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CMB Blackbody
• COBE FIRAS revealed a blackbody spectrum at T = 2.725K (or

cosmological density Ωγh
2 = 2.471× 10−5)
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CMB Blackbody
• CMB is a (nearly) perfect blackbody characterized by a phase

space distribution function

f =
1

eE/T − 1

where the temperature T (x, n̂, t) is observed at our position x = 0

and time t0 to be nearly isotropic with a mean temperature of
T̄ = 2.725K

• Our observable then is the temperature anisotropy

Θ(n̂) ≡ T (0, n̂, t0)− T̄
T̄

• Given that physical processes essentially put a band limit on this
function it is useful to decompose it into a complete set of
harmonic coefficients



Thermalization and Spectral Distortions
• Full Boltzmann equation with Compton scattering (set
h̄ = c = k = 1 and neglect Pauli blocking and polarization)

∂f

∂t
=

1

2E(pf )

∫
d3pi

(2π)3

1

2E(pi)

∫
d3qf
(2π)3

1

2E(qf )

∫
d3qi

(2π)3

1

2E(qi)

× (2π)4δ(pf + qf − pi − qi)|M |2

× {fe(qi)f(pi)[1 + f(pf )]− fe(qf )f(pf )[1 + f(pi)]}

where the matrix element is calculated in field theory and is
Lorentz invariant. In terms of the rest frame α = e2/h̄c (c.f. Klein
Nishina Cross Section)

|M |2 = 2(4π)2α2

[
E(pi)

E(pf )
+
E(pf )

E(pi)
− sin2 β

]
with β as the rest frame scattering angle



Kompaneets Equation
• The Kompaneets equation is the radiative transfer equation in the

limit that electrons are thermal

fe = e−(m−µ)/Tee−q
2/2mTe

[
ne = e−(m−µ)/Te

(
mTe
2π

)3/2
]

=

(
2π

mTe

)3/2

nee
−q2/2mTe

and assume that the energy transfer is small (non-relativistic
electrons, Ei � m

Ef − Ei
Ei

� 1 [O(Te/m,Ei/m)]



Kompaneets Equation
• Kompaneets equation (restoring h̄, c k)

∂f

∂t
= neσT c

(
kTe
mc2

)
1

x2

∂

∂x

[
x4

(
∂f

∂x
+ f(1 + f)

)]
x = h̄ω/kTe

• Equilibrium solution must be a Bose-Einstein distribution
∂f/∂t = 0 [

x4

(
∂f

∂x
+ f(1 + f)

)]
= K

∂f

∂x
+ f(1 + f) =

K

x4



Kompaneets Equation
Assume that as x→ 0, f → 0 then K = 0 and

df

dx
= −f(1 + f) → df

f(1 + f)
= dx

ln
f

1 + f
= −x+ c → f

1 + f
= e−x+c

f =
e−x+c

1− e−x+c
=

1

ex−c − 1



Kompaneets Equation
• More generally, no evolution in the number density

nγ ∝
∫
d3pf ∝

∫
dxx2f

∂nγ
∂t
∝
∫
dxx2 1

x2

∂

∂x

[
x4

(
∂f

∂x
+ f(1 + f)

)]
∝ x4

[
∂f

∂x
+ f(1 + f)

]∞
0

= 0

• Energy evolution R ≡ neσT c(kTe/mc
2)

u = 2

∫
d3p

(2πh̄)3
Ef = 2

∫
p3dpc

2π2h̄3f =

[
(kTe)

4

c4h̄3

1

π2
≡ A

] ∫
x3dxf

∂u

∂t
= AR

∫
dxx

∂

∂x

[
x4

(
∂f

∂x
+ f(1 + f)

)]



Kompaneets Equation

∂u

∂t
= −AR

∫
dxx4

(
∂f

∂x
+ f(1 + f)

)
= AR

∫
dx4x3f − AR

∫
dxx4f(1 + f)

= 4neσT c
kTe
mc2

u− AR
∫
dxx4f(1 + f)

