Astro 448

Set 4: C_{ℓ} Basics
 Wayne Hu

Inhomogeneity vs Anisotropy

- Θ is a function of position as well as direction but we only have access to our position
- Light travels at the speed of light so the radiation we receive in direction $\hat{\mathbf{n}}$ was $\left(\eta_{0}-\eta\right) \hat{\mathbf{n}}$ at conformal time η
- Inhomogeneity at a distance appears as an anisotopy to the observer
- We need to transport the radiation from the initial conditions to the observer
- This is done with the Boltzmann or radiative transfer equation
- In the absence of scattering, emission or absorption the Boltzmann equation is simply

$$
\frac{D f}{D t}=0
$$

Last Scattering

- Angular distribution of radiation is the 3 D temperature field projected onto a shell
- surface of last scattering
- Shell radius
is distance from the observer to recombination: called the last scattering surface

- Take the radiation distribution at last scattering to also be described by an isotropic temperature fluctuation field $\Theta(\mathbf{x})$

Integral Solution to Radiative Transfer

- Formal solution for specific intensity $I_{\nu}=2 h \nu^{3} f / c^{2}$

$$
I_{\nu}\left(\tau_{\nu}\right)=I_{\nu}(0) e^{-\tau_{\nu}}+\int_{0}^{\tau_{\nu}} d \tau_{\nu}^{\prime} S_{\nu}\left(\tau_{\nu}^{\prime}\right) e^{-\left(\tau_{\nu}-\tau_{\nu}^{\prime}\right)}
$$

- Specific intensity I_{ν} attenuated by absorption and replaced by source function, attenuated by absorption from foreground matter
- Here Θ plays the role of specific intensity and $\tau_{\nu}-\tau_{\nu}^{\prime}=\tau$ is optical depth to Compton scattering from $\mathbf{x}=\mathbf{0}$ to $D \hat{\mathbf{n}}$

Angular Power Spectrum

- Take recombination to be instantaneous: $d \tau e^{-\tau}=d D \delta\left(D-D_{*}\right)$ and the source to be the local temperature inhomogeneity

$$
\Theta(\hat{\mathbf{n}})=\int d D \Theta(\mathbf{x}) \delta\left(D-D_{*}\right)
$$

where D is the comoving distance and D_{*} denotes recombination.

- Describe the temperature field by its Fourier moments

$$
\Theta(\mathbf{x})=\int \frac{d^{3} k}{(2 \pi)^{3}} \Theta(\mathbf{k}) e^{i \mathbf{k} \cdot \mathbf{x}}
$$

- Note that Fourier moments $\Theta(\mathbf{k})$ have units of volume k^{-3}
- 2 point statistics of the real-space field are translationally and rotationally invariant
- Described by power spectrum

Spatial Power Spectrum

- Translational invariance

$$
\begin{aligned}
& \left\langle\Theta\left(\mathbf{x}^{\prime}\right) \Theta(\mathbf{x})\right\rangle=\left\langle\Theta\left(\mathbf{x}^{\prime}+\mathbf{d}\right) \Theta(\mathbf{x}+\mathbf{d})\right\rangle \\
& \int \frac{d^{3} k}{(2 \pi)^{3}} \frac{d^{3} k^{\prime}}{(2 \pi)^{3}}\left\langle\Theta^{*}\left(\mathbf{k}^{\prime}\right) \Theta(\mathbf{k})\right\rangle e^{i \mathbf{k} \cdot \mathbf{x}-i \mathbf{k}^{\prime} \cdot \mathbf{x}^{\prime}} \\
& =\int \frac{d^{3} k}{(2 \pi)^{3}} \frac{d^{3} k^{\prime}}{(2 \pi)^{3}}\left\langle\Theta^{*}\left(\mathbf{k}^{\prime}\right) \Theta(\mathbf{k})\right\rangle e^{i \mathbf{k} \cdot \mathbf{x}-i \mathbf{k}^{\prime} \cdot \mathbf{x}^{\prime}+i\left(\mathbf{k}-\mathbf{k}^{\prime}\right) \cdot \mathbf{d}}
\end{aligned}
$$

So two point function requires $\delta\left(\mathbf{k}-\mathbf{k}^{\prime}\right)$; rotational invariance says coefficient depends only on magnitude of k not it's direction

$$
\left\langle\Theta(\mathbf{k})^{*} \Theta\left(\mathbf{k}^{\prime}\right)\right\rangle=(2 \pi)^{3} \delta\left(\mathbf{k}-\mathbf{k}^{\prime}\right) P_{T}(k)
$$

Note that $\delta\left(\mathbf{k}-\mathbf{k}^{\prime}\right)$ has units of volume and so P_{T} must have units of volume

Dimensionless Power Spectrum

- Variance

$$
\begin{aligned}
\sigma_{\Theta}^{2} & \equiv\langle\Theta(\mathbf{x}) \Theta(\mathbf{x})\rangle=\int \frac{d^{3} k}{(2 \pi)^{3}} P_{T}(k) \\
& =\int \frac{k^{2} d k}{2 \pi^{2}} \int \frac{d \Omega}{4 \pi} P_{T}(k) \\
& =\int d \ln k \frac{k^{3}}{2 \pi^{2}} P_{T}(k)
\end{aligned}
$$

- Define power per logarithmic interval

$$
\Delta_{T}^{2}(k) \equiv \frac{k^{3} P_{T}(k)}{2 \pi^{2}}
$$

- This quantity is dimensionless.

Angular Power Spectrum

- Temperature field

$$
\Theta(\hat{\mathbf{n}})=\int \frac{d^{3} k}{(2 \pi)^{3}} \Theta(\mathbf{k}) e^{i \mathbf{k} \cdot D_{*} \hat{\mathbf{n}}}
$$

- Multipole moments $\Theta(\hat{\mathbf{n}})=\sum_{\ell m} \Theta_{\ell m} Y_{\ell m}$
- Expand out plane wave in spherical coordinates

$$
e^{i \mathbf{k} D_{*} \cdot \hat{\mathbf{n}}}=4 \pi \sum_{\ell m} i^{\ell} j_{\ell}\left(k D_{*}\right) Y_{\ell m}^{*}(\mathbf{k}) Y_{\ell m}(\hat{\mathbf{n}})
$$

- Angular moment

$$
\Theta_{\ell m}=\int \frac{d^{3} k}{(2 \pi)^{3}} \Theta(\mathbf{k}) 4 \pi i^{\ell} j_{\ell}\left(k D_{*}\right) Y_{\ell m}^{*}(\mathbf{k})
$$

Angular Power Spectrum

- Power spectrum

$$
\begin{aligned}
\left\langle\Theta_{\ell m}^{*} \Theta_{\ell^{\prime} m^{\prime}}\right\rangle & =\int \frac{d^{3} k}{(2 \pi)^{3}}(4 \pi)^{2} i^{\ell-\ell^{\prime}} j_{\ell}\left(k D_{*}\right) j_{\ell^{\prime}}\left(k D_{*}\right) Y_{\ell m}(\mathbf{k}) Y_{\ell^{\prime} m^{\prime}}^{*}(\mathbf{k}) P_{T}(k) \\
& =\delta_{\ell \ell^{\prime}} \delta_{m m^{\prime}} 4 \pi \int d \ln k j_{\ell}^{2}\left(k D_{*}\right) \Delta_{T}^{2}(k)
\end{aligned}
$$

with $\int_{0}^{\infty} j_{\ell}^{2}(x) d \ln x=1 /(2 \ell(\ell+1))$, slowly varying Δ_{T}^{2}

- Angular power spectrum:

$$
C_{\ell}=\frac{4 \pi \Delta_{T}^{2}\left(\ell / D_{*}\right)}{2 \ell(\ell+1)}=\frac{2 \pi}{\ell(\ell+1)} \Delta_{T}^{2}\left(\ell / D_{*}\right)
$$

- Not surprisingly, a relationship between $\ell^{2} C_{\ell} / 2 \pi$ and Δ_{T}^{2} at $\ell \gg 1$. By convention use $\ell(\ell+1)$ to make relationship exact

Generalized Source

- More generally, we know the Y_{ℓ}^{m} 's are a complete angular basis and plane waves are complete spatial basis
- General distribution can be decomposed into

$$
Y_{\ell}^{m}(\hat{\mathbf{n}}) \exp (i \mathbf{k} \cdot \mathbf{x})
$$

- The observer at the origin sees this distribution in projection

$$
Y_{\ell}^{m}(\hat{\mathbf{n}}) e^{i \mathbf{k} D_{*} \cdot \hat{\mathbf{n}}}=4 \pi \sum_{\ell^{\prime} m^{\prime}} i^{\ell^{\prime}} j_{\ell^{\prime}}\left(k D_{*}\right) Y_{\ell^{\prime}}^{m^{\prime} *}(\mathbf{k}) Y_{\ell^{\prime}}^{m^{\prime}}(\hat{\mathbf{n}}) Y_{\ell}^{m}(\hat{\mathbf{n}})
$$

- We extract the observed multipoles by the addition of angular momentum $Y_{\ell^{\prime}}^{m^{\prime}}(\hat{\mathbf{n}}) Y_{\ell}^{m}(\hat{\mathbf{n}}) \rightarrow Y_{L}^{M}(\hat{\mathbf{n}})$
- Radial functions become linear sums over j_{ℓ} with the recoupling (Clebsch-Gordan) coefficients
- Formal integral solution to the radiative transfer equation

Boltzmann Equation

- General integral solution for radiative transfer as long as the angular distribution at emission is known
- Formalize further the evolution of angular moments in the cosmological context:

$$
\frac{D f}{D t}=\dot{f}+\dot{\mathbf{q}} \cdot \frac{\partial f}{\partial \mathbf{q}}+\dot{\mathbf{x}} \cdot \frac{\partial f}{\partial \mathbf{x}}=0
$$

- Momentum $\mathbf{q}=q \hat{\mathbf{n}}$, where $\hat{\mathbf{n}}$ is a directional unit vector and in a flat universe $\dot{\mathbf{q}}=\dot{q} \hat{\mathbf{n}}$
- Particle velocity $\dot{\mathbf{x}}=\mathbf{q} / E$

$$
\dot{f}+\dot{q} \frac{\partial f}{\partial q}+\frac{\mathbf{q}}{E} \cdot \frac{\partial f}{\partial \mathbf{x}}=0
$$

Angular Moments

- Define the angularly dependent Stokes perturbation

$$
\Theta(\mathbf{x}, \hat{\mathbf{n}}, \eta), \quad Q(\mathbf{x}, \hat{\mathbf{n}}, \eta), \quad U(\mathbf{x}, \hat{\mathbf{n}}, \eta)
$$

- Decompose into normal modes: plane waves for spatial part and spherical harmonics for angular part

$$
\begin{aligned}
G_{\ell}^{m}(\mathbf{k}, \mathbf{x}, \hat{\mathbf{n}}) & \equiv(-i)^{\ell} \sqrt{\frac{4 \pi}{2 \ell+1}} Y_{\ell}^{m}(\hat{\mathbf{n}}) \exp (i \mathbf{k} \cdot \mathbf{x}) \\
{ }_{ \pm 2} G_{\ell}^{m}(\mathbf{k}, \mathbf{x}, \hat{\mathbf{n}}) & \equiv(-i)^{\ell} \sqrt{\frac{4 \pi}{2 \ell+1}} \pm 2 Y_{\ell}^{m}(\hat{\mathbf{n}}) \exp (i \mathbf{k} \cdot \mathbf{x})
\end{aligned}
$$

- In a spatially curved universe generalize the plane wave part

Normal Modes

- Temperature and polarization fields

$$
\begin{aligned}
\Theta(\mathbf{x}, \hat{\mathbf{n}}, \eta) & =\int \frac{d^{3} k}{(2 \pi)^{3}} \sum_{\ell m} \Theta_{\ell}^{(m)} G_{\ell}^{m} \\
{[Q \pm i U](\mathbf{x}, \hat{\mathbf{n}}, \eta) } & =\int \frac{d^{3} k}{(2 \pi)^{3}} \sum_{\ell m}\left[E_{\ell}^{(m)} \pm i B_{\ell}^{(m)}\right]_{ \pm 2} G_{\ell}^{m}
\end{aligned}
$$

- For each \mathbf{k} mode, work in coordinates where $\mathbf{k} \| \mathbf{z}$ and so $m=0$ represents scalar modes, $m= \pm 1$ vector modes, $m= \pm 2$ tensor modes, $|m|>2$ vanishes. Since modes add incoherently and $Q \pm i U$ is invariant up to a phase, rotation back to a fixed coordinate system is trivial.

