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Inhomogeneity vs Anisotropy
• Θ is a function of position as well as direction but we only have

access to our position

• Light travels at the speed of light so the radiation we receive in
direction n̂ was (η0 − η)n̂ at conformal time η

• Inhomogeneity at a distance appears as an anisotopy to the
observer

• We need to transport the radiation from the initial conditions to the
observer

• This is done with the Boltzmann or radiative transfer equation

• In the absence of scattering, emission or absorption the Boltzmann
equation is simply

Df

Dt
= 0
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• Angular distribution
of radiation is the 3D
temperature field
projected onto a shell
- surface of last scattering

• Shell radius
is distance from the observer
to recombination: called
the last scattering surface

• Take the radiation
distribution at last scattering to also be described by an isotropic
temperature fluctuation field Θ(x)



Integral Solution to Radiative Transfer

Iν(0) Iν(τν)

0 τν' τν

Sν

• Formal solution for specific intensity Iν = 2hν3f/c2

Iν(τν) = Iν(0)e−τν +

∫ τν

0

dτ ′νSν(τ
′
ν)e
−(τν−τ ′ν)

• Specific intensity Iν attenuated by absorption and replaced by
source function, attenuated by absorption from foreground matter

• Here Θ plays the role of specific intensity and τν − τ ′ν = τ is
optical depth to Compton scattering from x = 0 to Dn̂



Angular Power Spectrum
• Take recombination to be instantaneous: dτe−τ = dDδ(D −D∗)

and the source to be the local temperature inhomogeneity

Θ(n̂) =

∫
dDΘ(x)δ(D −D∗)

where D is the comoving distance and D∗ denotes recombination.

• Describe the temperature field by its Fourier moments

Θ(x) =

∫
d3k

(2π)3
Θ(k)eik·x

• Note that Fourier moments Θ(k) have units of volume k−3

• 2 point statistics of the real-space field are translationally and
rotationally invariant

• Described by power spectrum



Spatial Power Spectrum
• Translational invariance

〈Θ(x′)Θ(x)〉 = 〈Θ(x′ + d)Θ(x + d)〉∫
d3k

(2π)3
d3k′

(2π)3
〈Θ∗(k′)Θ(k)〉eik·x−ik

′·x′

=

∫
d3k

(2π)3
d3k′

(2π)3
〈Θ∗(k′)Θ(k)〉eik·x−ik

′·x′+i(k−k′)·d

So two point function requires δ(k− k′); rotational invariance says
coefficient depends only on magnitude of k not it’s direction

〈Θ(k)∗Θ(k′)〉 = (2π)3δ(k− k′)PT (k)

Note that δ(k− k′) has units of volume and so PT must have units
of volume



Dimensionless Power Spectrum
• Variance

σ2
Θ ≡ 〈Θ(x)Θ(x)〉 =

∫
d3k

(2π)3
PT (k)

=

∫
k2dk

2π2

∫
dΩ

4π
PT (k)

=

∫
d ln k

k3

2π2
PT (k)

• Define power per logarithmic interval

∆2
T (k) ≡ k3PT (k)

2π2

• This quantity is dimensionless.



Angular Power Spectrum
• Temperature field

Θ(n̂) =

∫
d3k

(2π)3
Θ(k)eik·D∗n̂

• Multipole moments Θ(n̂) =
∑

`m Θ`mY`m

• Expand out plane wave in spherical coordinates

eikD∗·n̂ = 4π
∑
`m

i`j`(kD∗)Y
∗
`m(k)Y`m(n̂)

• Angular moment

Θ`m =

∫
d3k

(2π)3
Θ(k)4πi`j`(kD∗)Y

∗
`m(k)



Angular Power Spectrum
• Power spectrum

〈Θ∗`mΘ`′m′〉 =

∫
d3k

(2π)3
(4π)2i`−`

′
j`(kD∗)j`′(kD∗)Y`m(k)Y ∗`′m′(k)PT (k)

= δ``′δmm′4π

∫
d ln k j2

` (kD∗)∆
2
T (k)

with
∫∞

0
j2
` (x)d lnx = 1/(2`(`+ 1)), slowly varying ∆2

T

• Angular power spectrum:

C` =
4π∆2

T (`/D∗)

2`(`+ 1)
=

2π

`(`+ 1)
∆2
T (`/D∗)

• Not surprisingly, a relationship between `2C`/2π and ∆2
T at `� 1.

