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Set 4: Power Spectra
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Planck Power Spectrum
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Scalar Primary Power Spectrum
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Tensor Power Spectrum
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Schematic Outline

e Take apart features in the power spectrum
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Thomson Scattering

e Thomson scattering of photons off of free electrons 1s the most
important CMB process with a cross section (averaged over
polarization states) of

87 a?
o —
3Im?2

e Density of free electrons in a fully 1onized x. = 1 universe

— 6.65 x 10™%°cm?

ne = (1-7Y,/2)xz.ny = 107°Qh*(1 + 2)’cm ™,

where Y, =~ 0.24 is the Helium mass fraction, creates a high
(comoving) Thomson opacity

T = N.OTa

where dots are conformal time 7 = [ dt/a derivatives and 7 is the
optical depth.



Tight Coupling Approximation
e Near recombination z ~ 10° and ,h* ~ 0.02, the (comoving)
mean free path of a photon

1
Ao = — ~ 2.5Mpc
T

small by cosmological standards!

e On scales A > A¢ photons are tightly coupled to the electrons by
Thomson scattering which in turn are tightly coupled to the
baryons by Coulomb interactions

e Specifically, their bulk velocities are defined by a single fluid
velocity v, = v, and the photons carry no anisotropy in the rest
frame of the baryons

e — No heat conduction or viscosity (anisotropic stress) in fluid



Equations of Motion

e Continuity

@:—gvv—cb, 5b:—k?}b—3q)

where the photon equation remains unchanged and the baryons
follow number conservation with p, = myn,

e Navier-Stokes (Euler + heat conduction, viscosity)

k
v, = k(@4 V) — 6™~ T(vy — Vp)
?.Jb = —gvb—l—kqf—kj'(’(},y—?]b)/R

where the photons gain an anisotropic stress term 7., from radiation
viscosity and a momentum exchange term with the baryons and
are compensated by the opposite term in the baryon Euler equation



Zeroth Order Approximation

e Momentum density of a fluid is (p + p)v, where p is the pressure

e Neglect the momentum density of the baryons

(b + Do) _ Pt Do 3P
(py +Py)vy  py Dy Apy

0 2
~ 0.6 uh ( ¢ )
0.02 103
since p., o< T is fixed by the CMB temperature 7' = 2.73(1 + 2)K
— OK substantially before recombination

R

e Neglect radiation in the expansion

2
P _ 36 (Sl ( a )
Or 0.15 10—3

e Neglect gravity




Fluid Equations

e Density p, o< T* so define temperature fluctuation ©

0T

e Real space continuity equation

57 = —(1 +w,)kv,

: 1
@ — —gk?}7

e Euler equation (neglecting gravity)

. a kc?
Ufy = —(1 — Sw,y)a?}fy —+ m&y

3
Uy = kciidy = 3c’k©



Oscillator: Take One

e Combine these to form the simple harmonic oscillator equation
O+ k0 =0
where the sound speed 1s adiabatic

) _ 0Py _ Dy

C p—
0Py Pn

here ¢? = 1/3 since we are photon-dominated

e General solution:

O(0)
kc,

O(n) = O(0) cos(ks) + sin(ks)

where the sound horizon is defined as s = [ c.dn



Harmonic Extrema

e All modes are frozen in | (a) Peak Scales

Hil2 i Initial conditions (k<<7t/s..) ]

at recombination (denoted

with a subscript *)

>
+
o Temperature perturbations @
of different amplitude st peur (s
for different modes. “Hir 2nd peak (k=2m/s,) ]
e For the adiabatic 02 04 06 08

/8
(curvature mode) 1nitial conditions

e So solution



Harmonic Extrema

e Modes caught in the extrema of their oscillation will have
enhanced fluctuations

k.S, = nmw

yielding a fundamental scale or frequency, related to the inverse
sound horizon

kA:T(/S*

and a harmonic relationship to the other extremaas 1 : 2 : 3...