Liouville Equation

- In absence of scattering, the phase space distribution of photons in each polarization state a is conserved along the propagation path
- Rewrite variables in terms of the photon propagation direction $\mathbf{q}=q \hat{\mathbf{n}}$, so $f_{a}(\mathbf{x}, \hat{\mathbf{n}}, q, \eta)$ and
$\frac{d}{d \eta} f_{a}(\mathbf{x}, \hat{\mathbf{n}}, q, \eta)=0$

$$
=\left(\frac{\partial}{\partial \eta}+\frac{d \mathbf{x}}{d \eta} \cdot \frac{\partial}{\partial \mathbf{x}}+\frac{d \hat{\mathbf{n}}}{d \eta} \cdot \frac{\partial}{\partial \hat{\mathbf{n}}}+\frac{d q}{d \eta} \cdot \frac{\partial}{\partial q}\right) f_{a}
$$

- For simplicity, assume spatially flat universe $K=0$ then $d \hat{\mathbf{n}} / d \eta=0$ and $d \mathbf{x}=\hat{\mathbf{n}} d \eta$

$$
\dot{f}_{a}+\hat{\mathbf{n}} \cdot \nabla f_{a}+\dot{q} \frac{\partial}{\partial q} f_{a}=0
$$

Scalar, Vector, Tensor

- Normalization of modes is chosen so that the lowest angular mode for scalars, vectors and tensors are normalized in the same way as the mode function

$$
\begin{aligned}
G_{0}^{0} & =Q^{(0)} \quad G_{1}^{0}=n^{i} Q_{i}^{(0)} \quad G_{2}^{0} \propto n^{i} n^{j} Q_{i j}^{(0)} \\
G_{1}^{ \pm 1} & =n^{i} Q_{i}^{(\pm 1)} \quad G_{2}^{ \pm 1} \propto n^{i} n^{j} Q_{i j}^{(\pm 1)} \\
G_{2}^{ \pm 2} & =n^{i} n^{j} Q_{i j}^{(\pm 2)}
\end{aligned}
$$

where recall

$$
\begin{aligned}
Q^{(0)} & =\exp (i \mathbf{k} \cdot \mathbf{x}) \\
Q_{i}^{(\pm 1)} & =\frac{-i}{\sqrt{2}}\left(\hat{\mathbf{e}}_{1} \pm i \hat{\mathbf{e}}_{2}\right)_{i} \exp (i \mathbf{k} \cdot \mathbf{x}) \\
Q_{i j}^{(\pm 2)} & =-\sqrt{\frac{3}{8}}\left(\hat{\mathbf{e}}_{1} \pm i \hat{\mathbf{e}}_{2}\right)_{i}\left(\hat{\mathbf{e}}_{1} \pm i \hat{\mathbf{e}}_{2}\right)_{j} \exp (i \mathbf{k} \cdot \mathbf{x})
\end{aligned}
$$

Geometrical Projection

- Main content of Liouville equation is purely geometrical and describes the projection of inhomogeneities into anisotropies
- Spatial gradient term hits plane wave:

$$
\hat{\mathbf{n}} \cdot \nabla e^{i \mathbf{k} \cdot \mathbf{x}}=i \hat{\mathbf{n}} \cdot \mathbf{k} e^{i \mathbf{k} \cdot \mathbf{x}}=i \sqrt{\frac{4 \pi}{3}} k Y_{1}^{0}(\hat{\mathbf{n}}) e^{i \mathbf{k} \cdot \mathbf{x}}
$$

- Dipole term adds to angular dependence through the addition of angular momentum
$\sqrt{\frac{4 \pi}{3}} Y_{1}^{0} Y_{\ell}^{m}=\frac{\kappa_{\ell}^{m}}{\sqrt{(2 \ell+1)(2 \ell-1)}} Y_{\ell-1}^{m}+\frac{\kappa_{\ell+1}^{m}}{\sqrt{(2 \ell+1)(2 \ell+3)}} Y_{\ell+1}^{m}$
where $\kappa_{\ell}^{m}=\sqrt{\ell^{2}-m^{2}}$ is given by Clebsch-Gordon coefficients.

Temperature Hierarchy

- Absorb recoupling of angular momentum into evolution equation for normal modes

$$
\dot{\Theta}_{\ell}^{(m)}=k\left[\frac{\kappa_{\ell}^{m}}{2 \ell+1} \Theta_{\ell-1}^{(m)}-\frac{\kappa_{\ell+1}^{m}}{2 \ell+3} \Theta_{\ell+1}^{(m)}\right]-\dot{\tau} \Theta_{\ell}^{(m)}+S_{\ell}^{(m)}
$$

where $S_{\ell}^{(m)}$ are the gravitational (and later scattering sources; added scattering suppression of anisotropy)

- An originally isotropic $\ell=0$ temperature perturbation will eventually become a high order anisotropy by "free streaming" or simple projection
- Original CMB codes solved the full hierarchy equations out to the ℓ of interest.

Integral Solution

- Hierarchy equation simply represents geometric projection, exactly as we have seen before in the projection of temperature perturbations on the last scattering surface
- In general, the solution describes the decomposition of the source $S_{\ell}^{(m)}$ with its local angular dependence as seen at a distance $\mathrm{x}=D \hat{\mathbf{n}}$.
- Proceed by decomposing the angular dependence of the plane wave

$$
e^{i \mathbf{k} \cdot \mathbf{x}}=\sum_{\ell}(-i)^{\ell} \sqrt{4 \pi(2 \ell+1)} j_{\ell}(k D) Y_{\ell}^{0}(\hat{\mathbf{n}})
$$

- Recouple to the local angular dependence of G_{ℓ}^{m}

$$
G_{\ell_{s}}^{m}=\sum_{\ell}(-i)^{\ell} \sqrt{4 \pi(2 \ell+1)} \alpha_{\ell_{s} \ell}^{(m)}(k D) Y_{\ell}^{m}(\hat{\mathbf{n}})
$$

Integral Solution

- Projection kernels:

$$
\begin{array}{lll}
\ell_{s}=0, & m=0 & \alpha_{0 \ell}^{(0)} \equiv j_{\ell} \\
\ell_{s}=1, & m=0 & \alpha_{1 \ell}^{(0)} \equiv j_{\ell}^{\prime}
\end{array}
$$

- Integral solution:

$$
\frac{\Theta_{\ell}^{(m)}\left(k, \eta_{0}\right)}{2 \ell+1}=\int_{0}^{\eta_{0}} d \eta e^{-\tau} \sum_{\ell_{s}} S_{\ell_{s}}^{(m)} \alpha_{\ell_{s} \ell}^{(m)}\left(k\left(\eta_{0}-\eta\right)\right)
$$

- Power spectrum:

$$
C_{\ell}=\frac{2}{\pi} \int \frac{d k}{k} \sum_{m} \frac{k^{3}\left\langle\Theta_{\ell}^{(m) *} \Theta_{\ell}^{(m)}\right\rangle}{(2 \ell+1)^{2}}
$$

- Solving for C_{ℓ} reduces to solving for the behavior of a handful of sources

Polarization Hierarchy

- In the same way, the coupling of a gradient or dipole angular momentum to the spin harmonics leads to the polarization hierarchy:

$$
\begin{aligned}
& \dot{E}_{\ell}^{(m)}=k\left[\frac{{ }_{2} \kappa_{\ell}^{m}}{2 \ell-1} E_{\ell-1}^{(m)}-\frac{2 m}{\ell(\ell+1)} B_{\ell}^{(m)}-\frac{{ }_{2} \kappa_{\ell+1}^{m}}{2 \ell+3} E_{\ell+1}^{(m)}\right]-\dot{\tau} E_{\ell}^{(m)}+\mathcal{E}_{\ell}^{(m)} \\
& \dot{B}_{\ell}^{(m)}=k\left[\frac{{ }_{2} \kappa_{\ell}^{m}}{2 \ell-1} B_{\ell-1}^{(m)}+\frac{2 m}{\ell(\ell+1)} E_{\ell}^{(m)}-\frac{{ }_{2} \kappa_{\ell+1}^{m}}{2 \ell+3} B_{\ell+1}^{(m)}\right]-\dot{\tau} B_{\ell}^{(m)}+\mathcal{B}_{\ell}^{(m)}
\end{aligned}
$$

where ${ }_{2} \kappa_{\ell}^{m}=\sqrt{\left(\ell^{2}-m^{2}\right)\left(\ell^{2}-4\right) / \ell^{2}}$ is given by the
Clebsch-Gordon coefficients and \mathcal{E}, \mathcal{B} are the sources (scattering only).

- Note that for vectors and tensors $|m|>0$ and B modes may be generated from E modes by projection. Cosmologically $\mathcal{B}_{\ell}^{(m)}=0$

Polarization Integral Solution

- Again, we can recouple the plane wave angular momentum of the source inhomogeneity to its local angular dependence directly

$$
\begin{aligned}
\frac{E_{\ell}^{(m)}\left(k, \eta_{0}\right)}{2 \ell+1} & =\int_{0}^{\eta_{0}} d \eta e^{-\tau} \mathcal{E}_{\ell_{s}}^{(m)} \epsilon_{\ell_{s} \ell}^{(m)}\left(k\left(\eta_{0}-\eta\right)\right) \\
\frac{B_{\ell}^{(m)}\left(k, \eta_{0}\right)}{2 \ell+1} & =\int_{0}^{\eta_{0}} d \eta e^{-\tau} \mathcal{E}_{\ell_{s}}^{(m)} \beta_{\ell_{s} \ell}^{(m)}\left(k\left(\eta_{0}-\eta\right)\right)
\end{aligned}
$$

- The only source to the polarization is from the quadrupole anisotropy so we only need $\ell_{s}=2$, e.g. for scalars

$$
\epsilon_{2 \ell}^{(0)}(x)=\sqrt{\frac{3}{8} \frac{(\ell+2)!}{(\ell-2)!} \frac{j_{\ell}(x)}{x^{2}}} \quad \beta_{2 \ell}^{(0)}=0
$$

Gravitational Terms

- As in our Newtonian gauge calculation, gravitational terms - now including vectors and tensors in an arbitrary gauge, come from the geodesic equation
- First define the slicing (lapse function A, shift function B^{i})

$$
\begin{aligned}
g^{00} & =-a^{-2}(1-2 A) \\
g^{0 i} & =-a^{-2} B^{i}
\end{aligned}
$$

A defines the lapse of proper time between 3-surfaces whereas B^{i} defines the threading or relationship between the 3-coordinates of the surfaces

Gravitational Terms

- This absorbs $1+3=4$ degrees of freedom in the metric, remaining 6 is in the spatial surfaces which we parameterize as

$$
g^{i j}=a^{-2}\left(\gamma^{i j}-2 H_{L} \gamma^{i j}-2 H_{T}^{i j}\right)
$$

here (1) H_{L} a perturbation to the spatial curvature; (5) $H_{T}^{i j}$ a trace-free distortion to spatial metric (which also can perturb the curvature)

