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CMB Blackbody

e COBE FIRAS revealed a blackbody spectrum at 7" = 2.725K (or
cosmological density Q. h* = 2.471 x 107°)
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CMB Blackbody

e CMB is a (nearly) perfect blackbody characterized by a phase
space distribution function

1
f:eE/T—l

where the temperature 7'(x, nn, t) is observed at our position x = (
and time t; to be nearly 1sotropic with a mean temperature of

1= 2.725K

e Our observable then is the temperature anisotropy

T(07 ﬁa tO) - T
T

e Given that physical processes essentially put a band limit on this

O(h)

function it i1s useful to decompose it into a complete set of
harmonic coefficients



Thermalization and Spectral Distortions

e Full Boltzmann equation with Compton scattering (set
h = ¢ = k = 1 and neglect Pauli blocking and polarization)
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where the matrix element is calculated 1n field theory and 1s

Lorentz invariant. In terms of the rest frame « = e*/hc (c.f. Klein
Nishina Cross Section)
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with 3 as the rest frame scattering angle
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Kompaneets Equation

e The Kompaneets equation is the radiative transfer equation in the
limit that electrons are thermal
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and assume that the energy transfer 1s small (non-relativistic
electrons, F; < m
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Kompaneets Equation

e Kompaneets equation (restoring h, c k)
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e Equilibrium solution must be a Bose-Einstein distribution
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Kompaneets Equation

Assume that as x — 0, f — 0 then &X' = 0 and
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Kompaneets Equation

e More generally, no evolution in the number density
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e Energy evolution R = n.orc(kT,/mc?)
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Kompaneets Equation
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mc?
Change 1n energy is difference between Doppler and recoil

o If f is a Bose-Einstein distribution at temperature 77,
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Kompaneets Equation

e Radiative transfer equation for energy density

ou kT, T,
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e The analogue to the optical depth for energy transfer is the
Compton y parameter
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Kompaneets Equation

e Radiative transfer equation for spectral distortion
e Rewrite Kompaneets equation with y as the time variable

e Assume that initial distribution 1s a blackbody at temperature
T # T, on the RHS

e Integrate in the y < 1 limit
Af
f

e Deficit in Rayleigh-Jeans (= —2y), excess in Wien, null at
xr~, = 3.83 or 217GHz

= —yz,e” (4 — T~ coth %)

e “Compton-y” spectral distortion



Kompaneets Equation

e Example: hot X -ray cluster with £T" ~ keV and the CMB:
Ie > T,

e Inverse Compton scattering transfers energy to the photons while
conserving the photon number

e Optically thin conditions: low energy photons boosted to high
energy leaving a deficit in the number density in the RJ tail and an
enhancement in the Wien tail called a Compton-y distortion — see
problem set

e Compton scattering off high energy electrons can give low energy
photons a large boost in energy but cannot create the photons in
the first place



Kompaneets Equation

e Numerical solution of the Kompaneets equation going from a
Compton-y distortion to a chemical potential distortion of a

blackbody
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Black Body Formation

o After z ~ 106 photon creating . bla'c'kb;d-y------- Y

processes v + e~ > 2y + e

005

and bremmstrahlung
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e Compton scattering remains pIT:

effective 1n redistributing energy via exchange with electrons

e Out of equilibrium processes like decays leave residual photon
chemical potential imprint

e Observed black body spectrum places tight constraints on any that
might dump energy into the CMB



Spherical Harmonics

e Laplace Eigenfunctions
VA = (Il + 1)]Y;"
e Orthogonal and complete
/ AR ()Y (8) = SpprGymr

> Y (R)Y(R) = 6(¢ — ¢')d(cos B — cos )
m

Generalizable to tensors on the sphere (polarization), modes on a
curved FRW metric

e Conjugation

Y= ()Y



Multipole Moments

e Decompose into multipole moments
O(h) = » Oy, (1)
m
e So Oy, is complex but O(n) real:

O*(h) = » 63,V (n)
m

so m and —m are not independent

O = (=1)"Or



N -pt correlation

e Since the fluctuations are random and zero mean we are interested
in characterizing the /V-point correlation

O©M1)...00) = > Y (Onm - Opm, )Y (1) ... Y™ ()

El...en mia...Mn,

e Statistical 1sotropy implies that we should get the same result in a
rotated frame