Change in energy is difference between Doppler and recoil

• If f is a Bose-Einstein distribution at temperature Tγ

∂f

∂xγ
= −f(1 + f) xγ =

pc

kTγ

AR

∫
dxx4f(1 + f) = −AR

∫
dxx4 ∂f

∂xγ
= AR

∫
dx4x3 dx

dxγ
f



Kompaneets Equation
• Radiative transfer equation for energy density

∂u

∂t
= 4neσT c

kTe
mc2

[
1− Tγ

Te

]
u

1

u

∂u

∂t
= 4neσT c

k(Te − Tγ)
mc2

• The analogue to the optical depth for energy transfer is the
Compton y parameter

dτ = neσTds = neσtcdt

dy =
k(Te − Tγ)

mc2
dτ



Kompaneets Equation
• Radiative transfer equation for spectral distortion

• Rewrite Kompaneets equation with y as the time variable

• Assume that initial distribution is a blackbody at temperature
T 6= Te on the RHS

• Integrate in the y � 1 limit

∆f

f
= −yxγexγ

(
4− xγ coth

xγ
2

)
• Deficit in Rayleigh-Jeans (= −2y), excess in Wien, null at
xγ = 3.83 or 217GHz

• “Compton-y” spectral distortion



Kompaneets Equation
• Example: hot X-ray cluster with kT ∼ keV and the CMB:
Te � Tγ

• Inverse Compton scattering transfers energy to the photons while
conserving the photon number

• Optically thin conditions: low energy photons boosted to high
energy leaving a deficit in the number density in the RJ tail and an
enhancement in the Wien tail called a Compton-y distortion — see
problem set

• Compton scattering off high energy electrons can give low energy
photons a large boost in energy but cannot create the photons in
the first place



Kompaneets Equation
• Numerical solution of the Kompaneets equation going from a

Compton-y distortion to a chemical potential distortion of a
blackbody
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Black Body Formation
.
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• After z ∼ 106, photon creating
processes γ + e− ↔ 2γ + e−

and bremmstrahlung
e− + p↔ e− + p+ γ

drop out of equilibrium
for photon energies E ∼ T .

• Compton scattering remains
effective in redistributing energy via exchange with electrons

• Out of equilibrium processes like decays leave residual photon
chemical potential imprint

• Observed black body spectrum places tight constraints on any that
might dump energy into the CMB



Spherical Harmonics
• Laplace Eigenfunctions

∇2Y m
` = −[l(l + 1)]Y m

`

• Orthogonal and complete∫
dn̂Y m∗

` (n̂)Y m′

`′ (n̂) = δ``′δmm′∑
`m

Y m∗
` (n̂)Y m

` (n̂′) = δ(φ− φ′)δ(cos θ − cos θ′)

Generalizable to tensors on the sphere (polarization), modes on a
curved FRW metric

• Conjugation

Y m∗
` = (−1)mY −m`



Multipole Moments
• Decompose into multipole moments

Θ(n̂) =
∑
`m

Θ`mY
m
` (n̂)

• So Θ`m is complex but Θ(n̂) real:

Θ∗(n̂) =
∑
`m

Θ∗`mY
m∗
` (n̂)

=
∑
`m

Θ∗`m(−1)mY −m` (n̂)

= Θ(n̂) =
∑
`m

Θ`mY
m
` (n̂) =

∑
`−m

Θ`−mY
−m
` (n̂)

so m and −m are not independent

Θ∗`m = (−1)mΘ`−m



N -pt correlation
• Since the fluctuations are random and zero mean we are interested

in characterizing the N -point correlation

〈Θ(n̂1) . . .Θ(n̂n)〉 =
∑
`1...`n

∑
m1...mn

〈Θ`1m1 . . .Θ`nmn〉Y m1
`1

(n̂1) . . . Y mn
`n

(n̂n)

• Statistical isotropy implies that we should get the same result in a
rotated frame

R[Y m
` (n̂)] =

∑
m′

D`
m′m(α, β, γ)Y

m′

` (n̂)

where α, β and γ are the Euler angles of the rotation and D is the
Wigner function (note Y m

` is a D function)

〈Θ`1m1 . . .Θ`nmn〉 =
∑

m′1...m
′
n

〈Θ`1m′1
. . .Θ`nm′n〉D

`1
m1m′1

. . . D`n
mnm′n



N -pt correlation
• For any N -point function, combine rotation matrices (group

multiplication; angular momentum addition) and orthogonality∑
m

(−1)m2−mD`1
m1m

D`1
−m2−m = δm1m2

• The simplest case is the 2pt function:

〈Θ`1m1Θ`2m2〉 = δ`1`2δm1−m2(−1)m1C`1

where C` is the power spectrum. Check

=
∑
m′1m

′
2

δ`1`2δm′1−m′2(−1)m
′
1C`1D

`1
m1m′1

D`2
m2m′2

= δ`1`2C`1
∑
m′1

(−1)m
′
1D`1

m1m′1
D`2
m2−m′1

= δ`1`2δm1−m2(−1)m1C`1



N -pt correlation
• Using the reality of the field

〈Θ∗`1m1
Θ`2m2〉 = δ`1`2δm1m2C`1 .