- Geodesic equation gives the redshifting term

$$
\frac{\dot{q}}{q}=-\frac{\dot{a}}{a}-\frac{1}{2} n^{i} n^{j} \dot{H}_{T i j}-\dot{H}_{L}+n^{i} \dot{B}_{i}-\hat{\mathbf{n}} \cdot \nabla A
$$

which is incorporated in the conservation and gauge transformation equations

Source Terms

- Temperature source terms $S_{l}^{(m)}$ (rows $\pm|m|$; flat assumption

$$
\left(\begin{array}{lll}
\dot{\tau} \Theta_{0}^{(0)}-\dot{H}_{L}^{(0)} & \dot{\tau} v_{b}^{(0)}+\dot{B}^{(0)} & \dot{\tau} P^{(0)}-\frac{2}{3} \dot{H}_{T}^{(0)} \\
0 & \dot{\tau} v_{b}^{(\pm 1)}+\dot{B}^{(\pm 1)} & \dot{\tau} P^{(\pm 1)}-\frac{\sqrt{3}}{3} \dot{H}_{T}^{(\pm 1)} \\
0 & 0 & \dot{\tau} P^{(\pm 2)}-\dot{H}_{T}^{(\pm 2)}
\end{array}\right)
$$

where

$$
P^{(m)} \equiv \frac{1}{10}\left(\Theta_{2}^{(m)}-\sqrt{6} E_{2}^{(m)}\right)
$$

- Polarization source term

$$
\begin{aligned}
& \mathcal{E}_{\ell}^{(m)}=-\dot{\tau} \sqrt{6} P^{(m)} \delta_{\ell, 2} \\
& \mathcal{B}_{\ell}^{(m)}=0
\end{aligned}
$$

Truncated Hierarchy

- CMBFast introduced the hybrid truncated hierarchy, integral solution technique
- Formal integral solution contains sources that are not external to system but defined through the Boltzmann hierarchy itself
- Solution: recall that we used this technique in the tight coupling regime by applying a closure condition from tight coupling
- CMBFast extends this idea by solving a truncated hierarchy of equations, e.g. out to $\ell=25$ with non-reflecting boundary conditions
- For completeness, we explicitly derive the scattering source term via polarized radiative transfer in the last part of the notes

Polarized Radiative Transfer

- Define a specific intensity "vector": $\mathbf{I}_{\nu}=\left(\Theta_{\|}, \Theta_{\perp}, U, V\right)$ where $\Theta=\Theta_{\|}+\Theta_{\perp}, Q=\Theta_{\|}-\Theta_{\perp}$

$$
\frac{d \mathbf{I}_{\nu}}{d \eta}=\dot{\tau}\left(\mathbf{S}_{\nu}-\mathbf{I}_{\nu}\right)
$$

- Thomson collision
based on differential cross section

$$
\frac{d \sigma_{T}}{d \Omega}=\frac{3}{8 \pi}\left|\hat{\mathbf{E}}^{\prime} \cdot \hat{\mathbf{E}}\right|^{2} \sigma_{T},
$$

Polarized Radiative Transfer

- $\hat{\mathbf{E}}^{\prime}$ and $\hat{\mathbf{E}}$ denote the incoming and outgoing directions of the electric field or polarization vector.
- Thomson scattering by 90 deg: $\Theta_{\perp} \rightarrow \Theta_{\perp}$ but $\Theta_{\|}$does not scatter
- More generally if Θ is the scattering angle

$$
\mathbf{S}_{\nu}=\frac{3}{8 \pi} \int d \Omega^{\prime}\left(\begin{array}{cccc}
\cos ^{2} \Theta & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & \cos \Theta & 0 \\
0 & 0 & 0 & \cos \Theta
\end{array}\right) \mathbf{I}_{\nu}^{\prime}
$$

- But to calculate Stokes parameters in a fixed coordinate system must rotate into the scattering basis, scatter and rotate back out to the fixed coordinate system

Thomson Collision Term

- The $U \rightarrow U^{\prime}$ transfer follows by writing down the polarization vectors in the 45° rotated basis

$$
\hat{\mathbf{E}}_{1}=\frac{1}{\sqrt{2}}\left(\hat{\mathbf{E}}_{\|}+\hat{\mathbf{E}}_{\perp}\right), \quad \hat{\mathbf{E}}_{2}=\frac{1}{\sqrt{2}}\left(\hat{\mathbf{E}}_{\|}-\hat{\mathbf{E}}_{\perp}\right)
$$

- Define the temperature in this basis

$$
\begin{aligned}
\Theta_{1} & \propto\left|\hat{\mathbf{E}}_{1} \cdot \hat{\mathbf{E}}_{1}\right|^{2} \Theta_{1}^{\prime}+\left|\hat{\mathbf{E}}_{1} \cdot \hat{\mathbf{E}}_{2}\right|^{2} \Theta_{2}^{\prime} \\
& \propto \frac{1}{4}(\cos \beta+1)^{2} \Theta_{1}^{\prime}+\frac{1}{4}(\cos \beta-1)^{2} \Theta_{2}^{\prime} \\
\Theta_{2} & \propto\left|\hat{\mathbf{E}}_{2} \cdot \hat{\mathbf{E}}_{2}\right|^{2} \Theta_{2}^{\prime}+\left|\hat{\mathbf{E}}_{2} \cdot \hat{\mathbf{E}}_{1}\right|^{2} \Theta_{1}^{\prime} \\
& \propto \frac{1}{4}(\cos \beta+1)^{2} \Theta_{2}^{\prime}+\frac{1}{4}(\cos \beta-1)^{2} \Theta_{1}^{\prime} \\
\text { or } \Theta_{1}-\Theta_{2} & \propto \cos \beta\left(\Theta_{1}^{\prime}-\Theta_{2}^{\prime}\right)
\end{aligned}
$$

Scattering Matrix

- Transfer matrix of Stokes state $\mathbf{T} \equiv(\Theta, Q+i U, Q-i U)$

$$
\begin{gathered}
\mathbf{T} \propto \mathbf{S}(\beta) \mathbf{T}^{\prime} \\
\mathbf{S}(\beta)=\frac{3}{4}\left(\begin{array}{ccc}
\cos ^{2} \beta+1 & -\frac{1}{2} \sin ^{2} \beta & -\frac{1}{2} \sin ^{2} \beta \\
-\frac{1}{2} \sin ^{2} \beta & \frac{1}{2}(\cos \beta+1)^{2} & \frac{1}{2}(\cos \beta-1)^{2} \\
-\frac{1}{2} \sin ^{2} \beta & \frac{1}{2}(\cos \beta-1)^{2} & \frac{1}{2}(\cos \beta+1)^{2}
\end{array}\right)
\end{gathered}
$$

normalization factor of 3 is set by photon conservation in scattering

Scattering Matrix

- Transform to a fixed basis, by a rotation of the incoming and outgoing states $\mathbf{T}=\mathbf{R}(\psi) \mathbf{T}$ where

$$
\mathbf{R}(\psi)=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & e^{-2 i \psi} & 0 \\
0 & 0 & e^{2 i \psi}
\end{array}\right)
$$

giving the scattering matrix

$$
\mathbf{R}(-\gamma) \mathbf{S}(\beta) \mathbf{R}(\alpha)=
$$

$$
\frac{1}{2} \sqrt{\frac{4 \pi}{5}}\left(\begin{array}{ccc}
Y_{2}^{0}(\beta, \alpha)+2 \sqrt{5} Y_{0}^{0}(\beta, \alpha) & -\sqrt{\frac{3}{2}} Y_{2}^{-2}(\beta, \alpha) & -\sqrt{\frac{3}{2}} Y_{2}^{2}(\beta, \alpha) \\
-\sqrt{6}{ }_{2} Y_{2}^{0}(\beta, \alpha) e^{2 i \gamma} & 3_{2} Y_{2}^{-2}(\beta, \alpha) e^{2 i \gamma} & 3_{2} Y_{2}^{2}(\beta, \alpha) e^{2 i \gamma} \\
-\sqrt{6}-2 Y_{2}^{0}(\beta, \alpha) e^{-2 i \gamma} & 3_{-2} Y_{2}^{-2}(\beta, \alpha) e^{-2 i \gamma} & 3_{-2} Y_{2}^{2}(\beta, \alpha) e^{-2 i \gamma}
\end{array}\right)
$$

Addition Theorem for Spin Harmonics

- Spin harmonics are related to rotation matrices as

$$
{ }_{s} Y_{\ell}^{m}(\theta, \phi)=\sqrt{\frac{2 \ell+1}{4 \pi}} \mathcal{D}_{-m s}^{\ell}(\phi, \theta, 0)
$$

Note: for explicit evaluation sign convention differs from usual (e.g. Jackson) by $(-1)^{m}$

- Multiplication of rotations

$$
\sum_{m^{\prime \prime}} \mathcal{D}_{m m^{\prime \prime}}^{\ell}\left(\alpha_{2}, \beta_{2}, \gamma_{2}\right) \mathcal{D}_{m^{\prime \prime} m}^{\ell}\left(\alpha_{1}, \beta_{1}, \gamma_{1}\right)=\mathcal{D}_{m m^{\prime}}^{\ell}(\alpha, \beta, \gamma)
$$

- Implies

$$
\sum_{m}{ }_{s_{1}} Y_{\ell}^{m *}\left(\theta^{\prime}, \phi^{\prime}\right){ }_{s_{2}} Y_{\ell}^{m}(\theta, \phi)=(-1)^{s_{1}-s_{2}} \sqrt{\frac{2 \ell+1}{4 \pi}}{ }_{s_{2}} Y_{\ell}^{-s_{1}}(\beta, \alpha) e^{i s_{2} \gamma}
$$

Sky Basis

- Scattering into the state (rest frame)

$$
\begin{aligned}
C_{\text {in }}[\mathbf{T}] & =\dot{\tau} \int \frac{d \hat{\mathbf{n}}^{\prime}}{4 \pi} \mathbf{R}(-\gamma) \mathbf{S}(\beta) \mathbf{R}(\alpha) \mathbf{T}\left(\hat{\mathbf{n}}^{\prime}\right) \\
& =\dot{\tau} \int \frac{d \hat{\mathbf{n}}^{\prime}}{4 \pi}\left(\Theta^{\prime}, 0,0\right)+\frac{1}{10} \dot{\tau} \int d \hat{\mathbf{n}}^{\prime} \sum_{m=-2}^{2} \mathbf{P}^{(m)}\left(\hat{\mathbf{n}}, \hat{\mathbf{n}}^{\prime}\right) \mathbf{T}\left(\hat{\mathbf{n}}^{\prime}\right)
\end{aligned}
$$

where the quadrupole coupling term is $\mathbf{P}^{(m)}\left(\hat{\mathbf{n}}, \hat{\mathbf{n}}^{\prime}\right)=$

$$
\left(\begin{array}{ccc}
Y_{2}^{m *}\left(\hat{\mathbf{n}}^{\prime}\right) Y_{2}^{m}(\hat{\mathbf{n}}) & -\sqrt{\frac{3}{2}}{ }_{2} Y_{2}^{m *}\left(\hat{\mathbf{n}}^{\prime}\right) Y_{2}^{m}(\hat{\mathbf{n}}) & -\sqrt{\frac{3}{2}}{ }_{-2} Y_{2}^{m *}\left(\hat{\mathbf{n}}^{\prime}\right) Y_{2}^{m}(\hat{\mathbf{n}}) \\
-\sqrt{6} Y_{2}^{m *}\left(\hat{\mathbf{n}}^{\prime}\right)_{2} Y_{2}^{m}(\hat{\mathbf{n}}) & 3_{2} Y_{2}^{m *}\left(\hat{\mathbf{n}}^{\prime}\right)_{2} Y_{2}^{m}(\hat{\mathbf{n}}) & 3_{-2} Y_{2}^{m *}\left(\hat{\mathbf{n}}^{\prime}\right)_{2} Y_{2}^{m}(\hat{\mathbf{n}}) \\
-\sqrt{6} Y_{2}^{m *}\left(\hat{\mathbf{n}}^{\prime}\right)_{-2} Y_{2}^{m}(\hat{\mathbf{n}}) & 3_{2} Y_{2}^{m *}\left(\hat{\mathbf{n}}^{\prime}\right)_{-2} Y_{2}^{m}(\hat{\mathbf{n}}) & 3_{-2} Y_{2}^{m *}\left(\hat{\mathbf{n}}^{\prime}\right)_{-2} Y_{2}^{m}(\hat{\mathbf{n}})
\end{array}\right)
$$

expression uses angle addition relation above. We call this term C_{Q}.