Peak LLocation

e The fundmental physical scale 1s translated into a fundamental
angular scale by simple projection according to the angular
diameter distance D 4

QA = )\A/DA
614 = ]CADA

e In a flat universe, the distance 1s ssmply D4 = D = 19 — 1. = 10,
the horizon distance, and k4 = 7/s, = V37 /My SO

(914%E
7o

e In a matter-dominated universe 1 o< a'/? so 04 ~ 1/30 ~ 2° or

gA ~ 200



Curvature

e In a curved

universe, the apparent g o \
or angular diameter : .
distance 1s no longer

the conformal distance

D4 = Rsin(D/R) # D A

e Objects in a closed

universe are further than
they appear! gravitational lensing of the background...

e Curvature scale of the universe must be substantially larger than
current horizon



Curvature

e Flat universe indicates critical
density and implies missing
energy given local measures of
the matter density “dark energy”

e [ also depends
on dark energy density {2pg and
equation of state w = ppg/pPpE.

e Expansion rate at recombination

100 -
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or matter-radiation ratio enters into calculation of £ 4.



Fixed Deceleration Epoch

e CMB determination of matter density controls all determinations
in the deceleration (matter dominated) epoch

e Planck: Q,,h* = 0.1426 & 0.0025 — 1.7%

e Distance to recombination [, determined to %1.7% ~ 0.43%
(ACDM result 0.46%; Ah/h ~ —AQ,,h? /€, h?)
[more general: —0.11Aw — 0.48Alnh — 0.15AIn 2, — 1.4AIn Qo = 0]

e Expansion rate during any redshift in the deceleration epoch
determined to £1.7%

e Distance to any redshift in the deceleration epoch determined as

= dz
D(z) =D, —
D=0 [ i
e Volumes determined by a combination dV = D%4dQdz/H (z)

e Structure also determined by growth of fluctuations from z,




Doppler Eftect

e Bulk motion of fluid changes the observed temperature via

(AT) )
S — nNn-v
1 dop !

e Averaged over directions

(AT > vy
T rms \/§
e Acoustic solution

D —ﬁ@ = —3ch O(0)sin(ks)

V3 k k
= O(0)sin(ks)

Doppler shifts



Doppler Peaks?

e Doppler effect for the photon dominated system 1s of equal
amplitude and 7 /2 out of phase: extrema of temperature are
turning points of velocity

e Effects add in quadrature:

(%) = 0°(0)[cos®(ks) + sin*(ks)] = ©7(0)

e No peaks in k spectrum! However the Doppler effect carries an
angular dependence that changes its projection on the sky

n-v,xn-k



Doppler Peaks?

e Coordinates where z || k

YioYeo — Yiti0

recoupling j,Yyo: no peaks in Doppler effect

temperature

last scattering surface




Restoring Gravity

e Take a simple photon dominated system with gravity

e Continuity altered since a gravitational potential represents a
stretching of the spatial fabric that dilutes number densities —
formally a spatial curvature perturbation

e Think of this as a perturbation to the scale factor a — a(1 + ®) so
that the cosmogical redshift 1s generalized to
a a

- = -+
a a

so that the continuity equation becomes

. 1 .
@: —gkvv—q)



Restoring Gravity

e (Gravitational force in momentum conservation F = —mVW
generalized to momentum density modifies the Euler equation to

0 = k(O + 0)

e General relativity says that ® and W are the relativistic analogues
of the Newtonian potential and that & ~ —W.

e In our matter-dominated approximation, ¢ represents matter
density fluctuations through the cosmological Poisson equation

k*® = 4nGa’p,\,,

where the difference comes from the use of comoving coordinates
for k (a® factor), the removal of the background density into the
background expansion (pA,,) and finally a coordinate subtlety that
enters into the definition of A,



Constant Potentials

¢ In the matter dominated epoch potentials are constant because
infall generates velocities as v,, ~ knW

e Velocity divergence generates density perturbations as
A~ —knu, ~ —(kn)*W

e And density perturbations generate potential fluctuations

_ArGapA 3H26L2A A

)] ~ —
2 2 )2 (kn)2

~ —

keeping them constant. Note that because of the expansion, density
perturbations must grow to keep potentials constant.



Constant Potentials

e More generally, if stress perturbations are negligible compared
with density perturbations ( 0p < dp ) then potential will remain
roughly constant

e More specifically a variant called the Bardeen or comoving
curvature 1s strictly constant
5+ 3w

R = t ~ d
CONSY ™ 3T 80

where the approximation holds when w ~const.