• If the statistics were Gaussian then all the N -point functions would
be defined in terms of the products of two-point contractions, e.g.

〈Θ`1m1Θ`2m2Θ`3m3Θ`4m4〉 = δ`1`2δm1m2δ`3`4δm3m4C`1C`3 + perm.

• More generally we can define the isotropy condition beyond
Gaussianity, e.g. the bispectrum

〈Θ`1m1 . . .Θ`3m3〉 =

(
`1 `2 `3

m1 m2 m3

)
B`1`2`3



CMB Temperature Fluctuations
• Angular Power Spectrum

Low l Anomalies
•	 Low quadrupole, octupole; C(θ); alignment; hemispheres; TT vs TE
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Why `2C`/2π?
• Variance of the temperature fluctuation field

〈Θ(n̂)Θ(n̂)〉 =
∑
`m

∑
`′m′

〈Θ`mΘ∗`′m′〉Y m
` (n̂)Y m′∗

`′ (n̂)

=
∑
`

C`
∑
m

Y m
` (n̂)Y m∗

` (n̂)

=
∑
`

2`+ 1

4π
C`

via the angle addition formula for spherical harmonics

• For some range ∆` ≈ ` the contribution to the variance is

〈Θ(n̂)Θ(n̂)〉`±∆`/2 ≈ ∆`
2`+ 1

4π
C` ≈

`2

2π
C`

• Conventional to use `(`+ 1)/2π for reasons below



Cosmic Variance
• We only have access to our sky, not the ensemble average

• There are 2`+ 1 m-modes of given ` mode, so average

Ĉ` =
1

2`+ 1

∑
m

Θ∗`mΘ`m

• 〈Ĉ`〉 = C` but now there is a cosmic variance

σ2
C`

=
〈(Ĉ` − C`)(Ĉ` − C`)〉

C2
`

=
〈Ĉ`Ĉ`〉 − C2

`

C2
`

• For Gaussian statistics

σ2
C`

=
1

(2`+ 1)2C2
`

〈
∑
mm′

Θ∗`mΘ`mΘ∗`m′Θ`m′〉 − 1

=
1

(2`+ 1)2

∑
mm′

(δmm′ + δm−m′) =
2

2`+ 1



Cosmic Variance
• Note that the distribution of Ĉ` is that of a sum of squares of

Gaussian variates

• Distributed as a χ2 of 2`+ 1 degrees of freedom

• Approaches a Gaussian for 2`+ 1→∞ (central limit theorem)

• Anomalously low quadrupole is not that unlikely

• σC` is a useful quantification of errors at high `

• Suppose C` depends on a set of cosmological parameters ci then
we can estimate errors of ci measurements by error propagation

Fij = Cov−1(ci, cj) =
∑
``′

∂C`
∂ci

Cov−1(C`,C`′)
∂C`′

∂cj

=
∑
`

(2`+ 1)

2C2
`

∂C`
∂ci

∂C`
∂cj



Idealized Statistical Errors
• Take a noisy estimator of the multipoles in the map

Θ̂`m = Θ`m +N`m

and take the noise to be statistically isotropic

〈N∗`mN`′m′〉 = δ``′δmm′C
NN
`

• Construct an unbiased estimator of the power spectrum 〈Ĉ`〉 = C`

Ĉ` =
1

2`+ 1

l∑
m=−l

Θ̂∗`mΘ̂`m − CNN
`

• Covariance in estimator

Cov(C`, C`′) =
2

2`+ 1
(C` + CNN

` )2δ``′



Incomplete Sky
• On a small section of sky, the number of independent modes of a

given ` is no longer 2`+ 1

• As in Fourier analysis, there are two limitations: the lowest ` mode
that can be measured is the wavelength that fits in angular patch θ