Scattering Matrix

- Full scattering matrix involves difference of scattering into and out of state

$$
C[\mathbf{T}]=C_{\mathrm{in}}[\mathbf{T}]-C_{\mathrm{out}}[\mathbf{T}]
$$

- In the electron rest frame

$$
C[\mathbf{T}]=\dot{\tau} \int \frac{d \hat{\mathbf{n}}^{\prime}}{4 \pi}\left(\Theta^{\prime}, 0,0\right)-\dot{\tau} \mathbf{T}+C_{Q}[\mathbf{T}]
$$

which describes isotropization in the rest frame. All moments have $e^{-\tau}$ suppression except for isotropic temperature Θ_{0}.
Transformation into the background frame simply induces a dipole term

$$
C[\mathbf{T}]=\dot{\tau}\left(\hat{\mathbf{n}} \cdot \mathbf{v}_{b}+\int \frac{d \hat{\mathbf{n}}^{\prime}}{4 \pi} \Theta^{\prime}, 0,0\right)-\dot{\tau} \mathbf{T}+C_{Q}[\mathbf{T}]
$$

Schematic Outline

- Take apart features in the power spectrum

Thomson Scattering

- Thomson scattering of photons off of free electrons is the most important CMB process with a cross section (averaged over polarization states) of

$$
\sigma_{T}=\frac{8 \pi \alpha^{2}}{3 m_{e}^{2}}=6.65 \times 10^{-25} \mathrm{~cm}^{2}
$$

- Density of free electrons in a fully ionized $x_{e}=1$ universe

$$
n_{e}=\left(1-Y_{p} / 2\right) x_{e} n_{b} \approx 10^{-5} \Omega_{b} h^{2}(1+z)^{3} \mathrm{~cm}^{-3}
$$

where $Y_{p} \approx 0.24$ is the Helium mass fraction, creates a high (comoving) Thomson opacity

$$
\dot{\tau} \equiv n_{e} \sigma_{T} a
$$

where dots are conformal time $\eta \equiv \int d t / a$ derivatives and τ is the optical depth.

Tight Coupling Approximation

- Near recombination $z \approx 10^{3}$ and $\Omega_{b} h^{2} \approx 0.02$, the (comoving) mean free path of a photon

$$
\lambda_{C} \equiv \frac{1}{\dot{\tau}} \sim 2.5 \mathrm{Mpc}
$$

small by cosmological standards!

- On scales $\lambda \gg \lambda_{C}$ photons are tightly coupled to the electrons by Thomson scattering which in turn are tightly coupled to the baryons by Coulomb interactions
- Specifically, their bulk velocities are defined by a single fluid velocity $v_{\gamma}=v_{b}$ and the photons carry no anisotropy in the rest frame of the baryons
- \rightarrow No heat conduction or viscosity (anisotropic stress) in fluid

Zeroth Order Approximation

- Momentum density of a fluid is $(\rho+p) v$, where p is the pressure
- Neglect the momentum density of the baryons

$$
\begin{aligned}
R & \equiv \frac{\left(\rho_{b}+p_{b}\right) v_{b}}{\left(\rho_{\gamma}+p_{\gamma}\right) v_{\gamma}}=\frac{\rho_{b}+p_{b}}{\rho_{\gamma}+p_{\gamma}}=\frac{3 \rho_{b}}{4 \rho_{\gamma}} \\
& \approx 0.6\left(\frac{\Omega_{b} h^{2}}{0.02}\right)\left(\frac{a}{10^{-3}}\right)
\end{aligned}
$$

since $\rho_{\gamma} \propto T^{4}$ is fixed by the CMB temperature $T=2.73(1+z) \mathrm{K}$

- OK substantially before recombination
- Neglect radiation in the expansion

$$
\frac{\rho_{m}}{\rho_{r}}=3.6\left(\frac{\Omega_{m} h^{2}}{0.15}\right)\left(\frac{a}{10^{-3}}\right)
$$

- Neglect gravity

Fluid Equations

- Density $\rho_{\gamma} \propto T^{4}$ so define temperature fluctuation Θ

$$
\delta_{\gamma}=4 \frac{\delta T}{T} \equiv 4 \Theta
$$

- Real space continuity equation

$$
\begin{aligned}
\dot{\delta}_{\gamma} & =-\left(1+w_{\gamma}\right) k v_{\gamma} \\
\dot{\Theta} & =-\frac{1}{3} k v_{\gamma}
\end{aligned}
$$

- Euler equation (neglecting gravity)

$$
\begin{aligned}
& \dot{v}_{\gamma}=-\left(1-3 w_{\gamma}\right) \frac{\dot{a}}{a} v_{\gamma}+\frac{k c_{s}^{2}}{1+w_{\gamma}} \delta_{\gamma} \\
& \dot{v}_{\gamma}=k c_{s}^{2} \frac{3}{4} \delta_{\gamma}=3 c_{s}^{2} k \Theta
\end{aligned}
$$

Oscillator: Take One

- Combine these to form the simple harmonic oscillator equation

$$
\ddot{\Theta}+c_{s}^{2} k^{2} \Theta=0
$$

where the sound speed is adiabatic

$$
c_{s}^{2}=\frac{\delta p_{\gamma}}{\delta \rho_{\gamma}}=\frac{\dot{p}_{\gamma}}{\dot{\rho}_{\gamma}}
$$

here $c_{s}^{2}=1 / 3$ since we are photon-dominated

- General solution:

$$
\Theta(\eta)=\Theta(0) \cos (k s)+\frac{\dot{\Theta}(0)}{k c_{s}} \sin (k s)
$$

where the sound horizon is defined as $s \equiv \int c_{s} d \eta$

Harmonic Extrema

- All modes are frozen in at recombination (denoted with a subscript *)
- Temperature perturbations of different amplitude for different modes.
- For the adiabatic
 (curvature mode) initial conditions

$$
\dot{\Theta}(0)=0
$$

- So solution

$$
\Theta\left(\eta_{*}\right)=\Theta(0) \cos \left(k s_{*}\right)
$$

Harmonic Extrema

- Modes caught in the extrema of their oscillation will have enhanced fluctuations

$$
k_{n} s_{*}=n \pi
$$

yielding a fundamental scale or frequency, related to the inverse sound horizon

$$
k_{A}=\pi / s_{*}
$$

and a harmonic relationship to the other extrema as $1: 2: 3 \ldots$

Peak Location

- The fundmental physical scale is translated into a fundamental angular scale by simple projection according to the angular diameter distance D_{A}

$$
\begin{aligned}
\theta_{A} & =\lambda_{A} / D_{A} \\
\ell_{A} & =k_{A} D_{A}
\end{aligned}
$$

- In a flat universe, the distance is simply $D_{A}=D \equiv \eta_{0}-\eta_{*} \approx \eta_{0}$, the horizon distance, and $k_{A}=\pi / s_{*}=\sqrt{3} \pi / \eta_{*}$ so

$$
\theta_{A} \approx \frac{\eta_{*}}{\eta_{0}}
$$

- In a matter-dominated universe $\eta \propto a^{1 / 2}$ so $\theta_{A} \approx 1 / 30 \approx 2^{\circ}$ or

$$
\ell_{A} \approx 200
$$

Curvature

- In a curved universe, the apparent or angular diameter distance is no longer the conformal distance $D_{A}=R \sin (D / R) \neq D$
- Objects in a closed universe are further than
 they appear! gravitational lensing of the background...
- Curvature scale of the universe must be substantially larger than current horizon

Curvature

- Flat universe indicates critical density and implies missing energy given local measures of the matter density "dark energy"
- D also depends on dark energy density Ω_{DE} and equation of state $w=p_{\mathrm{DE}} / \rho_{\mathrm{DE}}$.
- Expansion rate at recombination
 or matter-radiation ratio enters into calculation of k_{A}.

Fixed Deceleration Epoch

- CMB determination of matter density controls all determinations in the deceleration (matter dominated) epoch
- WMAP7: $\Omega_{m} h^{2}=0.133 \pm 0.006 \rightarrow 4.5 \%$
- Distance to recombination D_{*} determined to $\frac{1}{4} 4.5 \% \approx 1 \%$
- Expansion rate during any redshift in the deceleration epoch determined to 4.5%
- Distance to any redshift in the deceleration epoch determined as

$$
D(z)=D_{*}-\int_{z}^{z_{*}} \frac{d z}{H(z)}
$$

- Volumes determined by a combination $d V=D_{A}^{2} d \Omega d z / H(z)$
- Structure also determined by growth of fluctuations from z_{*}
- $\Omega_{m} h^{2}$ can be determined to $\sim 1 \%$ from Planck.

Doppler Effect

- Bulk motion of fluid changes the observed temperature via Doppler shifts

$$
\left(\frac{\Delta T}{T}\right)_{\mathrm{dop}}=\hat{\mathbf{n}} \cdot \mathbf{v}_{\gamma}
$$

- Averaged over directions

$$
\left(\frac{\Delta T}{T}\right)_{\mathrm{rms}}=\frac{v_{\gamma}}{\sqrt{3}}
$$

- Acoustic solution

$$
\begin{aligned}
\frac{v_{\gamma}}{\sqrt{3}} & =-\frac{\sqrt{3}}{k} \dot{\Theta}=\frac{\sqrt{3}}{k} k c_{s} \Theta(0) \sin (k s) \\
& =\Theta(0) \sin (k s)
\end{aligned}
$$

Doppler Peaks?

- Doppler effect for the photon dominated system is of equal amplitude and $\pi / 2$ out of phase: extrema of temperature are turning points of velocity
- Effects add in quadrature:

$$
\left(\frac{\Delta T}{T}\right)^{2}=\Theta^{2}(0)\left[\cos ^{2}(k s)+\sin ^{2}(k s)\right]=\Theta^{2}(0)
$$

- No peaks in k spectrum! However the Doppler effect carries an angular dependence that changes its projection on the sky $\hat{\mathbf{n}} \cdot \mathbf{v}_{\gamma} \propto \hat{\mathbf{n}} \cdot \hat{\mathbf{k}}$

Doppler Peaks?

- Coordinates where $\hat{\mathbf{z}} \| \hat{\mathbf{k}}$

$$
Y_{10} Y_{\ell 0} \rightarrow Y_{\ell \pm 10}
$$

recoupling $j_{\ell}^{\prime} Y_{\ell 0}$: no peaks in Doppler effect

Restoring Gravity

- Take a simple photon dominated system with gravity
- Continuity altered since a gravitational potential represents a stretching of the spatial fabric that dilutes number densities formally a spatial curvature perturbation
- Think of this as a perturbation to the scale factor $a \rightarrow a(1+\Phi)$ so that the cosmogical redshift is generalized to

$$
\frac{\dot{a}}{a} \rightarrow \frac{\dot{a}}{a}+\dot{\Phi}
$$

so that the continuity equation becomes

$$
\dot{\Theta}=-\frac{1}{3} k v_{\gamma}-\dot{\Phi}
$$

Restoring Gravity

- Gravitational force in momentum conservation $\mathbf{F}=-m \nabla \Psi$ generalized to momentum density modifies the Euler equation to

$$
\dot{v}_{\gamma}=k(\Theta+\Psi)
$$

- General relativity says that Φ and Ψ are the relativistic analogues of the Newtonian potential and that $\Phi \approx-\Psi$.
- In our matter-dominated approximation, Φ represents matter density fluctuations through the cosmological Poisson equation

$$
k^{2} \Phi=4 \pi G a^{2} \rho_{m} \Delta_{m}
$$

where the difference comes from the use of comoving coordinates for k (a^{2} factor), the removal of the background density into the background expansion $\left(\rho \Delta_{m}\right)$ and finally a coordinate subtlety that enters into the definition of Δ_{m}

Constant Potentials

- In the matter dominated epoch potentials are constant because infall generates velocities as $v_{m} \sim k \eta \Psi$
- Velocity divergence generates density perturbations as $\Delta_{m} \sim-k \eta v_{m} \sim-(k \eta)^{2} \Psi$
- And density perturbations generate potential fluctuations

$$
\Phi=\frac{4 \pi G a^{2} \rho \Delta}{k^{2}} \approx \frac{3}{2} \frac{H^{2} a^{2}}{k} \Delta \sim \frac{\Delta}{(k \eta)^{2}} \sim-\Psi
$$

keeping them constant. Note that because of the expansion, density perturbations must grow to keep potentials constant.