RIY;"(0)] =Y Dy(a, 8,7)Y," (0)

where o, 5 and v are the Euler angles of the rotation and D is the
Wigner function (note Y, 1s a D function)
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N -pt correlation

e For any N-point function, combine rotation matrices (group
multiplication; angular momentum addition) and orthogonality

Z( 1)m2 me)ilmDe—lmg —m — 5m1m2

m

e The simplest case 1s the 2pt function:
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_ E m (1 Lo
— 5@1625’”’1/ —m ) 10 Dm ml DQO/Q

mm2

— 55152051 Z( 1)m1 Dfrllel fobg—m’l — 551526m1—m2(_1)m1 051

/
my



N -pt correlation
e Using the reality of the field

<@Zlm1 @€2m2> — 551525?%1?%2051 -

e If the statistics were Gaussian then all the NV-point functions would
be defined in terms of the products of two-point contractions, €.g.

<@€1m1 @€2m2 @€3m3@€4m4> — 5€1£Q5m1m25£3£45m3m4061 053 + perm.

e More generally we can define the 1sotropy condition beyond
Gaussianity, e.g. the bispectrum

0y by /4
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CMB Temperature Fluctuations

e Angular Power Spectrum
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Why KQCg/Qﬂ'?

e Variance of the temperature fluctuation field

OM)OM)) = > ¥ (OO, )Y ()Y (0)
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via the angle addition formula for spherical harmonics

e For some range A/ ~ / the contribution to the variance is

20 + 1 02
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e Conventional to use ¢(¢ + 1)/2x for reasons below

(O(n)O(N))rrae2 = AL




Cosmic Variance

e We only have access to our sky, not the ensemble average

e There are 2/ + 1 m-modes of given £ mode, so average

A

1
Co=——Y 0, Ou,
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o (Cy) = C, but now there is a cosmic variance

,  {((Co—C)(Cr—Cy))  (CCy) — C?

o C? S
e For Gaussian statistics
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Cosmic Variance

e Note that the distribution of C, is that of a sum of squares of
Gaussian variates

e Distributed as a x? of 2¢ + 1 degrees of freedom

e Approaches a Gaussian for 2¢ + 1 — oo (central limit theorem)
e Anomalously low quadrupole is not that unlikely

e 0¢, 1s a useful quantification of errors at high ¢

e Suppose Cy depends on a set of cosmological parameters c; then
we can estimate errors of ¢; measurements by error propagation

oC,
8cj
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Idealized Statistical Errors

e Take a noisy estimator of the multipoles in the map

é)ﬁm — @Em + me

and take the noise to be statistically 1sotropic
NN
<NEmN€’m’> — 5%’5mm’ ¢

e Construct an unbiased estimator of the power spectrum ((jg)

!
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E O Opn — CVN

C,= —
A1~
e Covariance 1n estimator
2
COV(CE, Cg/) — —(CE -+ OéNN)2(S€g/
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Incomplete Sky

e On a small section of sky, the number of independent modes of a
given { is no longer 2¢ + 1

e As in Fourier analysis, there are two limitations: the lowest £ mode
that can be measured is the wavelength that fits in angular patch 6

—_ 27-‘-.

gmin — )
v
modes separated by A¢ < /,,;, cannot be measured independently

e Estimates of C, covary on a scale imposed by Al < £in

e Crude approximation: account only for the loss of independent
modes by rescaling the errors rather than introducing covariance

2

COV(C@, Cgl) = (2£+ 1)fk
SKy

(Cp+ CY) o0




Time Ordered Data

e Beyond idealizations like |O,,, | type C; estimators and Jsky mode
counting, basic aspects of data analysis are useful even for theorists

e Starting point is a string of “time ordered” data coming out of the
instrument (post removal of systematic errors, data cuts)

e Begin with a model of the time ordered data as (implicit
summation or matrix operation)

d=PO® +n

where the elements of the vector ©; denotes pixelized positions
indexed by ¢ and the element of the data d; is a time ordered stream
indexed by t.

e Noise n; 1s drawn from distribution with known power spectrum

<ntnt’> — Cd,tt’



Design Matrix

e The design, pointing or projection matrix P is the mapping
between pixel space and the time ordered data

e Simplest incarnation: row with all zeros except one column which
just says what point in the sky the telescope 1s pointing at that time

(0 0 1 ... 0 )

I 0 0
P =

\ 0 0 1 ... 0 )
e If each pixel were only measured once in this way then the
estimator of the map would just be the inverse of P

e More generally encorporates differencing, beam, rotation (for
polarization) and unequal coverage of pixels



Maximum Likelthood Mapmaking
e What is the best estimator of the underlying map ©,?

e Likelihood function: the probability of getting the data given the
theory Lipeory (data) = Pldata|theory]. In this case, the theory is
the vector of pixels ©.