`min =
2π

θ
;

modes separated by ∆` < `min cannot be measured independently

• Estimates of C` covary on a scale imposed by ∆` < `min

• Crude approximation: account only for the loss of independent
modes by rescaling the errors rather than introducing covariance

Cov(C`, C`′) =
2

(2`+ 1)fsky

(C` + CNN
` )2δ``′



Time Ordered Data
• Beyond idealizations like |Θ`m|2 type C` estimators and fsky mode

counting, basic aspects of data analysis are useful even for theorists

• Starting point is a string of “time ordered” data coming out of the
instrument (post removal of systematic errors, data cuts)

• Begin with a model of the time ordered data as (implicit
summation or matrix operation)

d = PΘ + n

where the elements of the vector Θi denotes pixelized positions
indexed by i and the element of the data dt is a time ordered stream
indexed by t.

• Noise nt is drawn from distribution with known power spectrum

〈ntnt′〉 = Cd,tt′



Design Matrix
• The design, pointing or projection matrix P is the mapping

between pixel space and the time ordered data

• Simplest incarnation: row with all zeros except one column which
just says what point in the sky the telescope is pointing at that time

P =


0 0 1 . . . 0

1 0 0 . . . 0

. . . . . . . . . . . . . . .

0 0 1 . . . 0


• If each pixel were only measured once in this way then the

estimator of the map would just be the inverse of P

• More generally encorporates differencing, beam, rotation (for
polarization) and unequal coverage of pixels



Maximum Likelihood Mapmaking
• What is the best estimator of the underlying map Θi?

• Likelihood function: the probability of getting the data given the
theory Ltheory(data) ≡ P [data|theory]. In this case, the theory is
the vector of pixels Θ.

LΘ(d) =
1

(2π)Nt/2
√

det Cd

exp

[
−1

2
(d−PΘ)t C−1

d (d−PΘ)

]
.

• Bayes theorem says that P [Θ|d], the probability that the
temperatures are equal to Θ given the data, is proportional to the
likelihood function times a prior P (Θ), taken to be uniform

P [Θ|d] ∝ P [d|Θ] ≡ LΘ(d)



Maximum Likelihood Mapmaking
• Maximizing the likelihood of Θ is simple since the log-likelihood

is quadratic – it is equivalent to minimizing the variance of the
estimator

• Differentiating the argument of the exponential with respect to Θ

and setting to zero leads immediately to the estimator

(PtC−1
d P)Θ̂ = PtC−1

d d

Θ̂ = (PtC−1
d P)−1PtC−1

d d ,

which is unbiased

〈Θ̂〉 = (PtC−1
d P)−1PtC−1

d PΘ = Θ



Maximum Likelihood Mapmaking
• And has the covariance

CN ≡ 〈Θ̂Θt〉 − Θ̂Θt

= (PtC−1
d P)−1PtC−1

d 〈ddt〉C−t
d P(PtC−1

d P)−t − Θ̂Θt

= (PtC−1
d P)−1PtC−t

d P(PtC−1
d P)−t

= (PtC−1
d P)−1

The estimator can be rewritten using the covariance matrix as a
renormalization that ensures an unbiased estimator

Θ̂ = CNPtC−1
d d ,

• Given the large dimension of the time ordered data, direct matrix
manipulation is unfeasible. A key simplifying assumption is the
stationarity of the noise, that Cd,tt′ depends only on t− t′
(temporal statistical homogeneity)



Foregrounds
• Maximum likelihood mapmaking can be applied to the time

streams of multiple observations frequencies Nν and hence obtain
multiple maps

• A cleaned CMB map can be obtained by modeling the maps as

Θ̂ν
i = Aνi Θi + nνi + f νi

where Aνi = 1 if all the maps are at the same resolution (otherwise,
embed the beam as in the pointing matrix; f νi is the foreground
model - e.g. a set of sky maps and a spectrum for each foreground,
or more generally including a covariance matrix between
frequencies due to varying spectral index

• 5 foregrounds: synchrotron, free-free, radio pt sources, at low
frequencies and dust and IR pt sources at high frequencies.