Constant Potentials

- More generally, if stress perturbations are negligible compared with density perturbations ($\delta p \ll \delta \rho$) then potential will remain roughly constant
- More specifically a variant called the Bardeen or comoving curvature is strictly constant

$$
\mathcal{R}=\mathrm{const} \approx \frac{5+3 w}{3+3 w} \Phi
$$

where the approximation holds when $w \approx$ const.

Oscillator: Take Two

- Combine these to form the simple harmonic oscillator equation

$$
\ddot{\Theta}+c_{s}^{2} k^{2} \Theta=-\frac{k^{2}}{3} \Psi-\ddot{\Phi}
$$

- In a CDM dominated expansion $\dot{\Phi}=\dot{\Psi}=0$. Also for photon domination $c_{s}^{2}=1 / 3$ so the oscillator equation becomes

$$
\ddot{\Theta}+\ddot{\Psi}+c_{s}^{2} k^{2}(\Theta+\Psi)=0
$$

- Solution is just an offset version of the original

$$
[\Theta+\Psi](\eta)=[\Theta+\Psi](0) \cos (k s)
$$

- $\Theta+\Psi$ is also the observed temperature fluctuation since photons lose energy climbing out of gravitational potentials at recombination

Effective Temperature

- Photons climb out of potential wells at last scattering
- Lose energy to gravitational redshifts
- Observed or effective temperature

$$
\Theta+\Psi
$$

- Effective temperature oscillates around zero with amplitude given by the initial conditions
- Note: initial conditions are set when the perturbation is outside of horizon, need inflation or other modification to matter-radiation FRW universe.
- GR says that initial temperature is given by initial potential

Sachs-Wolfe Effect and the Magic 1/3

- A gravitational potential is a perturbation to the temporal coordinate [formally a gauge transformation]

$$
\frac{\delta t}{t}=\Psi
$$

- Convert this to a perturbation in the scale factor,

$$
t=\int \frac{d a}{a H} \propto \int \frac{d a}{a \rho^{1 / 2}} \propto a^{3(1+w) / 2}
$$

where $w \equiv p / \rho$ so that during matter domination

$$
\frac{\delta a}{a}=\frac{2}{3} \frac{\delta t}{t}
$$

- CMB temperature is cooling as $T \propto a^{-1}$ so

$$
\Theta+\Psi \equiv \frac{\delta T}{T}+\Psi=-\frac{\delta a}{a}+\Psi=\frac{1}{3} \Psi
$$

Sachs-Wolfe Normalization

- Use measurements of $\Delta T / T \approx 10^{-5}$ in the Sachs-Wolfe effect to infer $\Delta_{\mathcal{R}}^{2}$
- Recall in matter domination $\Psi=-3 \mathcal{R} / 5$

$$
\frac{\ell(\ell+1) C_{\ell}}{2 \pi} \approx \Delta_{T}^{2} \approx \frac{1}{25} \Delta_{R}^{2}
$$

- So that the amplitude of initial curvature fluctuations is $\Delta_{R} \approx 5 \times 10^{-5}$
- Modern usage: WMAP's measurement of 1 st peak plus known radiation transfer function is used to convert $\Delta T / T$ to Δ_{R}.

Baryon Loading

- Baryons add extra mass to the photon-baryon fluid
- Controlling parameter is the momentum density ratio:

$$
R \equiv \frac{p_{b}+\rho_{b}}{p_{\gamma}+\rho_{\gamma}} \approx 30 \Omega_{b} h^{2}\left(\frac{a}{10^{-3}}\right)
$$

of order unity at recombination

- Momentum density of the joint system is conserved

$$
\begin{aligned}
\left(\rho_{\gamma}+p_{\gamma}\right) v_{\gamma}+\left(\rho_{b}+p_{b}\right) v_{b} & \approx\left(p_{\gamma}+p_{\gamma}+\rho_{b}+\rho_{\gamma}\right) v_{\gamma} \\
& =(1+R)\left(\rho_{\gamma}+p_{\gamma}\right) v_{\gamma b}
\end{aligned}
$$

where the controlling parameter is the momentum density ratio:

$$
R \equiv \frac{p_{b}+\rho_{b}}{p_{\gamma}+\rho_{\gamma}} \approx 30 \Omega_{b} h^{2}\left(\frac{a}{10^{-3}}\right)
$$

of order unity at recombination

New Euler Equation

- Momentum density ratio enters as

$$
\left[(1+R) v_{\gamma b}\right]^{\cdot}=k \Theta+(1+R) k \Psi
$$

- Photon continuity remains the same

$$
\dot{\Theta}=-\frac{k}{3} v_{\gamma b}-\dot{\Phi}
$$

- Modification of oscillator equation

$$
[(1+R) \dot{\Theta}]^{\cdot}+\frac{1}{3} k^{2} \Theta=-\frac{1}{3} k^{2}(1+R) \Psi-[(1+R) \dot{\Phi}]
$$

Oscillator: Take Three

- Combine these to form the not-quite-so simple harmonic oscillator equation

$$
c_{s}^{2} \frac{d}{d \eta}\left(c_{s}^{-2} \dot{\Theta}\right)+c_{s}^{2} k^{2} \Theta=-\frac{k^{2}}{3} \Psi-c_{s}^{2} \frac{d}{d \eta}\left(c_{s}^{-2} \dot{\Phi}\right)
$$

where $c_{s}^{2} \equiv \dot{p}_{\gamma b} / \dot{\rho}_{\gamma b}$

$$
c_{s}^{2}=\frac{1}{3} \frac{1}{1+R}
$$

- In a CDM dominated expansion $\dot{\Phi}=\dot{\Psi}=0$ and the adiabatic approximation $\dot{R} / R \ll \omega=k c_{s}$

$$
[\Theta+(1+R) \Psi](\eta)=[\Theta+(1+R) \Psi](0) \cos (k s)
$$

Baryon Peak Phenomenology

- Photon-baryon ratio enters in three ways
- Overall larger amplitude:
$[\Theta+(1+R) \Psi](0)=\frac{1}{3}(1+3 R) \Psi(0)$
- Even-odd peak modulation of effective temperature

$$
\begin{aligned}
{[\Theta+\Psi]_{\text {peaks }} } & =[\pm(1+3 R)-3 R] \frac{1}{3} \Psi(0) \\
{[\Theta+\Psi]_{1}-[\Theta+\Psi]_{2} } & =[-6 R] \frac{1}{3} \Psi(0)
\end{aligned}
$$

- Shifting of the sound horizon down or ℓ_{A} up

$$
\ell_{A} \propto \sqrt{1+R}
$$

Photon Baryon Ratio Evolution

- Actual effects smaller since R evolves
- Oscillator equation has time evolving mass

$$
c_{s}^{2} \frac{d}{d \eta}\left(c_{s}^{-2} \dot{\Theta}\right)+c_{s}^{2} k^{2} \Theta=0
$$

- Effective mass is is $m_{\text {eff }}=3 c_{s}^{-2}=(1+R)$
- Adiabatic invariant

$$
\frac{E}{\omega}=\frac{1}{2} m_{\mathrm{eff}} \omega A^{2}=\frac{1}{2} 3 c_{s}^{-2} k c_{s} A^{2} \propto A^{2}(1+R)^{1 / 2}=\text { const } .
$$

- Amplitude of oscillation $A \propto(1+R)^{-1 / 4}$ decays adiabatically as the photon-baryon ratio changes

Baryons in the Power Spectrum

- Relative heights of peaks

Oscillator: Take Three and a Half

- The not-quite-so simple harmonic oscillator equation is a forced harmonic oscillator

$$
c_{s}^{2} \frac{d}{d \eta}\left(c_{s}^{-2} \dot{\Theta}\right)+c_{s}^{2} k^{2} \Theta=-\frac{k^{2}}{3} \Psi-c_{s}^{2} \frac{d}{d \eta}\left(c_{s}^{-2} \Phi\right)
$$

changes in the gravitational potentials alter the form of the acoustic oscillations

- If the forcing term has a temporal structure that is related to the frequency of the oscillation, this becomes a driven harmonic oscillator
- Term involving Ψ is the ordinary gravitational force
- Term involving Φ involves the $\dot{\Phi}$ term in the continuity equation as a (curvature) perturbation to the scale factor

Potential Decay

- Matter-to-radiation ratio

$$
\frac{\rho_{m}}{\rho_{r}} \approx 24 \Omega_{m} h^{2}\left(\frac{a}{10^{-3}}\right)
$$

of order unity at recombination in a low Ω_{m} universe

- Radiation is not stress free and so impedes the growth of structure

$$
k^{2} \Phi=4 \pi G a^{2} \rho_{r} \Delta_{r}
$$

$\Delta_{r} \sim 4 \Theta$ oscillates around a constant value, $\rho_{r} \propto a^{-4}$ so the Netwonian curvature decays.

- General rule: potential decays if the dominant energy component has substantial stress fluctuations, i.e. below the generalized sound horizon or Jeans scale

Radiation Driving

- Decay is timed precisely to drive the oscillator - close to fully coherent

$$
\begin{aligned}
|[\Theta+\Psi](\eta)| & =|[\Theta+\Psi](0)+\Delta \Psi-\Delta \Phi| \\
& =\left|\frac{1}{3} \Psi(0)-2 \Psi(0)\right|=\left|\frac{5}{3} \Psi(0)\right|
\end{aligned}
$$

- $5 \times$ the amplitude of the Sachs-Wolfe effect!

External Potential Approach

- Solution to homogeneous equation

$$
(1+R)^{-1 / 4} \cos (k s), \quad(1+R)^{-1 / 4} \sin (k s)
$$

- Give the general solution for an external potential by propagating impulsive forces

$$
\begin{aligned}
&(1+R)^{1 / 4} \Theta(\eta)=\Theta(0) \cos (k s)+\frac{\sqrt{3}}{k}\left[\dot{\Theta}(0)+\frac{1}{4} \dot{R}(0) \Theta(0)\right] \sin k s \\
&+\frac{\sqrt{3}}{k} \int_{0}^{\eta} d \eta^{\prime}\left(1+R^{\prime}\right)^{3 / 4} \sin \left[k s-k s^{\prime}\right] F\left(\eta^{\prime}\right)
\end{aligned}
$$

where

$$
F=-\ddot{\Phi}-\frac{\dot{R}}{1+R} \dot{\Phi}-\frac{k^{2}}{3} \Psi
$$

- Useful if general form of potential evolution is known

Matter-Radiation in the Power Spectrum

- Coherent approximation is exact for a photon-baryon fluid but reality is reduced to $\sim 4 \times$ because of neutrino contribution to radiation
- Actual initial conditions are $\Theta+\Psi=\Psi / 2$ for radiation domination but comparison to matter dominated SW correct

Damping

- Tight coupling equations assume a perfect fluid: no viscosity, no heat conduction
- Fluid imperfections are related to the mean free path of the photons in the baryons

$$
\lambda_{C}=\dot{\tau}^{-1} \quad \text { where } \quad \dot{\tau}=n_{e} \sigma_{T} a
$$

is the conformal opacity to Thomson scattering

- Dissipation is related to the diffusion length: random walk approximation

$$
\lambda_{D}=\sqrt{N} \lambda_{C}=\sqrt{\eta / \lambda_{C}} \lambda_{C}=\sqrt{\eta \lambda_{C}}
$$

the geometric mean between the horizon and mean free path

- $\lambda_{D} / \eta_{*} \sim$ few $\%$, so expect the peaks >3 to be affected by dissipation