Oscillator: Take Two

e Combine these to form the simple harmonic oscillator equation

. L2 .
@+éﬁ@:—§m—¢

e In a CDM dominated expansion ® = ¥ = 0. Also for photon
domination ¢? = 1/3 so the oscillator equation becomes

O+ U+ Ak2(O+ W) =0
e Solution is just an offset version of the original
O+ Ul(n) =[O + V](0) cos(ks)

e O + W is also the observed temperature fluctuation since photons
lose energy climbing out of gravitational potentials at
recombination



Effective Temperature

e Photons climb out of potential wells at last scattering
e Lose energy to gravitational redshifts

e Observed or effective temperature

O+ WV
e Effective temperature oscillates around zero with amplitude given
by the initial conditions

e Note: 1nitial conditions are set when the perturbation 1s outside of
horizon, need inflation or other modification to matter-radiation
FRW universe.

e GR says that initial temperature 1s given by initial potential



Sachs-Wolfe Eftect and the Magic 1/3

e A gravitational potential 1s a perturbation to the temporal
coordinate [formally a gauge transformation]

ot
t
e Convert this to a perturbation in the scale factor,

A 3(1-+w)/2
ol ap1/2

where w = p/p so that during matter domination

=V

oa 20t
a 3t
o CMB temperature is cooling as T o< a™ ! s0

5T 5 1
O+v="qU=—40=_U
A a 3



Sachs-Wolfe Normalization

e Use measurements of AT /T = 107" in the Sachs-Wolfe effect to
infer A%

e Recall in matter domination ¥ = —3R /5

MW+ Ly,
2T 25

e So that the amplitude of initial curvature fluctuations is
A R~ H X 10_5

e Modern usage: WMAP’s measurement of 1st peak plus known
radiation transfer function is used to convert AT /T to Ag.



Baryon Loading
e Baryons add extra mass to the photon-baryon fluid
e Controlling parameter 1s the momentum density ratio:
Rpr+pb%?)OQbh2( a )
Py + Py 10-3

of order unity at recombination

e Momentum density of the joint system 1s conserved

(py + Py) vy + (b + Do) s = (Py + Dy + po + py) 0y
— (1 + R) (:07 =+ pv)vvb

where the controlling parameter 1s the momentum density ratio:

Pv + Po
Py T P
of order unity at recombination

R =

~ 2 (4
~ 30047 (155



New Euler Equation

e Momentum density ratio enters as

(14 R)vyp] =kO + (1 4+ R)kEV
e Photon continuity remains the same

. 3 |
© = —g?},yb—q)

e Modification of oscillator equation

(14 RO + é/@?@ _ —%kQ(l LR - [(1+ R)®]



Oscillator: Take Three

e Combine these to form the not-quite-so simple harmonic oscillator

equation
d : k2 d .
2 —2 27.2 2 9
—(c, 7O kO = ——WV —ci—(c. " P
CS d/r] (CS ) _|_ CS 3 CS d/r} (CS )
where ¢ = py/pp
2o 1
31+ R

e In a CDM dominated expansion ® = U = 0 and the adiabatic
approximation R /R < w = ke,

O+ (1+ R)V|(n) =04+ (14 R)¥](0)cos(ks)



Baryon Peak Phenomenology

e Photon-baryon

ratio enters in three ways
e Overall larger amplitude:

0 + (14 R)W](0) = %(1 +3R)T(0)

e Even-odd peak modulation of

effective temperature | /s

© + Upeass = [£(1+87) — 3R] S (0)
O+ U, — [0+ U, = [-63]%@(0)

e Shifting of the sound horizon down or /4 up

lyxVvV1I+ R



Photon Baryon Ratio Evolution

e Actual effects smaller since X evolves

e Oscillator equation has time evolving mass

, d

ch—n(cf@) +c2k*0 =0

e Effective mass is is m.z = 3¢, * = (1 + R)
e Adiabatic invariant

E 1 1
= §meﬁwA2 = 5308_21@03142 x A%(1+4 R)Y2 = const.

W

e Amplitude of oscillation A o< (1 + 1)~/ decays adiabatically as
the photon-baryon ratio changes



Baryons in the Power Spectrum
e Relative heights of peaks
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Oscillator: Take Three and a Half

e The not-quite-so simple harmonic oscillator equation 1s a forced
harmonic oscillator
k* d

((38_2@) —+ C§k2@ = —g\If — Czd—n(cs_2q))

d

¢ —

dn
changes 1n the gravitational potentials alter the form of the

acoustic oscillations

e If the forcing term has a temporal structure that is related to the
frequency of the oscillation, this becomes a driven harmonic
oscillator

e Term involving W is the ordinary gravitational force

e Term involving ® involves the ® term in the continuity equation as
a (curvature) perturbation to the scale factor