Pixel Likelihood Function
• The next step in the chain of inference is to go from the map to the

power spectrum

• In the most idealized form (no beam) we model

Θi =
∑
`m

Θ`mY`m(ni)

and using the angle addition formula∑
m

Y ∗`m(ni)Y`m(nj) =
2`+ 1

4π
P`(n̂i · n̂j)

with averages now including realizations of the signal

〈Θ̂iΘ̂j〉 ≡ CΘ,ij = CN,ij + CS,ij



Pixel Likelihood Function
• Pixel covariance matrix for the signal characterizes the sample

variance of Θi through the power spectrum C`

CS,ij ≡ 〈ΘiΘj〉 =
∑
`

2`+ 1

4π
C`P`(n̂i · n̂j)

• More generally the sky map is convolved with a beam and so the
power spectrum is multiplied by the square of the beam transform

• From the pixel likelihood function we can now directly use Bayes’
theorem to get the posterior probability of cosmological
parameters c upon which the power spectrum depends

Lc(Θ) =
1

(2π)Np/2
√

det CΘ

exp

(
−1

2
ΘtC−1

Θ Θ

)
where Np is the number of pixels in the map.



Pixel Likelihood Function
• Generalization of the Fisher matrix, curvature of the log

Likelihood function

Fab ≡ −〈
∂2 lnLc(Θ)

∂ca∂cb
〉

• Cramer-Rao theorem says that F−1 gives the minimum variance
for an unbiased estimator of c.

• Correctly propagates effects of pixel weights, noise - generalizes
straightforwardly to polarization (E, B mixing etc)



Power Spectrum
• It is computationally convenient and sufficient at high ` to divide

this into two steps: estimate the power spectrum Ĉ` and
approximate the likelihood function for Ĉ` as the data and C`(c) as
the model.

• In principle we can just use Bayes’ theorem to get the maximum
likelihood estimator Ĉ` and the joint posterior probability
distribution or covariance

• Although the pixel likelihood is Gaussian in the anisotropies Θi it
is not in C` and so the “mapmaking” procedure above does not
work



Power Spectrum
• MASTER approach is to use harmonic transforms on the map,

mask and all

• Masked pixels multiply the map in real space and convolve the
multipoles in harmonic space - so these pseudo-C`’s are
convolutions on the true C` spectrum

• Invert the convolution to form an unbiased estimator and propagate
the noise and approximate the LC`(Ĉ`)

• Now we can use Bayes’ theorem with C` parameterized by
cosmological parameters c to find the joint posterior distribution of
c

• Still computationally expensive to integrate likelihood over a
multidimensional cosmological parameter space



MCMC
• Monte Carlo Markov Chain (MCMC)

• Start with a set of cosmological parameters cm, compute likelihood

• Take a random step in parameter space to cm+1 of size drawn from
a multivariate Gaussian (a guess at the parameter covariance
matrix) Cc (e.g. from the crude Fisher approximation or the
covariance of a previous short chain run). Compute likelihood.

• Draw a random number between 0,1 and if the likelihood ratio
exceeds this value take the step (add to Markov chain); if not then
do not take the step (add the original point to the Markov chain).
Repeat.

• Given Bayes’ theorem the chain is then a sampling of the joint
posterior probability density of the parameters



Parameter Errors
• Can compute any statistic based on the probability distribution of

parameters

• For example, compute the mean and variance of a given parameter

c̄i =
1

NM

NM∑
m=1

cmi

σ2(ci) =
1

NM − 1

NM∑
m=1

(cmi − c̄i)2

• Trick is in assuring burn in (not sensitive to initial point), step size,
and convergence

• Usually requires running multiple chains. Typically tens of
thousands of elements per chain.



Inhomogeneity vs Anisotropy
• Θ is a function of position as well as direction but we only have

access to our position

• Light travels at the speed of light so the radiation we receive in
direction n̂ was (η0 − η)n̂ at conformal time η

• Inhomogeneity at a distance appears as an anisotopy to the
observer

• We need to transport the radiation from the initial conditions to the
observer

• This is done with the Boltzmann or radiative transfer equation

• In the absence of scattering, emission or absorption the Boltzmann
equation is simply

Df

Dt
= 0
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to recombination: called
the last scattering surface

• Take the radiation
distribution at last scattering to also be described by an isotropic
temperature fluctuation field Θ(x)



Integral Solution to Radiative Transfer

Iν(0)Iν(τ)

0τ'τ

Sν

• Formal solution for specific intensity Iν = 2hν3f/c2

Iν(0) = Iν(τ)e−τ +

∫ τ

0

dτ ′Sν(τ
′)e−τ

′

• Specific intensity Iν attenuated by absorption and replaced by
source function, attenuated by absorption from foreground matter

• Θ satisfies the same relation for a blackbody



Angular Power Spectrum
• Take recombination to be instantaneous: dτe−τ = dDδ(D −D∗)

and the source to be the local temperature inhomogeneity

Θ(n̂) =

∫
dDΘ(x)δ(D −D∗)

where D is the comoving distance and D∗ denotes recombination.