1 1 t ~—1
Lo(d) = —— (d—-PO)C,"(d-PO)| .
@( ) (27T)Nt/2\/m CXPp 9 ( ) d ( )

e Bayes theorem says that P|®|d], the probability that the
temperatures are equal to © given the data, is proportional to the

likelihood function times a prior P(©), taken to be uniform

P[O|d] x P|d|O] = Le(d)



Maximum Likelthood Mapmaking

e Maximizing the likelihood of © is simple since the log-likelihood
1s quadratic — 1t 1s equivalent to minimizing the variance of the
estimator

e Differentiating the argument of the exponential with respect to ©
and setting to zero leads immediately to the estimator

(P'C;'P)® = P'C,'d
® = (P'C;'P)'P'C,'d,

which 1s unbiased

(@) = (P'C;'P)"'P'C;'PO = ©



Maximum Likelthood Mapmaking

e And has the covariance

Cy = (© > O6!
— (P ') PtC; N (ddY) CS P (PIC TP T — ©0O!
_ ( ) 1PtC3tP(PtCC;1P)—t
— (Pth P)!

The estimator can be rewritten using the covariance matrix as a
renormalization that ensures an unbiased estimator

® = CyP!C;d,

e Given the large dimension of the time ordered data, direct matrix
manipulation is unfeasible. A key simplifying assumption is the
stationarity of the noise, that Cy;» depends only on ¢ — ¢’
(temporal statistical homogeneity)



Foregrounds

e Maximum likelithood mapmaking can be applied to the time
streams of multiple observations frequencies /V,, and hence obtain
multiple maps

e A cleaned CMB map can be obtained by modeling the maps as

Of = A70; +ni + f;

where AY = 1 if all the maps are at the same resolution (otherwise,
embed the beam as in the pointing matrix; f is the foreground
model - e.g. a set of sky maps and a spectrum for each foreground,
or more generally including a covariance matrix between
frequencies due to varying spectral index

e 5 foregrounds: synchrotron, free-free, radio pt sources, at low
frequencies and dust and IR pt sources at high frequencies.



Pixel Likelihood Function

e The next step 1n the chain of inference 1s to go from the map to the
power spectrum

e In the most idealized form (no beam) we model
@i — Z @Emnm(ni)
m

and using the angle addition formula

. 20+1_
D Vi ()Y (ny) = ——Py(1; - ;)

T

with averages now including realizations of the signal

<©zé]> = Co,ij = On,ij + Csyj



Pixel Likelihood Function

e Pixel covariance matrix for the signal characterizes the sample
variance of ©, through the power spectrum ()

20 + 1 .

1

e More generally the sky map 1s convolved with a beam and so the
power spectrum 1s multiplied by the square of the beam transform

e From the pixel likelihood function we can now directly use Bayes’
theorem to get the posterior probability of cosmological
parameters ¢ upon which the power spectrum depends

1 1
L.(O©) = ——@tcl@>
©) = o vas o eXp( 2 O

where [V, 1s the number of pixels in the map.




Pixel Likelihood Function

e Generalization of the Fisher matrix, curvature of the log
Likelihood function

0%1In L(O)

Fab = —< 000001, >

o Cramer-Rao theorem says that F~! gives the minimum variance
for an unbiased estimator of c.

e Correctly propagates effects of pixel weights, noise - generalizes
straightforwardly to polarization (£, B mixing etc)



Power Spectrum

e It is computationally convenient and sufficient at high ¢ to divide
this into two steps: estimate the power spectrum Cy and
approximate the likelihood function for C; as the data and Cy(c) as
the model.