Potential Decay

e Matter-to-radiation ratio

P 24th2( a )
Pr 103

of order unity at recombination in a low {2,,, universe

e Radiation 1s not stress free and so impedes the growth of structure

20 = 4nGa’p, A\,

4

A, ~ 40 oscillates around a constant value, p, o< a~" so the

Netwonian curvature decays.

e General rule: potential decays if the dominant energy component
has substantial stress fluctuations, i.e. below the generalized sound
horizon or Jeans scale



Radiation Driving

e Decay 1s timed precisely to drive the oscillator - close to fully
coherent

[©+ Ul(n)| =1]1©+ T](0)+ AV — AD|

— %\p(o) —20(0)| = !§\If(0)|

NTATYTr=
lA A‘ A\ /9o :
dr]VI]; ' ' @+‘P ;

& L Dol
5 15 20
ks/mt

e 5x the amplitude of the Sachs-Wolfe effect!



External Potential Approach

e Solution to homogeneous equation

(14 R) Ycos(ks), (1 + R)™Y4sin(ks)

e Give the general solution for an external potential by propagating
impulsive forces

(1+ R)V*0(n) = ©(0)cos(ks) + g [@(O) + iR(O)@(O) sin ks

]
+ g / df (1 + R')**sin[ks — ks']F (1)
0

where

oo . . 2
Fe_b_ 5 _Fy
1+ R 3

e Useful if general form of potential evolution 1s known



Matter-Radiation 1n the Power Spectrum

e Coherent
approximation 1s exact for
a photon-baryon fluid but reality
1s reduced to ~ 4 x because of
neutrino contribution to radiation

e Actual initial conditions
are © + U = U /2 for radiation

domination but comparison to
matter dominated SW correct



Damping
e Tight coupling equations assume a perfect fluid: no viscosity, no

heat conduction

e Fluid imperfections are related to the mean free path of the
photons 1n the baryons

L' where 7 = n.ora

Ao =T
1s the conformal opacity to Thomson scattering

e Dissipation related to diffusion length: random walk approx

Ap = VNI = 1/ e Ao = Ve

the geometric mean between the horizon and mean free path
e \p/n. ~ few %, so expect peaks > 3 to be affected by dissipation

e . /m enters here and 7 1n the acoustic scale — expansion rate and
extra relativistic species



Equations of Motion

e Continuity

@:—gvv—cb, 5b:—k?}b—3q)

where the photon equation remains unchanged and the baryons
follow number conservation with p, = myn,

e Navier-Stokes (Euler + heat conduction, viscosity)

k
v, = k(@4 V) — 6™~ T(vy — Vp)
?.Jb = —gvb—l—kqf—kj'(’(},y—?]b)/R

where the photons gain an anisotropic stress term 7., from radiation
viscosity and a momentum exchange term with the baryons and
are compensated by the opposite term in the baryon Euler equation



Viscosity

e Viscosity 1s generated from radiation streaming from hot to cold
regions

e Expect

k
T~ N~ U~ —
Y 77_

generated by streaming, suppressed by scattering in a wavelength
of the fluctuation. Radiative transfer says

k
7Tfy ~ ZAU?J,Y ;

where A, = 16/15

kK k
’l.}fy — k(@ —|— \If) — §AU—,U7

T



Oscillator: Penultimate Take
e Adiabatic approximation (w > a/a)

: k
O ~ —g’l}fy
e Oscillator equation contains a O damping term
d : k% k* d :
2 —2 s 2 2 2 —2
— O A,©+Ek%°c,© = ——WVU — ¢l — o
CS dT] (CS ) —|_ 7_ —I_ CS 3 CS dT] (CS )

e Heat conduction term similar in that it 1s proportional to v., and is
suppressed by scattering % /7. Expansion of Euler equations to
leading order in k7 gives

R2
T 1+R
since the effects are only significant if the baryons are dynamically

Ap

important



Oscillator: Final Take

e Final oscillator equation

d . k22 . k2 d .
2 (¢7%0 STA, + A0 + K220 = —— U — 2— (¢
g (670) + AL+ A0+ KO = — 0 — i (")

e Solve 1n the adiabatic approximation

O exp(i/wdn)

k*c?
—w® A 2 (A, + Ap)iw + ke =0
T




Dispersion Relation

e Solve

w? = k*c {1 + ig(AU + Ah)}

o,
— t+ke, [1+=-—(A, + A
W C _ —|—27_( + h)]

