harmonics leads to the polarization
hierarchy:

: m 2m 2Ky
E(m) — L 2Ry E(m) . B(’m) . {+1 E(m) . E(m) (m)
¢ [—%_1 1T o0 + 31| T TR + &

260 gy, 2M pm) 2R <m>] B 4 g

B{™ =k T
‘ W—1 Tt T 23t

where 517" = /(2 — m?2)(£2 — 4) /(2 is given by the
Clebsch-Gordon coefficients and &, B are the sources (scattering
only).

e Note that for vectors and tensors |m| > 0 and B modes may be
generated from /2 modes by projection. Cosmologically Bém) =0



Polarization Integral Solution

e Again, we can recouple the plane wave angular momentum of the
source inhomogeneity to its local angular dependence directly

20+ 1

B(m)(kﬂ?O) 0 —7 oM m
£2€+1 :/0 dne=E™ B (k(no — n))

e Power spectrum XY = 00,0F, FE, BB:

¢ ( 7770) :/O dne_Tgé )Gé e)(k<770 _77))

_ 47.‘./ dk kS Xém)*}/e(m)>
k 27?2 (20 4+ 1)?
e We shall see that the only sources of temperature anisotropy are
¢ = 0,1, 2 and polarization anisotropy ¢ = 2

o In the basis of Z = k there are only m = 0, &1, &2 or scalar,
vector and tensor components



Polarization Sources
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Polarization Transfer

e A polarization source function with £ = 2, modulated with plane
wave orbital angular momentum

e Scalars have no 5B mode contribution, vectors mostly 55 and tensor
comparable B and E

(a) Polarization Pattern (b) Multipole Power
1.0F ]

0.5 F




Thermalization and Spectral Distortions

e Full Boltzmann equation with Compton scattering (set
h = ¢ = k = 1 and neglect Pauli blocking and polarization)

af 1 d’p; 1 Pqr 1 d’q; 1
ot 2E( f) / (27)3 2E (p;) / (2m)3 2E(qy) / (27)3 2E(q;)
x (2m)*0(ps + a5 — pi — @) | M|?

X {fe(@) f(p) L+ f(pr)] = felag) fpp)1 + f(pi)]}

where the matrix element is calculated 1n field theory and 1s

Lorentz invariant. In terms of the rest frame o = e*/hic (c.f. Klein
Nishina Cross Section)

E(p;) 4 E(pf)

E(py)  Epi)

with 3 as the rest frame scattering angle

IM|? = 2(4m)*a? — sin* 3




Kompaneets Equation

e The Kompaneets equation is the radiative transfer equation in the
limit that electrons are thermal

3/2
Je = e~ (m=m)/Te g=a"/2mT n., — ¢ (m—n)/Te (mTe>
6 ) 2T
3/2 i -
— ( 2 ) / TLee—q2/2mTe
mi,

and assume that the energy transfer 1s small (non-relativistic
electrons, £; < m)

E; — E,
L

<1 [O(T./m, E;/m)]

second order Doppler effect T, oc (v*) and electron recoil



Kompaneets Equation

e Kompaneets equation has derivatives of f because of this
expansion

O o (T> _— [:c (g+f(1+f))] v =BT,

m ) x?0x ox

e Equilibrium solution must still be a Bose-Einstein distribution

Of /ot =0
[x4 (g—i + f(1 +f)>] =K




Kompaneets Equation

e Assume thatas x — 0, f — 0 then K = 0 and

a 4

o= f(1+f) >f(1—|—f):dx
/ = —x+c , — e ¥te
s "1+ f
e rte 1
f— _

1 _ e—a:—l—c elT—C 1



Kompaneets Equation

e More generally, no evolution in the number density

n,yoc/d?’pfoc/da:a:Qf

0 0
_8(;? X /dmf%% [x4 (8_£ + f(1 +f))]
of OO

ot ==+ f(1+ ] =0
xat |G+ 00|

e Energy evolution R = n.or(T./m)

d*p pidp , T! [ 4
p:Q/(QW)BEf:Q/ 27T2f:F/xdxf

% _ T—gR/dmﬁ [;LA <g Cf f))]

ot T ox ox



Kompaneets Equation
e Integrate by parts

O _ T /dxx4 (a—f—i—f(l—l—f)>

ot w2 O
T4 T4
— —ZR/deLxSf— —ZR/datx4f(1+f)
T T
T, 4

Change 1n energy is difference between Doppler and recoil

o If f is a Bose-Einstein distribution at temperature 77,

a9f B

~

/d:z:a:4f(1+f) —~ —/d:z:a:4a—f —~ /d:z:élaf?’d—xf

0., dx-



Kompaneets Equation

e Radiative transfer equation for energy density

0 T T
9P _ Aneor— [1 — —7] 0
m

ot T,
10 1, =T
__IO — 4n€O_T ( 'Y)
p Ot m

e The analogue to the optical depth for energy transfer is the
Compton y parameter

dT = n.o:dt = n.ords
(Te B Tv)
m

dT

dy =

e Notice dy x n.1.ds, 1.e. y 1s the line of sight integral of the
electron gas pressure p, = n.1,



Kompaneets Equation

e Radiative transfer equation for spectral distortion
e Rewrite Kompaneets equation with y as the time variable

e Assume that initial distribution 1s a blackbody at temperature
T, # 1, on the RHS

e Integrate in the y < 1 limit
Af
f

e Deficit in Rayleigh-Jeans (= —2y), excess in Wien, null at
xr~, = 3.83 or 217GHz