• Describe the temperature field by its Fourier moments

Θ(x) =

∫
d3k

(2π)3
Θ(k)eik·x

• Note that Fourier moments Θ(k) have units of volume k−3

• 2 point statistics of the real-space field are translationally and
rotationally invariant

• Described by power spectrum



Spatial Power Spectrum
• Translational invariance

〈Θ(x′)Θ(x)〉 = 〈Θ(x′ + d)Θ(x + d)〉∫
d3k

(2π)3
d3k′

(2π)3
〈Θ∗(k′)Θ(k)〉eik·x−ik

′·x′

=

∫
d3k

(2π)3
d3k′

(2π)3
〈Θ∗(k′)Θ(k)〉eik·x−ik

′·x′+i(k−k′)·d

So two point function requires δ(k− k′); rotational invariance says
coefficient depends only on magnitude of k not its direction

〈Θ(k)∗Θ(k′)〉 = (2π)3δ(k− k′)PT (k)

Note that Θ(k), δ(k− k′) have units of volume and so PT must
have units of volume



Dimensionless Power Spectrum
• Variance

σ2
Θ ≡ 〈Θ(x)Θ(x)〉 =

∫
d3k

(2π)3
PT (k)

=

∫
k2dk

2π2

∫
dΩ

4π
PT (k)

=

∫
d ln k

k3

2π2
PT (k)

• Define power per logarithmic interval

∆2
T (k) ≡ k3PT (k)

2π2

• This quantity is dimensionless.



Angular Power Spectrum
• Temperature field

Θ(n̂) =

∫
d3k

(2π)3
Θ(k)eik·D∗n̂

• Multipole moments Θ(n̂) =
∑

`m Θ`mY`m

• Expand out plane wave in spherical coordinates

eikD∗·n̂ = 4π
∑
`m

i`j`(kD∗)Y
∗
`m(k)Y`m(n̂)

• Angular moment

Θ`m =

∫
d3k

(2π)3
Θ(k)4πi`j`(kD∗)Y

∗
`m(k)



Angular Power Spectrum
• Power spectrum

〈Θ∗`mΘ`′m′〉 =

∫
d3k

(2π)3
(4π)2i`−`

′
j`(kD∗)j`′(kD∗)Y`m(k)Y ∗`′m′(k)PT (k)

= δ``′δmm′4π

∫
d ln k j2

` (kD∗)∆
2
T (k)

with
∫∞

0
j2
` (x)d lnx = 1/(2`(`+ 1)), slowly varying ∆2

T

• Angular power spectrum:

C` =
4π∆2

T (`/D∗)

2`(`+ 1)
=

2π

`(`+ 1)
∆2
T (`/D∗)

• Not surprisingly, a relationship between `2C`/2π and ∆2
T at `� 1.

By convention use `(`+ 1) to make relationship exact

• This is a property of a thin-shell isotropic source, now generalize.



Generalized Source
.

θ

• For example,
if the emission surface
is moving with respect
to the observer then
radiation has an intrinsic
dipole pattern at emission

• More generally, we know the Y m
` ’s are a complete angular basis

and plane waves are complete spatial basis

• Local source distribution decomposed into plane-wave modulated
multipole moments

S
(m)
` (−i)`

√
4π

2`+ 1
Y m
` (n̂) exp(ik · x)

where prefactor is for convenience when fixing ẑ = k̂



Generalized Source
• So general solution is for a single source shell is

Θ(n̂) =
∑
`m

S
(m)
` (−i)`

√
4π

2`+ 1
Y m
` (n̂) exp(ik ·D∗n̂)

and for a source that is a function of distance

Θ(n̂) =

∫
dDe−τ

∑
`m

S
(m)
` (D)(−i)`

√
4π

2`+ 1
Y m
` (n̂) exp(ik ·Dn̂)