I 1 ke
— tkc, |1 £+ = SAU A
| ;5 (Aot h)]

e Exponentiate

1 2
exp(i/wdn) = T ex Xp —kQ/dU§CT.S(Av + Ap)]

= =" exp[—(k/kp)?]

e Damping 1s exponential under the scale £ p




Diffusion Scale

e Diffusion wavenumber

k2/d1 1 16 R
b= YR T R\ T 1+ R)

e Limiting forms

116 1

. _2 _ o o

R0 = 51 )
1 1
. _2 - _ e
A k= G/dn%

e Geometric mean between horizon and mean free path as expected
from a random walk

2T 2T
Ap = =5~ ()2

kp /6



Thomson Scattering

e Polarization state of radiation in direction n described by the
intensity matrix ( F;(n)E?(n)), where E is the electric field vector
and the brackets denote time averaging.

e Differential cross section

do
df)

where o = 8ma?/3m, is the Thomson cross section, E' and E

3 . .
= —W]E’-E\QJT,

denote the incoming and outgoing directions of the electric field or
polarization vector.

e Summed over angle and incoming polarization

> [l

1=1,2



Polarization Generation

y E—-mode

e Heuristic:

B—mode k —>

e But photon cannot be longitudinally polarized so that scattering

. . . . Quadrupole
incoming radiation shakes J

. . . Thomson

an electron 1n direction Scattering )

. ~ <
of electric field vector E’

Linear
Polarization

N)

e Radiates photon with
polarization also in direction E’

into 90° can only pass one polarization
e Linearly polarized radiation like polarization by reflection
e Unlike reflection of sunlight, incoming radiation 1s nearly 1sotropic
e Missing from direction orthogonal to original incoming direction

e Only quadrupole anisotropy generates polarization by Thomson
scattering



Acoustic Polarization

Break down of tight-coupling leads to quadrupole anisotropy of

k
7T,y ~ ;/U'Y
Scaling kp = (7/n.)Y? — 7 = k%,
Know: kps, ~ kpn, ~ 10

So:



Acoustic Polarization

e Gradient of velocity 1s along direction of wavevector, so
polarization 1s pure f~-mode

e Velocity 1s 90° out of phase with temperature — turning points of
oscillator are zero points of velocity:

© + VU  cos(ks); v, o< sin(ks)

e Polarization peaks are at troughs of temperature power



Cross Correlation

e Cross correlation of temperature and polarization

(© 4+ ¥)(v,) x cos(ks)sin(ks) o sin(2ks)
e Oscillation at twice the frequency

e Correlation: radial or tangential around hot spots

e Partial correlation: easier to measure if polarization data 1s noisy,
harder to measure if polarization data is high S/ or if bands do
not resolve oscillations

e Good check for systematics and foregrounds

e Comparison of temperature and polarization 1s proof against
features 1n 1nitial conditions mimicking acoustic features



Reionization

e Reionization causes
rescattering of radiation

e Suppresses temperature anisotopy
as e~ 7 and changes interpretation
of amplitude to A,e™%7

e Electron sees temperature
anisotropy on its recombination

surface

e For wavelengths that are comparable to the horizon at reionization,
a quadrupole moment

e Rescatters to a linear polarization that 1s correlated with the
Sachs-Wolfe temperature anisotropy



Reionization

e Amplitude of
CF* depends mainly on 7

e Shape of C/'* depends
on reionization history

Transfer function

e Horizon at earlier epochs

subtends a smaller angle,

higher multipole peak

e Precision measurements can constrain the reionization history to
be either low or high z dominated



Polarization Power
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Tensor Power

e Gravitational l/aH
waves obey a Klein-Gordon like equation J\,@\N

e Like inflation, perturbations generated

by quantum fluctuations during inflation 1/aH

e Freeze out at horizon crossing
during inflation an amplitude
that reflects the energy scale of inflation

A2 = H*
X 27T2M}2)1

x E}

e Gravitational waves remain frozen outside the horizon at constant
amplitude

e Oscillate inside the horizon and decay or redshift as radiation



Tensor Quadrupoles

e Changing transverse-traceless
distortion of space creates a
quadrupole CMB anisotropy
much like the distortion
of test ring of particles

Tensors
(Gravity Waves)

e As the tensor mode enters the
horizon it imprints a quadrupole
temperature distortion: H7? is source to Sy~

e Modes that cross before recombination: effect erased by
rescattering e~ 7 in the integral solution

e Modes that cross after recombination: integrate contributions
along the line of sight - tensor ISW effect