Equations of Motion

- Continuity

$$
\dot{\Theta}=-\frac{k}{3} v_{\gamma}-\dot{\Phi}, \quad \dot{\delta}_{b}=-k v_{b}-3 \dot{\Phi}
$$

where the photon equation remains unchanged and the baryons follow number conservation with $\rho_{b}=m_{b} n_{b}$

- Navier-Stokes (Euler + heat conduction, viscosity)

$$
\begin{aligned}
& \dot{v}_{\gamma}=k(\Theta+\Psi)-\frac{k}{6} \pi_{\gamma}-\dot{\tau}\left(v_{\gamma}-v_{b}\right) \\
& \dot{v}_{b}=-\frac{\dot{a}}{a} v_{b}+k \Psi+\dot{\tau}\left(v_{\gamma}-v_{b}\right) / R
\end{aligned}
$$

where the photons gain an anisotropic stress term π_{γ} from radiation viscosity and a momentum exchange term with the baryons and are compensated by the opposite term in the baryon Euler equation

Viscosity

- Viscosity is generated from radiation streaming from hot to cold regions
- Expect

$$
\pi_{\gamma} \sim v_{\gamma} \frac{k}{\dot{\tau}}
$$

generated by streaming, suppressed by scattering in a wavelength of the fluctuation. Radiative transfer says

$$
\pi_{\gamma} \approx 2 A_{v} v_{\gamma} \frac{k}{\dot{\tau}}
$$

where $A_{v}=16 / 15$

$$
\dot{v}_{\gamma}=k(\Theta+\Psi)-\frac{k}{3} A_{v} \frac{k}{\frac{\tau}{\tau}} v_{\gamma}
$$

Oscillator: Penultimate Take

- Adiabatic approximation $(\omega \gg \dot{a} / a)$

$$
\dot{\Theta} \approx-\frac{k}{3} v_{\gamma}
$$

- Oscillator equation contains a $\dot{\Theta}$ damping term

$$
c_{s}^{2} \frac{d}{d \eta}\left(c_{s}^{-2} \dot{\Theta}\right)+\frac{k^{2} c_{s}^{2}}{\dot{\tau}} A_{v} \dot{\Theta}+k^{2} c_{s}^{2} \Theta=-\frac{k^{2}}{3} \Psi-c_{s}^{2} \frac{d}{d \eta}\left(c_{s}^{-2} \dot{\Phi}\right)
$$

- Heat conduction term similar in that it is proportional to v_{γ} and is suppressed by scattering $k / \dot{\tau}$. Expansion of Euler equations to leading order in $k \dot{\tau}$ gives

$$
A_{h}=\frac{R^{2}}{1+R}
$$

since the effects are only significant if the baryons are dynamically important

Oscillator: Final Take

- Final oscillator equation

$$
c_{s}^{2} \frac{d}{d \eta}\left(c_{s}^{-2} \dot{\Theta}\right)+\frac{k^{2} c_{s}^{2}}{\dot{\tau}}\left[A_{v}+A_{h}\right] \dot{\Theta}+k^{2} c_{s}^{2} \Theta=-\frac{k^{2}}{3} \Psi-c_{s}^{2} \frac{d}{d \eta}\left(c_{s}^{-2} \dot{\Phi}\right)
$$

- Solve in the adiabatic approximation

$$
\begin{gathered}
\Theta \propto \exp \left(i \int \omega d \eta\right) \\
-\omega^{2}+\frac{k^{2} c_{s}^{2}}{\dot{\tau}}\left(A_{v}+A_{h}\right) i \omega+k^{2} c_{s}^{2}=0
\end{gathered}
$$

Dispersion Relation

- Solve

$$
\begin{aligned}
\omega^{2} & =k^{2} c_{s}^{2}\left[1+i \frac{\omega}{\dot{\tau}}\left(A_{v}+A_{h}\right)\right] \\
\omega & = \pm k c_{s}\left[1+\frac{i}{2} \frac{\omega}{\dot{\tau}}\left(A_{v}+A_{h}\right)\right] \\
& = \pm k c_{s}\left[1 \pm \frac{i}{2} \frac{k c_{s}}{\dot{\tau}}\left(A_{v}+A_{h}\right)\right]
\end{aligned}
$$

- Exponentiate

$$
\begin{aligned}
\exp \left(i \int \omega d \eta\right) & =e^{ \pm i k s} \exp \left[-k^{2} \int d \eta \frac{1}{2} \frac{c_{s}^{2}}{\dot{\tau}}\left(A_{v}+A_{h}\right)\right] \\
& =e^{ \pm i k s} \exp \left[-\left(k / k_{D}\right)^{2}\right]
\end{aligned}
$$

- Damping is exponential under the scale k_{D}

Diffusion Scale

- Diffusion wavenumber

$$
k_{D}^{-2}=\int d \eta \frac{1}{\dot{\tau}} \frac{1}{6(1+R)}\left(\frac{16}{15}+\frac{R^{2}}{(1+R)}\right)
$$

- Limiting forms

$$
\begin{aligned}
\lim _{R \rightarrow 0} k_{D}^{-2} & =\frac{1}{6} \frac{16}{15} \int d \eta \frac{1}{\dot{\tau}} \\
\lim _{R \rightarrow \infty} k_{D}^{-2} & =\frac{1}{6} \int d \eta \frac{1}{\dot{\tau}}
\end{aligned}
$$

- Geometric mean between horizon and mean free path as expected from a random walk

$$
\lambda_{D}=\frac{2 \pi}{k_{D}} \sim \frac{2 \pi}{\sqrt{6}}\left(\eta \dot{\tau}^{-1}\right)^{1 / 2}
$$

Thomson Scattering

- Polarization state of radiation in direction $\hat{\mathbf{n}}$ described by the intensity matrix $\left\langle E_{i}(\hat{\mathbf{n}}) E_{j}^{*}(\hat{\mathbf{n}})\right\rangle$, where \mathbf{E} is the electric field vector and the brackets denote time averaging.
- Differential cross section

$$
\frac{d \sigma}{d \Omega}=\frac{3}{8 \pi}\left|\hat{\mathbf{E}}^{\prime} \cdot \hat{\mathbf{E}}\right|^{2} \sigma_{T},
$$

where $\sigma_{T}=8 \pi \alpha^{2} / 3 m_{e}$ is the Thomson cross section, $\hat{\mathbf{E}}^{\prime}$ and $\hat{\mathbf{E}}$ denote the incoming and outgoing directions of the electric field or polarization vector.

- Summed over angle and incoming polarization

$$
\sum_{i=1,2} \int d \hat{\mathbf{n}}^{\prime} \frac{d \sigma}{d \Omega}=\sigma_{T}
$$

Polarization Generation

- Heuristic: incoming radiation shakes an electron in direction of electric field vector $\hat{\mathbf{E}}^{\prime}$
- Radiates photon with
 polarization also in direction $\hat{\mathbf{E}}^{\prime}$
- But photon cannot be longitudinally polarized so that scattering into 90° can only pass one polarization
- Linearly polarized radiation like polarization by reflection
- Unlike reflection of sunlight, incoming radiation is nearly isotropic
- Missing from direction orthogonal to original incoming direction
- Only quadrupole anisotropy generates polarization by Thomson scattering

Acoustic Polarization

- Break down of tight-coupling leads to quadrupole anisotropy of

$$
\pi_{\gamma} \approx \frac{k}{\dot{\tau}} v_{\gamma}
$$

- Scaling $k_{D}=\left(\dot{\tau} / \eta_{*}\right)^{1 / 2} \rightarrow \dot{\tau}=k_{D}^{2} \eta_{*}$
- Know: $k_{D} s_{*} \approx k_{D} \eta_{*} \approx 10$
- So:

$$
\begin{aligned}
\pi_{\gamma} & \approx \frac{k}{k_{D}} \frac{1}{10} v_{\gamma} \\
\Delta_{P} & \approx \frac{\ell}{\ell_{D}} \frac{1}{10} \Delta_{T}
\end{aligned}
$$

Acoustic Polarization

- Gradient of velocity is along direction of wavevector, so polarization is pure E-mode
- Velocity is 90° out of phase with temperature - turning points of oscillator are zero points of velocity:

$$
\Theta+\Psi \propto \cos (k s) ; \quad v_{\gamma} \propto \sin (k s)
$$

- Polarization peaks are at troughs of temperature power

Cross Correlation

- Cross correlation of temperature and polarization

$$
(\Theta+\Psi)\left(v_{\gamma}\right) \propto \cos (k s) \sin (k s) \propto \sin (2 k s)
$$

- Oscillation at twice the frequency
- Correlation: radial or tangential around hot spots
- Partial correlation: easier to measure if polarization data is noisy, harder to measure if polarization data is high S / N or if bands do not resolve oscillations
- Good check for systematics and foregrounds
- Comparison of temperature and polarization is proof against features in initial conditions mimicking acoustic features

Polarization Power

Angular Moments

- Define the angularly dependent Stokes perturbation

$$
\Theta(\mathbf{x}, \hat{\mathbf{n}}, \eta), \quad Q(\mathbf{x}, \hat{\mathbf{n}}, \eta), \quad U(\mathbf{x}, \hat{\mathbf{n}}, \eta)
$$

- Decompose into normal modes: plane waves for spatial part and spherical harmonics for angular part

$$
\begin{aligned}
G_{\ell}^{m}(\mathbf{k}, \mathbf{x}, \hat{\mathbf{n}}) & \equiv(-i)^{\ell} \sqrt{\frac{4 \pi}{2 \ell+1}} Y_{\ell}^{m}(\hat{\mathbf{n}}) \exp (i \mathbf{k} \cdot \mathbf{x}) \\
{ }_{ \pm 2} G_{\ell}^{m}(\mathbf{k}, \mathbf{x}, \hat{\mathbf{n}}) & \equiv(-i)^{\ell} \sqrt{\frac{4 \pi}{2 \ell+1}} \pm 2 Y_{\ell}^{m}(\hat{\mathbf{n}}) \exp (i \mathbf{k} \cdot \mathbf{x})
\end{aligned}
$$

- In a spatially curved universe generalize the plane wave part

Normal Modes

- Temperature and polarization fields

$$
\begin{aligned}
\Theta(\mathbf{x}, \hat{\mathbf{n}}, \eta) & =\int \frac{d^{3} k}{(2 \pi)^{3}} \sum_{\ell m} \Theta_{\ell}^{(m)} G_{\ell}^{m} \\
{[Q \pm i U](\mathbf{x}, \hat{\mathbf{n}}, \eta) } & =\int \frac{d^{3} k}{(2 \pi)^{3}} \sum_{\ell m}\left[E_{\ell}^{(m)} \pm i B_{\ell}^{(m)}\right]_{ \pm 2} G_{\ell}^{m}
\end{aligned}
$$

- For each \mathbf{k} mode, work in coordinates where $\mathbf{k} \| \mathbf{z}$ and so $m=0$ represents scalar modes, $m= \pm 1$ vector modes, $m= \pm 2$ tensor modes, $|m|>2$ vanishes. Since modes add incoherently and $Q \pm i U$ is invariant up to a phase, rotation back to a fixed coordinate system is trivial.