• Note that unlike the isotropic source, we have two pieces that
depend on n̂

• Observer sees the total angular structure

Y m
` (n̂)eikD∗·n̂ = 4π

∑
`′m′

i`
′
j`′(kD∗)Y

m′∗
`′ (k)Y m′

`′ (n̂)Y m
` (n̂)



Generalized Source
• We extract the observed multipoles by the addition of angular

momentum Y m′

`′ (n̂)Y m
` (n̂)→ Y M

L (n̂)

• Radial functions become linear sums over j` with the recoupling
(Clebsch-Gordan) coefficients

• These radial weight functions carry important information about
how spatial fluctuations project onto angular fluctuations - or the
sharpness of the angular transfer functions

• Same is true of polarization - source is Thomson scattering

• Polarization has an intrinsic quadrupolar distribution, recoupled by
orbital angular momentum into fine scale polarization anisotropy

• Formal integral solution to the Boltzmann or radiative transfer
equation

• Source functions also follow from the Boltzmann equation



Polarization Basis
• Define the angularly dependent Stokes perturbation

Θ(x, n̂, η), Q(x, n̂, η), U(x, n̂, η)

• Decompose into normal modes: plane waves for spatial part and
spherical harmonics for angular part

Gm
` (k,x, n̂) ≡ (−i)`

√
4π

2`+ 1
Y m
` (n̂) exp(ik · x)

±2G
m
` (k,x, n̂) ≡ (−i)`

√
4π

2`+ 1
±2Y

m
` (n̂) exp(ik · x)

• In a spatially curved universe generalize the plane wave part

• For a single k mode, choose a coordinate system ẑ = k̂



Normal Modes
• Temperature and polarization fields

Θ(x, n̂, η) =

∫
d3k

(2π)3

∑
`m

Θ
(m)
` Gm

`

[Q± iU ](x, n̂, η) =

∫
d3k

(2π)3

∑
`m

[E
(m)
` ± iB(m)

` ]±2G
m
`

• For each k mode, work in coordinates where k ‖ z and so m = 0

represents scalar modes, m = ±1 vector modes, m = ±2 tensor
modes, |m| > 2 vanishes. Since modes add incoherently and
Q± iU is invariant up to a phase, rotation back to a fixed
coordinate system is trivial.



Liouville Equation
• In absence of scattering, the phase space distribution of photons in

each polarization state a is conserved along the propagation path

• Rewrite variables in terms of the photon propagation direction
q = qn̂, so fa(x, n̂, q, η) and

D

Dη
fa(x, n̂, q, η) = 0 =

(
∂

∂η
+
dx

dη
· ∂
∂x

+
dn̂

dη
· ∂
∂n̂

+
dq

dη
· ∂
∂q

)
fa

• For simplicity, assume spatially flat universe K = 0 then
dn̂/dη = 0 and dx = n̂dη

ḟa + n̂ · ∇fa + q̇
∂

∂q
fa = 0

• The spatial gradient describes the conversion from inhomogeneity
to anisotropy and the q̇ term the gravitational sources.



Geometrical Projection
• Main content of Liouville equation is purely geometrical and

describes the projection of inhomogeneities into anisotropies

• Spatial gradient term hits plane wave:

n̂ · ∇eik·x = in̂ · keik·x = i

√
4π

3
kY 0

1 (n̂)eik·x

• Dipole term adds to angular dependence through the addition of
angular momentum√

4π

3
Y 0

1 Y
m
` =

κm`√
(2`+ 1)(2`− 1)

Y m
`−1 +

κm`+1√
(2`+ 1)(2`+ 3)

Y m
`+1

where κm` =
√
`2 −m2 is given by Clebsch-Gordon coefficients.



Temperature Hierarchy
• Absorb recoupling of angular momentum into evolution equation

for normal modes

Θ̇
(m)
` = k

[
κm`

2`+ 1
Θ

(m)
`−1 −

κm`+1

2`+ 3
Θ

(m)
`+1

]
− τ̇Θ

(m)
` + S

(m)
`

where S(m)
` are the gravitational (and later scattering sources;

added scattering suppression of anisotropy)

• An originally isotropic ` = 0 temperature perturbation will
eventually become a high order anisotropy by “free streaming” or
simple projection

• Original CMB codes solved the full hierarchy equations out to the
` of interest.