e In principle we can just use Bayes’ theorem to get the maximum
likelihood estimator C; and the joint posterior probability
distribution or covariance

e Although the pixel likelihood is Gaussian in the anisotropies ©); it
is not in C'y and so the “mapmaking” procedure above does not
work



Power Spectrum

e MASTER approach is to use harmonic transforms on the map,
mask and all

e Masked pixels multiply the map in real space and convolve the
multipoles in harmonic space - so these pseudo-C/’s are
convolutions on the true C, spectrum

e Invert the convolution to form an unbiased estimator and propagate
the noise and approximate the L, (Cy)

e Now we can use Bayes’ theorem with (', parameterized by
cosmological parameters c to find the joint posterior distribution of
C

e Still computationally expensive to integrate likelihood over a
multidimensional cosmological parameter space



MCMC
Monte Carlo Markov Chain (MCMC)

Start with a set of cosmological parameters ¢, compute likelihood

m+1 of size drawn from

Take a random step in parameter space to c
a multivariate Gaussian (a guess at the parameter covariance
matrix) C. (e.g. from the crude Fisher approximation or the

covariance of a previous short chain run). Compute likelihood.

Draw a random number between 0,1 and if the likelithood ratio
exceeds this value take the step (add to Markov chain); if not then
do not take the step (add the original point to the Markov chain).
Repeat.

Given Bayes’ theorem the chain 1s then a sampling of the joint
posterior probability density of the parameters



Parameter Errors

e Can compute any statistic based on the probability distribution of
parameters

e For example, compute the mean and variance of a given parameter

= - m

C;

() = g DL )

m=1
e Trick 1s 1n assuring burn 1n (not sensitive to initial point), step size,
and convergence

e Usually requires running multiple chains. Typically tens of
thousands of elements per chain.



Inhomogeneity vs Anisotropy

e O is a function of position as well as direction but we only have
access to our position

e Light travels at the speed of light so the radiation we receive in
direction n was (1, — n)n at conformal time 7

e Inhomogeneity at a distance appears as an anisotopy to the
observer

e We need to transport the radiation from the initial conditions to the
observer

e This 1s done with the Boltzmann or radiative transfer equation
e In the absence of scattering, emission or absorption the Boltzmann

equation is simply

Df_

=0
Dt



Last Scattering

JitkD )

e Angular distribution T
of radiation 1s the 3D k
temperature field

Doppler
effect

projected onto a shell
- surface of last scattering

e Shell radius
1s distance from the observer

JitkD )

to recombination: called
the last scattering surface

e Take the radiation
distribution at last scattering to also be described by an isotropic
temperature fluctuation field ©(x)



Integral Solution to Radiative Transter

Sy
AN AN AN AN /L
I,(7) —L =) 1,,(0)
T T 0

e Formal solution for specific intensity I, = 2hv° f/c?

1,(0) = IL(r)e™" + /T 'S, (t")e™™

0

e Specific intensity /,, attenuated by absorption and replaced by
source function, attenuated by absorption from foreground matter

e O satisfies the same relation for a blackbody



Angular Power Spectrum

e Take recombination to be instantaneous: dre™" = dDd(D — D,)
and the source to be the local temperature inhomogeneity

O(h) = /dD Ox)5(D — D,)

where D 1s the comoving distance and D, denotes recombination.

e Describe the temperature field by its Fourier moments

-

e Note that Fourier moments ©(k) have units of volume k3

e 2 point statistics of the real-space field are translationally and
rotationally invariant

e Described by power spectrum



Spatial Power Spectrum

e Translational invariance

O(x)0(x)) = (O +d)O(x+d))
dgk dgk/ * (1,/ ik-x—ik’-x’
| Gt O 100

d*k Ak * ik-x—ik’ - x"+i(k—k’)-
N ./ (2m)3 (2m)? (0" (K')B(k))ertex ke Hillric)d

So two point function requires ¢ (k — k’); rotational invariance says
coefficient depends only on magnitude of k£ not its direction

(O(k)"O(K)) = (27)°d(k — k') Pr(k)

Note that ©(k), 6(k — k) have units of volume and so Pr must
have units of volume



Dimensionless Power Spectrum

e Variance

4= (e - (Zﬂ’j Pr(k)
- [ [

/dlnk—PT(k)

7_‘_

e Define power per logarithmic interval

k3 Pr(k)

272

A (k) =

e This quantity 1s dimensionless.