Liouville Equation

- In absence of scattering, the phase space distribution of photons in each polarization state a is conserved along the propagation path
- Rewrite variables in terms of the photon propagation direction $\mathbf{q}=q \hat{\mathbf{n}}$, so $f_{a}(\mathbf{x}, \hat{\mathbf{n}}, q, \eta)$ and
$\frac{d}{d \eta} f_{a}(\mathbf{x}, \hat{\mathbf{n}}, q, \eta)=0$

$$
=\left(\frac{\partial}{\partial \eta}+\frac{d \mathbf{x}}{d \eta} \cdot \frac{\partial}{\partial \mathbf{x}}+\frac{d \hat{\mathbf{n}}}{d \eta} \cdot \frac{\partial}{\partial \hat{\mathbf{n}}}+\frac{d q}{d \eta} \cdot \frac{\partial}{\partial q}\right) f_{a}
$$

- For simplicity, assume spatially flat universe $K=0$ then $d \hat{\mathbf{n}} / d \eta=0$ and $d \mathbf{x}=\hat{\mathbf{n}} d \eta$

$$
\dot{f}_{a}+\hat{\mathbf{n}} \cdot \nabla f_{a}+\dot{q} \frac{\partial}{\partial q} f_{a}=0
$$

Scalar, Vector, Tensor

- Normalization of modes is chosen so that the lowest angular mode for scalars, vectors and tensors are normalized in the same way as the mode function

$$
\begin{aligned}
G_{0}^{0} & =Q^{(0)} \quad G_{1}^{0}=n^{i} Q_{i}^{(0)} \quad G_{2}^{0} \propto n^{i} n^{j} Q_{i j}^{(0)} \\
G_{1}^{ \pm 1} & =n^{i} Q_{i}^{(\pm 1)} \quad G_{2}^{ \pm 1} \propto n^{i} n^{j} Q_{i j}^{(\pm 1)} \\
G_{2}^{ \pm 2} & =n^{i} n^{j} Q_{i j}^{(\pm 2)}
\end{aligned}
$$

where recall

$$
\begin{aligned}
Q^{(0)} & =\exp (i \mathbf{k} \cdot \mathbf{x}) \\
Q_{i}^{(\pm 1)} & =\frac{-i}{\sqrt{2}}\left(\hat{\mathbf{e}}_{1} \pm i \hat{\mathbf{e}}_{2}\right)_{i} \exp (i \mathbf{k} \cdot \mathbf{x}) \\
Q_{i j}^{(\pm 2)} & =-\sqrt{\frac{3}{8}}\left(\hat{\mathbf{e}}_{1} \pm i \hat{\mathbf{e}}_{2}\right)_{i}\left(\hat{\mathbf{e}}_{1} \pm i \hat{\mathbf{e}}_{2}\right)_{j} \exp (i \mathbf{k} \cdot \mathbf{x})
\end{aligned}
$$

Geometrical Projection

- Main content of Liouville equation is purely geometrical and describes the projection of inhomogeneities into anisotropies
- Spatial gradient term hits plane wave:

$$
\hat{\mathbf{n}} \cdot \nabla e^{i \mathbf{k} \cdot \mathbf{x}}=i \hat{\mathbf{n}} \cdot \mathbf{k} e^{i \mathbf{k} \cdot \mathbf{x}}=i \sqrt{\frac{4 \pi}{3}} k Y_{1}^{0}(\hat{\mathbf{n}}) e^{i \mathbf{k} \cdot \mathbf{x}}
$$

- Dipole term adds to angular dependence through the addition of angular momentum
$\sqrt{\frac{4 \pi}{3}} Y_{1}^{0} Y_{\ell}^{m}=\frac{\kappa_{\ell}^{m}}{\sqrt{(2 \ell+1)(2 \ell-1)}} Y_{\ell-1}^{m}+\frac{\kappa_{\ell+1}^{m}}{\sqrt{(2 \ell+1)(2 \ell+3)}} Y_{\ell+1}^{m}$
where $\kappa_{\ell}^{m}=\sqrt{\ell^{2}-m^{2}}$ is given by Clebsch-Gordon coefficients.

Temperature Hierarchy

- Absorb recoupling of angular momentum into evolution equation for normal modes

$$
\dot{\Theta}_{\ell}^{(m)}=k\left[\frac{\kappa_{\ell}^{m}}{2 \ell+1} \Theta_{\ell-1}^{(m)}-\frac{\kappa_{\ell+1}^{m}}{2 \ell+3} \Theta_{\ell+1}^{(m)}\right]-\dot{\tau} \Theta_{\ell}^{(m)}+S_{\ell}^{(m)}
$$

where $S_{\ell}^{(m)}$ are the gravitational (and later scattering sources; added scattering suppression of anisotropy)

- An originally isotropic $\ell=0$ temperature perturbation will eventually become a high order anisotropy by "free streaming" or simple projection
- Original CMB codes solved the full hierarchy equations out to the ℓ of interest.

Integral Solution

- Hierarchy equation simply represents geometric projection, exactly as we have seen before in the projection of temperature perturbations on the last scattering surface
- In general, the solution describes the decomposition of the source $S_{\ell}^{(m)}$ with its local angular dependence as seen at a distance $\mathrm{x}=D \hat{\mathbf{n}}$.
- Proceed by decomposing the angular dependence of the plane wave

$$
e^{i \mathbf{k} \cdot \mathbf{x}}=\sum_{\ell}(-i)^{\ell} \sqrt{4 \pi(2 \ell+1)} j_{\ell}(k D) Y_{\ell}^{0}(\hat{\mathbf{n}})
$$

- Recouple to the local angular dependence of G_{ℓ}^{m}

$$
G_{\ell_{s}}^{m}=\sum_{\ell}(-i)^{\ell} \sqrt{4 \pi(2 \ell+1)} \alpha_{\ell_{s} \ell}^{(m)}(k D) Y_{\ell}^{m}(\hat{\mathbf{n}})
$$

Integral Solution

- Projection kernels:

$$
\begin{array}{lll}
\ell_{s}=0, & m=0 & \alpha_{0 \ell}^{(0)} \equiv j_{\ell} \\
\ell_{s}=1, & m=0 & \alpha_{1 \ell}^{(0)} \equiv j_{\ell}^{\prime}
\end{array}
$$

- Integral solution:

$$
\frac{\Theta_{\ell}^{(m)}\left(k, \eta_{0}\right)}{2 \ell+1}=\int_{0}^{\eta_{0}} d \eta e^{-\tau} \sum_{\ell_{s}} S_{\ell_{s}}^{(m)} \alpha_{\ell_{s} \ell}^{(m)}\left(k\left(\eta_{0}-\eta\right)\right)
$$

- Power spectrum:

$$
C_{\ell}=\frac{2}{\pi} \int \frac{d k}{k} \sum_{m} \frac{k^{3}\left\langle\Theta_{\ell}^{(m) *} \Theta_{\ell}^{(m)}\right\rangle}{(2 \ell+1)^{2}}
$$

- Solving for C_{ℓ} reduces to solving for the behavior of a handful of sources

Polarization Hierarchy

- In the same way, the coupling of a gradient or dipole angular momentum to the spin harmonics leads to the polarization hierarchy:

$$
\begin{aligned}
& \dot{E}_{\ell}^{(m)}=k\left[\frac{{ }_{2} \kappa_{\ell}^{m}}{2 \ell-1} E_{\ell-1}^{(m)}-\frac{2 m}{\ell(\ell+1)} B_{\ell}^{(m)}-\frac{{ }_{2} \kappa_{\ell+1}^{m}}{2 \ell+3} E_{\ell+1}^{(m)}\right]-\dot{\tau} E_{\ell}^{(m)}+\mathcal{E}_{\ell}^{(m)} \\
& \dot{B}_{\ell}^{(m)}=k\left[\frac{{ }_{2} \kappa_{\ell}^{m}}{2 \ell-1} B_{\ell-1}^{(m)}+\frac{2 m}{\ell(\ell+1)} E_{\ell}^{(m)}-\frac{{ }_{2} \kappa_{\ell+1}^{m}}{2 \ell+3} B_{\ell+1}^{(m)}\right]-\dot{\tau} B_{\ell}^{(m)}+\mathcal{B}_{\ell}^{(m)}
\end{aligned}
$$

where ${ }_{2} \kappa_{\ell}^{m}=\sqrt{\left(\ell^{2}-m^{2}\right)\left(\ell^{2}-4\right) / \ell^{2}}$ is given by the
Clebsch-Gordon coefficients and \mathcal{E}, \mathcal{B} are the sources (scattering only).

- Note that for vectors and tensors $|m|>0$ and B modes may be generated from E modes by projection. Cosmologically $\mathcal{B}_{\ell}^{(m)}=0$

Polarization Integral Solution

- Again, we can recouple the plane wave angular momentum of the source inhomogeneity to its local angular dependence directly

$$
\begin{aligned}
\frac{E_{\ell}^{(m)}\left(k, \eta_{0}\right)}{2 \ell+1} & =\int_{0}^{\eta_{0}} d \eta e^{-\tau} \mathcal{E}_{\ell_{s}}^{(m)} \epsilon_{\ell_{s} \ell}^{(m)}\left(k\left(\eta_{0}-\eta\right)\right) \\
\frac{B_{\ell}^{(m)}\left(k, \eta_{0}\right)}{2 \ell+1} & =\int_{0}^{\eta_{0}} d \eta e^{-\tau} \mathcal{E}_{\ell_{s}}^{(m)} \beta_{\ell_{s} \ell}^{(m)}\left(k\left(\eta_{0}-\eta\right)\right)
\end{aligned}
$$

- The only source to the polarization is from the quadrupole anisotropy so we only need $\ell_{s}=2$, e.g. for scalars

$$
\epsilon_{2 \ell}^{(0)}(x)=\sqrt{\frac{3}{8} \frac{(\ell+2)!}{(\ell-2)!} \frac{j_{\ell}(x)}{x^{2}}} \quad \beta_{2 \ell}^{(0)}=0
$$

Gravitational Terms

- As in our Newtonian gauge calculation, gravitational terms - now including vectors and tensors in an arbitrary gauge, come from the geodesic equation
- First define the slicing (lapse function A, shift function B^{i})

$$
\begin{aligned}
g^{00} & =-a^{-2}(1-2 A) \\
g^{0 i} & =-a^{-2} B^{i}
\end{aligned}
$$

A defines the lapse of proper time between 3-surfaces whereas B^{i} defines the threading or relationship between the 3-coordinates of the surfaces

Gravitational Terms

- This absorbs $1+3=4$ degrees of freedom in the metric, remaining 6 is in the spatial surfaces which we parameterize as

$$
g^{i j}=a^{-2}\left(\gamma^{i j}-2 H_{L} \gamma^{i j}-2 H_{T}^{i j}\right)
$$

here (1) H_{L} a perturbation to the spatial curvature; (5) $H_{T}^{i j}$ a trace-free distortion to spatial metric (which also can perturb the curvature)

- Geodesic equation gives the redshifting term

$$
\frac{\dot{q}}{q}=-\frac{\dot{a}}{a}-\frac{1}{2} n^{i} n^{j} \dot{H}_{T i j}-\dot{H}_{L}+n^{i} \dot{B}_{i}-\hat{\mathbf{n}} \cdot \nabla A
$$

which is incorporated in the conservation and gauge transformation equations

Source Terms

- Temperature source terms $S_{l}^{(m)}$ (rows $\pm|m|$; flat assumption

$$
\left(\begin{array}{lll}
\dot{\tau} \Theta_{0}^{(0)}-\dot{H}_{L}^{(0)} & \dot{\tau} v_{b}^{(0)}+\dot{B}^{(0)} & \dot{\tau} P^{(0)}-\frac{2}{3} \dot{H}_{T}^{(0)} \\
0 & \dot{\tau} v_{b}^{(\pm 1)}+\dot{B}^{(\pm 1)} & \dot{\tau} P^{(\pm 1)}-\frac{\sqrt{3}}{3} \dot{H}_{T}^{(\pm 1)} \\
0 & 0 & \dot{\tau} P^{(\pm 2)}-\dot{H}_{T}^{(\pm 2)}
\end{array}\right)
$$

where

$$
P^{(m)} \equiv \frac{1}{10}\left(\Theta_{2}^{(m)}-\sqrt{6} E_{2}^{(m)}\right)
$$

- Polarization source term

$$
\begin{aligned}
& \mathcal{E}_{\ell}^{(m)}=-\dot{\tau} \sqrt{6} P^{(m)} \delta_{\ell, 2} \\
& \mathcal{B}_{\ell}^{(m)}=0
\end{aligned}
$$