Tensor Temperature Power Spectrum

e Resulting spectum,
near scale invariant out to

N=50

e

N=60

a iO (r0.002

to-Scalar Rat
0.00 0.05 0.10 0.15 0.20 0.25

horizon at recombination ¢ < 100

Tensor-to-Scalar

e Suppressed on smaller scales or

higher multipoles ¢ > 100, weakly

0.94 0.96 0.98 1.00

degenerate with tilt Primordia Tit (n)

e When added to scalar spectrum, enhances large scale anisotropy
over small scale

e Shape of total temperature spectrum can place tight limit r < 0.1,
for power law curvature spectrum

e Smaller tensor-scalar ratios cannot be constrained by temperature
alone due the high cosmic variance of the low multipole specrum



Tensor Polarization Power Spectrum

e Polarization
of gravitational wave determines the
quadrupole temperature anisotropy

e Scattering of quadrupole
temperature anisotropy generates
linear

polarization aligned with cold lobe

e Direction of CMB polarization is therefore determined by
gravitational wave polarization rather than direction of wavevector

e [-mode polarization when the amplitude 1s modulated by the
plane wave

e Requires scattering: two peaks - horizon at recombination and
reionization



Tensor Polarization Power Spectrum

e Measuring 5-modes from gravitational waves determines the
energy scale of inflation

E  \°
AB, ... ~ 0.024 - K
peak (1016(}6\/) K

e Also generates F/-mode polarization which, like temperature, 1s a
consistency check for r» ~ 0.1

e Projection 1s less sharp than for scalar [/, so evading temperature
bounds by adding features to the curvature spectrum can be tested



Gravitational Lensing

e Lensing 1s a surface brightness conserving remapping of source to
image planes by the gradient of the projected potential

1o D*—D X
o) =2 [ an Sy,

such that the fields are remapped as

r(n) = x(n+ Vo),
where x € {©, (), U} temperature and polarization.

e Taylor expansion leads to product of fields and Fourier
mode-coupling



Flat-sky Treatment

e Talyor expand

~

O(n) =6n + Vo)
= O(1) + Vio(0) V'O () + £ Vio() V,0(0) V'O (M) + ..

e Fourier decomposition




Flat-sky Treatment

e Mode coupling of harmonics

where
LLL)=¢o01-1)1-1) L
1 d?1
T 2 / (277)22 o(l)¢*(la+ 1L =1 (L-L)(L+L -1 L.

e Represents a coupling of harmonics separated by L ~ 60 peak of

deflection power



Power Spectrum

e Power spectra

(O (e()) = (2m)*(1-1) ¢,
(¢*(Me(l)) = (2m)?6(1 1) 77,

becomes
2 ~ d211 ~ 2
Cl — (]._Z R) Cl_l_ (271_) Cll 11|C [(].—]_1) ].1] ,
where
R = dl cee.

47T [



Smoothing Power Spectrum

o If éz slowly varying 102 £ | ]
then two term cancel 1010k .

S f lensed ;

~ d211 N % 10-11 = T unlensed \ 3
C, wa(l : 11)2 ~ Z2RCZ Ak P :
(27’(’)2 10—125— \ 3

e So lensing acts to smooth 1013é—
features in the power [ ||||||1|0 L1 |||||1|(lO L1 ||||1|(|)(|)0 L1 1]

spectrum. Smoothing
kernel 1s L ~ 60 the peak of deflection power spectrum

e Because acoustic feature appear on a scale [4 ~ 300, smoothing is
a subtle effect in the power spectrum.

e Lensing generates power below the damping scale which directly
reflect power in deflections on the same scale



Polarization Lensing

e Polarization field harmonics lensed similarly

d?l

- +2i¢y 1B
27)° E+iB|(1)e™""e

Qi@ -~ |
so that
(Q £iU](n) = [Q £iU|(h + V)
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Polarization Power Spectra
e Carrying through the algebra
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Polarization Lensing

e Lensing generates B-modes out of the acoustic polaraization

F/-modes contaminates gravitational wave signature if
E; < 101GeV.
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Reconstruction from the CMB

e Correlation between Fourier moments reflect lensing potential

(z(M)z"(I))ems = fa(,1)o(1+1),

where x € temperature, polarization fields and f,, is a fixed weight
that reflects geometry

e Each pair forms a noisy estimate of the potential or projected mass
- just like a pair of galaxy shears

e Minimum variance weight all pairs to form an estimator of the
lensing mass