Angular Power Spectrum

Temperature field

Multipole moments

3
O(h) = / TE g (k)etr-n

O(n) =

(2m)°
ng @Emnm

Expand out plane wave 1n spherical coordinates

e n—47TZZ]e (kD.)Y 5 (K)Yem (B)

Angular moment
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Angular Power Spectrum

e Power spectrum

(O 1) = [ s (AmP " kD) (KD.)Yi (K)o () Pr(1)

= 5gg/5mm/47'(' / dIn k’jg(kD*)A%(k)

with [ 7 j7(z)dInz = 1/(20(¢ + 1)), slowly varying A7
e Angular power spectrum:
47 A% (0/ D, 2
morll/Be) _ s (e,
2000+ 1) 0(+1)
e Not surprisingly, a relationship between ¢2C,/2m and A% at £ > 1.
By convention use /(¢ 4 1) to make relationship exact

Cy =

e This is a property of a thin-shell isotropic source, now generalize.



Generalized Source

e For example,

1f the emission surface

1s moving with respect '(
to the observer then 0
radiation has an intrinsic /

dipole pattern at emission -z-—

1 N
e More generally, we know the Y,"’s are a complete angular basis
and plane waves are complete spatial basis

e Local source distribution decomposed into plane-wave modulated
multipole moments

Y,"(n) exp(ik - x)

A

where prefactor is for convenience when fixing z = k



Generalized Source

e So general solution 1s for a single source shell 1s

. m), . 4T . .
o) =D 5™ (i) /5 1Y/ (0) explik - D)

m

and for a source that is a function of distance

. . m . 4T . .
O(h) = / ADe™ Y2 S0 (D) (i)' 5 Vi () explik - D
im

e Note that unlike the isotropic source, we have two pieces that
depend on n

e Observer sees the total angular structure

Y (0)e™ P ® = dmy i o (kD,)Y (k)Y ()Y (A)

'm/!



Generalized Source

e We extract the observed multipoles by the addition of angular
momentum Y, (1)Y;*(n) — Y (1)

e Radial functions become linear sums over j, with the recoupling
(Clebsch-Gordan) coefficients

e These radial weight functions carry important information about
how spatial fluctuations project onto angular fluctuations - or the
sharpness of the angular transfer functions

e Same 1s true of polarization - source is Thomson scattering

e Polarization has an intrinsic quadrupolar distribution, recoupled by
orbital angular momentum into fine scale polarization anisotropy

e Formal integral solution to the Boltzmann or radiative transfer
equation

e Source functions also follow from the Boltzmann equation



Polarization Basis

Define the angularly dependent Stokes perturbation

O(x,n,7), Qx,n,n), Ux,n,n)

Decompose into normal modes: plane waves for spatial part and
spherical harmonics for angular part

G (k,x,n) = 2£+ 1Y€ ) exp(ik - x)
LGk, x,n) = ( \/%JrlﬂYe ) exp(ik - x)

In a spatially curved universe generalize the plane wave part

A

For a single k mode, choose a coordinate system z = k



Normal Modes

e Temperature and polarization fields

X Ak (m) ~m
@(X,ﬂ,?’]) = WZ@K Gﬁ

3
O +iU](x. h, —/ K 5 LB £ B G

e For each k mode, work in coordinates where k || z and so m = 0
represents scalar modes, m = +1 vector modes, m = +2 tensor
modes, |m| > 2 vanishes. Since modes add incoherently and
() £ U 1is invariant up to a phase, rotation back to a fixed
coordinate system is trivial.



Liouville Equation

e In absence of scattering, the phase space distribution of photons in
each polarization state a 1s conserved along the propagation path

e Rewrite variables in terms of the photon propagation direction
q = ¢n, 50 fo(x,1,¢,7) and

D 0O dx 0 dn 0  dq 8)]”

n_Ja 7A77 = 0= a_ > T a__ ) ~
an(ann) (877+d77 8X+dn 3n+d77 d0q

e For simplicity, assume spatially flat universe K = 0 then

dn/dn = 0 and dx = ndn

ﬁﬁﬁlvﬁ+q ﬁ—O

e The spatial gradient describes the conversion from inhomogeneity
to anisotropy and the ¢ term the gravitational sources.