= —yz,e” (4 — T~ coth %)

e “Compton-y” spectral distortion



SZ. effect

e Example: hot X -ray cluster with £T" ~ keV and the CMB:
Ie > T,

e Inverse Compton scattering transfers energy to the photons while
conserving the photon number

e Optically thin conditions: low energy photons boosted to high
energy leaving a deficit in the number density in the RJ tail and an
enhancement in the Wien tail called a Compton-y distortion — see
problem set

e Compton scattering off high energy electrons can give low energy
photons a large boost in energy but cannot create the photons in
the first place



Kompaneets Equation

e Numerical solution of the Kompaneets equation going from a
Compton-y distortion to a chemical potential distortion of a

blackbody
0.1 _

OF  y-distortion

LL-distortion

103 102 10-1 1 101 102
P/ Tinit



Black Body Formation

o After z ~ 106 photon creating . bla'c'kb;d-y------- Y

processes v + e~ > 2y + e

005

and bremmstrahlung

&
e”+pre +Fptoy S b L ]
[ ~| u-distortion ]
drop out of equilibrium :
0.151 53 5 7
. /10°=3.
for photon energies £/ ~ T'. )
. . .1.6_5 P ..i.(.;_4 P ."1.6_3 P ..i..o.l_2 P ."1.6_1 P ......Il P ....II() P
e Compton scattering remains pIT:

effective 1n redistributing energy via exchange with electrons

e Out of equilibrium processes like decays leave residual photon
chemical potential imprint

e Observed black body spectrum places tight constraints on any that
might dump energy into the CMB



Bremmstrahlung

e Bemsstrahlung can be characterized by a collision term like the
Kompaneets equation (k =h=c=1,x = hv/kT,)

—I

> /T —1/2
Clf] = _(—> ZzOéTe_BnmeUTgff

70 m

€

1= (" =1)f

T3

note that emission and absorption is balanced only if
f =1/(e® — 1), a true blackbody (no chemical potential)



CMB Blackbody

e COBE FIRAS revealed a blackbody spectrum at 7" = 2.725K (or
cosmological density Q. h* = 2.471 x 107°)

GHz

200 400 600
I v v v I v v v I

error X 50

B T R T S T
frequency (cm1)



e SZ effect from hot gas in halos: associate a temperature (or better,
a pressure profile) to each halo in simulations or semi-analytically

Secondaries: Scattering

e Scattering secondaries: modulated Doppler effect and
Sunyaev-Zeldovich effect

in the halo model
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Numerical Mass Function

e Cumulative halo abundance as function of mass: exponential
suppression at high mass, exponential sensitivity to amplitude of
linear structure os.

10—4: | B T T L B B B T T T T T 171
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The Halo Model

e NFW halos, of abundance n,; given by mass function, clustered
according to the halo bias (M) and the linear theory P (k)

e Power spectrum example:

4

10° ¢

non-linear

A’ (k)

=~ e
halo correlation” ~ 3

-1 [ /:I
10-¢ /" halo profile

0 10010 10
k (h Mpc )



SZ Halo Model

e Instead of the mass profile of NFW use the pressure profile (e.g.
from hydrostatic equilibrium)

e Simple example to get scaling of assigning a virial temperature to
a halo of mass M

e Solve for velocity dispersion for a self gravitating system

3GM\ V2
o= (E?)

e Associate the average kinetic energy with a temperature, called the
virial temperature

1 3
5 ,umHU kTvn‘lal

where 1 1s the mean molecular weight.



SZ Halo Model

e Solve for virial temperature

Tvirial —

wmp o> _ pmy GM o P g s dmp /3
3k bk R bk 3

e Mass dependence Ty < M?/3 further weights the SZ
contribution to the high mass end

e Mass function says that the abundance of high mass haloes is
exponentially sensitive to the linear power spectrum

e SZ power spectrum extremely sensitive to amplitude of linear
power spectrum, 1.e. 0y

e Unfortunately, also highly sensitive to astrophysical assumptions
in obtaining the gas pressure



Secondaries: SZ effect

e Halo model + simple virial temperature scaling
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Linear Doppler Eftect

e Linear Doppler effect does not contribute when wave 1s transverse
to line of sight

Local Temperature Doppler Effect
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Cancellation

e During reionization,
velocities reach v ~ 1073
but Doppler AT/T < vr. %

e In linear theory each plane
wave contributes both
positive and negative

line of sight contributions

—> e —velocity

redshifted vy

which cancel over the B ovcriensiy

.............. blueshifted Yy

extended duration of |
Cancellation

reionization

e This behavior is typical for
secondaries: Limber approximation of the radiative transfer
integral solution - suppression of small scale contributions



Doppler Modulation

e For large scale

velocity fields, the 3 ? ?
I g R , J
probability of scattering %%‘ % 3 ? ? ’

can be modulated on small O-\\
K

scales AT/T ~ v dT. %\ Q ? ? f !I'

e If modulation 1s from small |
scale density fluctuations e uuuuu s
in the (quasi)linear regime: i,
Ostriker-Vishniac effect L

blueshifted Y

e If modulation 1s from

collapsed objects: kinetic
SZ. effect

e If modulation i1s from 10nization fluctuations: patchy or
inhomogeneous 1onization effect



Patchy Reilonization

e Models of
reionization

predict size

and correlation

of 1onization
bubbles

e In extended
Press-Schechter

model, predict
bubbles in same way as predict halos

e Power spectrum of 1onization fluctuation and large scale velocity
fields predict modulated temperature (and polarization) secondary
power spectra



Secondaries: Modulated Doppler

e Modulated Doppler effect contributes blackbody fluctuations

beyond the damping tail
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