Truncated Hierarchy

- CMBFast introduced the hybrid truncated hierarchy, integral solution technique
- Formal integral solution contains sources that are not external to system but defined through the Boltzmann hierarchy itself
- Solution: recall that we used this technique in the tight coupling regime by applying a closure condition from tight coupling
- CMBFast extends this idea by solving a truncated hierarchy of equations, e.g. out to $\ell=25$ with non-reflecting boundary conditions
- For completeness, we explicitly derive the scattering source term via polarized radiative transfer in the last part of the notes

Polarized Radiative Transfer

- Define a specific intensity "vector": $\mathbf{I}_{\nu}=\left(\Theta_{\|}, \Theta_{\perp}, U, V\right)$ where $\Theta=\Theta_{\|}+\Theta_{\perp}, Q=\Theta_{\|}-\Theta_{\perp}$

$$
\frac{d \mathbf{I}_{\nu}}{d \eta}=\dot{\tau}\left(\mathbf{S}_{\nu}-\mathbf{I}_{\nu}\right)
$$

- Thomson collision
based on differential cross section

$$
\frac{d \sigma_{T}}{d \Omega}=\frac{3}{8 \pi}\left|\hat{\mathbf{E}}^{\prime} \cdot \hat{\mathbf{E}}\right|^{2} \sigma_{T},
$$

Polarized Radiative Transfer

- $\hat{\mathbf{E}}^{\prime}$ and $\hat{\mathbf{E}}$ denote the incoming and outgoing directions of the electric field or polarization vector.
- Thomson scattering by 90 deg: $\Theta_{\perp} \rightarrow \Theta_{\perp}$ but $\Theta_{\|}$does not scatter
- More generally if Θ is the scattering angle

$$
\mathbf{S}_{\nu}=\frac{3}{8 \pi} \int d \Omega^{\prime}\left(\begin{array}{cccc}
\cos ^{2} \Theta & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & \cos \Theta & 0 \\
0 & 0 & 0 & \cos \Theta
\end{array}\right) \mathbf{I}_{\nu}^{\prime}
$$

- But to calculate Stokes parameters in a fixed coordinate system must rotate into the scattering basis, scatter and rotate back out to the fixed coordinate system

Thomson Collision Term

- The $U \rightarrow U^{\prime}$ transfer follows by writing down the polarization vectors in the 45° rotated basis

$$
\hat{\mathbf{E}}_{1}=\frac{1}{\sqrt{2}}\left(\hat{\mathbf{E}}_{\|}+\hat{\mathbf{E}}_{\perp}\right), \quad \hat{\mathbf{E}}_{2}=\frac{1}{\sqrt{2}}\left(\hat{\mathbf{E}}_{\|}-\hat{\mathbf{E}}_{\perp}\right)
$$

- Define the temperature in this basis

$$
\begin{aligned}
\Theta_{1} & \propto\left|\hat{\mathbf{E}}_{1} \cdot \hat{\mathbf{E}}_{1}\right|^{2} \Theta_{1}^{\prime}+\left|\hat{\mathbf{E}}_{1} \cdot \hat{\mathbf{E}}_{2}\right|^{2} \Theta_{2}^{\prime} \\
& \propto \frac{1}{4}(\cos \beta+1)^{2} \Theta_{1}^{\prime}+\frac{1}{4}(\cos \beta-1)^{2} \Theta_{2}^{\prime} \\
\Theta_{2} & \propto\left|\hat{\mathbf{E}}_{2} \cdot \hat{\mathbf{E}}_{2}\right|^{2} \Theta_{2}^{\prime}+\left|\hat{\mathbf{E}}_{2} \cdot \hat{\mathbf{E}}_{1}\right|^{2} \Theta_{1}^{\prime} \\
& \propto \frac{1}{4}(\cos \beta+1)^{2} \Theta_{2}^{\prime}+\frac{1}{4}(\cos \beta-1)^{2} \Theta_{1}^{\prime} \\
\text { or } \Theta_{1}-\Theta_{2} & \propto \cos \beta\left(\Theta_{1}^{\prime}-\Theta_{2}^{\prime}\right)
\end{aligned}
$$

Scattering Matrix

- Transfer matrix of Stokes state $\mathbf{T} \equiv(\Theta, Q+i U, Q-i U)$

$$
\begin{gathered}
\mathbf{T} \propto \mathbf{S}(\beta) \mathbf{T}^{\prime} \\
\mathbf{S}(\beta)=\frac{3}{4}\left(\begin{array}{ccc}
\cos ^{2} \beta+1 & -\frac{1}{2} \sin ^{2} \beta & -\frac{1}{2} \sin ^{2} \beta \\
-\frac{1}{2} \sin ^{2} \beta & \frac{1}{2}(\cos \beta+1)^{2} & \frac{1}{2}(\cos \beta-1)^{2} \\
-\frac{1}{2} \sin ^{2} \beta & \frac{1}{2}(\cos \beta-1)^{2} & \frac{1}{2}(\cos \beta+1)^{2}
\end{array}\right)
\end{gathered}
$$

normalization factor of 3 is set by photon conservation in scattering

Scattering Matrix

- Transform to a fixed basis, by a rotation of the incoming and outgoing states $\mathbf{T}=\mathbf{R}(\psi) \mathbf{T}$ where

$$
\mathbf{R}(\psi)=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & e^{-2 i \psi} & 0 \\
0 & 0 & e^{2 i \psi}
\end{array}\right)
$$

giving the scattering matrix

$$
\begin{equation*}
\mathbf{R}(-\gamma) \mathbf{S}(\beta) \mathbf{R}(\alpha)= \tag{1}
\end{equation*}
$$

$$
\frac{1}{2} \sqrt{\frac{4 \pi}{5}}\left(\begin{array}{ccc}
Y_{2}^{0}(\beta, \alpha)+2 \sqrt{5} Y_{0}^{0}(\beta, \alpha) & -\sqrt{\frac{3}{2}} Y_{2}^{-2}(\beta, \alpha) & -\sqrt{\frac{3}{2}} Y_{2}^{2}(\beta, \alpha) \tag{2}\\
-\sqrt{6}{ }_{2} Y_{2}^{0}(\beta, \alpha) e^{2 i \gamma} & 3_{2} Y_{2}^{-2}(\beta, \alpha) e^{2 i \gamma} & 3_{2} Y_{2}^{2}(\beta, \alpha) e^{2 i \gamma} \\
-\sqrt{6}-2 Y_{2}^{0}(\beta, \alpha) e^{-2 i \gamma} & 3_{-2} Y_{2}^{-2}(\beta, \alpha) e^{-2 i \gamma} & 3_{-2} Y_{2}^{2}(\beta, \alpha) e^{-2 i \gamma}
\end{array}\right)
$$

Addition Theorem for Spin Harmonics

- Spin harmonics are related to rotation matrices as

$$
{ }_{s} Y_{\ell}^{m}(\theta, \phi)=\sqrt{\frac{2 \ell+1}{4 \pi}} \mathcal{D}_{-m s}^{\ell}(\phi, \theta, 0)
$$

Note: for explicit evaluation sign convention differs from usual (e.g. Jackson) by $(-1)^{m}$

- Multiplication of rotations

$$
\sum_{m^{\prime \prime}} \mathcal{D}_{m m^{\prime \prime}}^{\ell}\left(\alpha_{2}, \beta_{2}, \gamma_{2}\right) \mathcal{D}_{m^{\prime \prime} m}^{\ell}\left(\alpha_{1}, \beta_{1}, \gamma_{1}\right)=\mathcal{D}_{m m^{\prime}}^{\ell}(\alpha, \beta, \gamma)
$$

- Implies

$$
\sum_{m}{ }_{s_{1}} Y_{\ell}^{m *}\left(\theta^{\prime}, \phi^{\prime}\right){ }_{s_{2}} Y_{\ell}^{m}(\theta, \phi)=(-1)^{s_{1}-s_{2}} \sqrt{\frac{2 \ell+1}{4 \pi}}{ }_{s_{2}} Y_{\ell}^{-s_{1}}(\beta, \alpha) e^{i s_{2} \gamma}
$$

Sky Basis

- Scattering into the state (rest frame)

$$
\begin{aligned}
C_{\text {in }}[\mathbf{T}] & =\dot{\tau} \int \frac{d \hat{\mathbf{n}}^{\prime}}{4 \pi} \mathbf{R}(-\gamma) \mathbf{S}(\beta) \mathbf{R}(\alpha) \mathbf{T}\left(\hat{\mathbf{n}}^{\prime}\right) \\
& =\dot{\tau} \int \frac{d \hat{\mathbf{n}}^{\prime}}{4 \pi}\left(\Theta^{\prime}, 0,0\right)+\frac{1}{10} \dot{\tau} \int d \hat{\mathbf{n}}^{\prime} \sum_{m=-2}^{2} \mathbf{P}^{(m)}\left(\hat{\mathbf{n}}, \hat{\mathbf{n}}^{\prime}\right) \mathbf{T}\left(\hat{\mathbf{n}}^{\prime}\right)
\end{aligned}
$$

where the quadrupole coupling term is $\mathbf{P}^{(m)}\left(\hat{\mathbf{n}}, \hat{\mathbf{n}}^{\prime}\right)=$

$$
\left(\begin{array}{ccc}
Y_{2}^{m *}\left(\hat{\mathbf{n}}^{\prime}\right) Y_{2}^{m}(\hat{\mathbf{n}}) & -\sqrt{\frac{3}{2}}{ }_{2} Y_{2}^{m *}\left(\hat{\mathbf{n}}^{\prime}\right) Y_{2}^{m}(\hat{\mathbf{n}}) & -\sqrt{\frac{3}{2}}{ }_{-2} Y_{2}^{m *}\left(\hat{\mathbf{n}}^{\prime}\right) Y_{2}^{m}(\hat{\mathbf{n}}) \\
-\sqrt{6} Y_{2}^{m *}\left(\hat{\mathbf{n}}^{\prime}\right)_{2} Y_{2}^{m}(\hat{\mathbf{n}}) & 3_{2} Y_{2}^{m *}\left(\hat{\mathbf{n}}^{\prime}\right)_{2} Y_{2}^{m}(\hat{\mathbf{n}}) & 3_{-2} Y_{2}^{m *}\left(\hat{\mathbf{n}}^{\prime}\right)_{2} Y_{2}^{m}(\hat{\mathbf{n}}) \\
-\sqrt{6} Y_{2}^{m *}\left(\hat{\mathbf{n}}^{\prime}\right)_{-2} Y_{2}^{m}(\hat{\mathbf{n}}) & 3_{2} Y_{2}^{m *}\left(\hat{\mathbf{n}}^{\prime}\right)_{-2} Y_{2}^{m}(\hat{\mathbf{n}}) & 3_{-2} Y_{2}^{m *}\left(\hat{\mathbf{n}}^{\prime}\right)_{-2} Y_{2}^{m}(\hat{\mathbf{n}})
\end{array}\right)
$$

expression uses angle addition relation above. We call this term C_{Q}.

Scattering Matrix

- Full scattering matrix involves difference of scattering into and out of state

$$
C[\mathbf{T}]=C_{\mathrm{in}}[\mathbf{T}]-C_{\mathrm{out}}[\mathbf{T}]
$$

- In the electron rest frame

$$
C[\mathbf{T}]=\dot{\tau} \int \frac{d \hat{\mathbf{n}}^{\prime}}{4 \pi}\left(\Theta^{\prime}, 0,0\right)-\dot{\tau} \mathbf{T}+C_{Q}[\mathbf{T}]
$$

which describes isotropization in the rest frame. All moments have $e^{-\tau}$ suppression except for isotropic temperature Θ_{0}.
Transformation into the background frame simply induces a dipole term

$$
C[\mathbf{T}]=\dot{\tau}\left(\hat{\mathbf{n}} \cdot \mathbf{v}_{b}+\int \frac{d \hat{\mathbf{n}}^{\prime}}{4 \pi} \Theta^{\prime}, 0,0\right)-\dot{\tau} \mathbf{T}+C_{Q}[\mathbf{T}]
$$