Geometrical Projection

e Main content of Liouville equation 1s purely geometrical and
describes the projection of inhomogeneities into anisotropies

e Spatial gradient term hits plane wave:

. . 4 .
n- Ve** = in - ke™™ = i/ %leo(fl)eZk'x

e Dipole term adds to angular dependence through the addition of
angular momentum

4 K" K"
—YOYm: 14 Y’riL + (+1 Ym
V3t T Jeirnei-n Y Jeir @iy

where k7' = /(2 — m? is given by Clebsch-Gordon coefficients.




Temperature Hierarchy

e Absorb recoupling of angular momentum into evolution equation
for normal modes

S (m) K Am)  Rep .Am) | a(m)
0" =k 2€+1@“ 2€+3@f+1 — 70, + 5,

where Sém) are the gravitational (and later scattering sources;
added scattering suppression of anisotropy)

e An originally isotropic £ = 0 temperature perturbation will
eventually become a high order anisotropy by “free streaming” or
simple projection

e Original CMB codes solved the full hierarchy equations out to the
¢ of interest.



Integral Solution

e Hierarchy equation simply represents geometric projection,
exactly as we have seen before in the projection of temperature
perturbations on the last scattering surface

e In general, the solution describes the decomposition of the source
S ém) with its local angular dependence as seen at a distance D.

e Proceed by decomposing the angular dependence of the plane
wave

1% = 3 (=) V/Ar(0+ 1) (kD)Y? ()

e Recouple to the local angular dependence of G*

Gy = (—i)'\/4Ar (20 + 1)oyy (kD)Y{™ (1)




Integral Solution

Projection kernels:

m=0) . m=0)
O‘é :oe) — J¢ O‘és_w) =N

Integral solution:

0y (k, o) L (m) _(m)
el U SUR AT TR

S

Power spectrum:

dk k3 (0™ 0™

Cp=dr | &
T ke (201 1)

Integration over an oscillatory radial source with finite width -
suppression of wavelengths that are shorter than width leads to
reduction in power by kAn/¢ in the “Limber approximation”



Polarization Hierarchy

e In the same way, the coupling of a gradient or dipole angular
momentum to the spin harmonics leads to the polarization
hierarchy:

: m 2m 2Ky
E(m) — L 2Ry E(m) . B(’m) . {+1 E(m) . E(m) (m)
¢ [—%_1 1T o0 + 31| T TR + &

260 gy, 2M pm) 2R <m>] B 4 g

B{™ =k T
‘ W—1 Tt T 23t

where 517" = /(2 — m?2)(£2 — 4) /(2 is given by the
Clebsch-Gordon coefficients and &, B are the sources (scattering
only).

e Note that for vectors and tensors |m| > 0 and B modes may be
generated from /2 modes by projection. Cosmologically Bém) =0



Polarization Integral Solution

e Again, we can recouple the plane wave angular momentum of the
source inhomogeneity to its local angular dependence directly

20+ 1

B(m)(kﬂ?O) 0 —7 oM m
£2€+1 :/0 dne=E™ B (k(no — n))

e Power spectrum XY = 00,0F, FE, BB:

¢ ( 7770) :/O dne_Tgé )Gé e)(k<770 _77))

_ 47.‘./ dk kS Xém)*}/e(m)>
k 27?2 (20 4+ 1)?
e We shall see that the only sources of temperature anisotropy are
¢ = 0,1, 2 and polarization anisotropy ¢ = 2

o In the basis of Z = k there are only m = 0, &1, &2 or scalar,
vector and tensor components



Polarization Sources
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Polarization Transfer

e A polarization source function with £ = 2, modulated with plane
wave orbital angular momentum

e Scalars have no 5B mode contribution, vectors mostly 55 and tensor
comparable B and E

(a) Polarization Pattern (b) Multipole Power
1.0F ]

0.5 F




Polarization Transfer

e Radial mode functions characterize the projection from k& — ¢ or
inhomogeneity to anisotropy
e Compared to the scalar /" monopole source:
scalar I dipole source very broad
tensor 1" quadrupole, sharper
scalar I polarization, sharper
tensor £ polarization, broad
tensor BB polarization, very broad
e These properties determine whether features in the £-mode

spectrum, e.g. acoustic oscillations, intrinsic structure, survive in

the anisotropy