Integral Solution
• Hierarchy equation simply represents geometric projection,

exactly as we have seen before in the projection of temperature
perturbations on the last scattering surface

• In general, the solution describes the decomposition of the source
S

(m)
` with its local angular dependence as seen at a distance D.

• Proceed by decomposing the angular dependence of the plane
wave

eik·x =
∑
`

(−i)`
√

4π(2`+ 1)j`(kD)Y 0
` (n̂)

• Recouple to the local angular dependence of Gm
`

Gm
`s =

∑
`

(−i)`
√

4π(2`+ 1)α
(m)
`s`

(kD)Y m
` (n̂)



Integral Solution
• Projection kernels:

α
(m=0)
`s=0` ≡ j` α

(m=0)
`s=1` ≡ j′`

• Integral solution:

Θ
(m)
` (k, η0)

2`+ 1
=

∫ η0

0

dηe−τ
∑
`s

S
(m)
`s

α
(m)
`s`

(k(η0 − η))

• Power spectrum:

C` = 4π

∫
dk

k

k3

2π2

∑
m

〈Θ(m)∗
` Θ

(m)
` 〉

(2`+ 1)2

• Integration over an oscillatory radial source with finite width -
suppression of wavelengths that are shorter than width leads to
reduction in power by k∆η/` in the “Limber approximation”



Polarization Hierarchy
• In the same way, the coupling of a gradient or dipole angular

momentum to the spin harmonics leads to the polarization
hierarchy:

Ė
(m)
` = k

[
2κ
m
`

2`− 1
E

(m)
`−1 −

2m

`(`+ 1)
B

(m)
` − 2κ

m
`+1

2`+ 3
E

(m)
`+1

]
− τ̇E(m)

` + E(m)
`

Ḃ
(m)
` = k

[
2κ
m
`

2`− 1
B

(m)
`−1 +

2m

`(`+ 1)
E

(m)
` − 2κ

m
`+1

2`+ 3
B

(m)
`+1

]
− τ̇B(m)

` + B(m)
`

where 2κ
m
` =

√
(`2 −m2)(`2 − 4)/`2 is given by the

Clebsch-Gordon coefficients and E , B are the sources (scattering
only).

• Note that for vectors and tensors |m| > 0 and B modes may be
generated from E modes by projection. Cosmologically B(m)

` = 0



Polarization Integral Solution
• Again, we can recouple the plane wave angular momentum of the

source inhomogeneity to its local angular dependence directly

E
(m)
` (k, η0)

2`+ 1
=

∫ η0

0

dηe−τE(m)
`s

ε
(m)
`s`

(k(η0 − η))

B
(m)
` (k, η0)

2`+ 1
=

∫ η0

0

dηe−τE(m)
`s

β
(m)
`s`

(k(η0 − η))

• Power spectrum XY = ΘΘ,ΘE,EE,BB:

CXY
` = 4π

∫
dk

k

k3

2π2

∑
m

〈X(m)∗
` Y

(m)
` 〉

(2`+ 1)2

• We shall see that the only sources of temperature anisotropy are
` = 0, 1, 2 and polarization anisotropy ` = 2

• In the basis of ẑ = k̂ there are only m = 0,±1,±2 or scalar,
vector and tensor components



Polarization Sources
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Polarization Transfer
• A polarization source function with ` = 2, modulated with plane

wave orbital angular momentum

• Scalars have no B mode contribution, vectors mostly B and tensor
comparable B and E

.

Sc
al

ar
s

V
ec

to
rs

Te
ns

or
s

π/2

0 π/4 π/2

π/2

φ

θ

10 100
l

0.5

1.0

0.5

1.0

0.5

1.0 E

B

(a) Polarization Pattern (b) Multipole Power



Polarization Transfer
• Radial mode functions characterize the projection from k → ` or

inhomogeneity to anisotropy

• Compared to the scalar T monopole source:

scalar T dipole source very broad

tensor T quadrupole, sharper

scalar E polarization, sharper

tensor E polarization, broad

tensor B polarization, very broad

• These properties determine whether features in the k-mode
spectrum, e.g. acoustic oscillations, intrinsic structure, survive in
the anisotropy