By convention use `(`+ 1) to make relationship exact



Generalized Source
• More generally, we know the Y m

` ’s are a complete angular basis
and plane waves are complete spatial basis

• General distribution can be decomposed into

Y m
` (n̂) exp(ik · x)

• The observer at the origin sees this distribution in projection

Y m
` (n̂)eikD∗·n̂ = 4π

∑
`′m′

i`
′
j`′(kD∗)Y

m′∗
`′ (k)Y m′

`′ (n̂)Y m
` (n̂)

• We extract the observed multipoles by the addition of angular
momentum Y m′

`′ (n̂)Y m
` (n̂)→ Y M

L (n̂)

• Radial functions become linear sums over j` with the recoupling
(Clebsch-Gordan) coefficients

• Formal integral solution to the radiative transfer equation



Boltzmann Equation
• General integral solution for radiative transfer as long as the

angular distribution at emission is known

• Formalize further the evolution of angular moments in the
cosmological context:

Df

Dt
= ḟ + q̇ · ∂f

∂q
+ ẋ · ∂f

∂x
= 0

• Momentum q = qn̂, where n̂ is a directional unit vector and in a
flat universe q̇ = q̇n̂

• Particle velocity ẋ = q/E

ḟ + q̇
∂f

∂q
+

q

E
· ∂f
∂x

= 0



Angular Moments
• Define the angularly dependent Stokes perturbation

Θ(x, n̂, η), Q(x, n̂, η), U(x, n̂, η)

• Decompose into normal modes: plane waves for spatial part and
spherical harmonics for angular part

Gm
` (k,x, n̂) ≡ (−i)`

√
4π

2`+ 1
Y m
` (n̂) exp(ik · x)

±2G
m
` (k,x, n̂) ≡ (−i)`

√
4π

2`+ 1
±2Y

m
` (n̂) exp(ik · x)

• In a spatially curved universe generalize the plane wave part



Normal Modes
• Temperature and polarization fields

Θ(x, n̂, η) =

∫
d3k

(2π)3

∑
`m

Θ
(m)
` Gm

`

[Q± iU ](x, n̂, η) =

∫
d3k

(2π)3

∑
`m

[E
(m)
` ± iB(m)

` ]±2G
m
`

• For each k mode, work in coordinates where k ‖ z and so m = 0

represents scalar modes, m = ±1 vector modes, m = ±2 tensor
modes, |m| > 2 vanishes. Since modes add incoherently and
Q± iU is invariant up to a phase, rotation back to a fixed
coordinate system is trivial.



Liouville Equation
• In absence of scattering, the phase space distribution of photons in

each polarization state a is conserved along the propagation path

• Rewrite variables in terms of the photon propagation direction
q = qn̂, so fa(x, n̂, q, η) and

d

dη
fa(x, n̂, q, η) = 0

=

(
∂

∂η
+
dx

dη
· ∂
∂x

+
dn̂

dη
· ∂
∂n̂

+
dq

dη
· ∂
∂q

)
fa

• For simplicity, assume spatially flat universe K = 0 then
dn̂/dη = 0 and dx = n̂dη

ḟa + n̂ · ∇fa + q̇
∂

∂q
fa = 0



Scalar, Vector, Tensor
• Normalization of modes is chosen so that the lowest angular mode

for scalars, vectors and tensors are normalized in the same way as
the mode function

G0
0 = Q(0) G0

1 = niQ
(0)
i G0

2 ∝ ninjQ
(0)
ij

G±1
1 = niQ

(±1)
i G±1

2 ∝ ninjQ
(±1)
ij

G±2
2 = ninjQ

(±2)
ij

where recall

Q(0) = exp(ik · x)

Q
(±1)
i =

−i√
2

(ê1 ± iê2)iexp(ik · x)

Q
(±2)
ij = −

√
3

8
(ê1 ± iê2)i(ê1 ± iê2)jexp(ik · x)



Geometrical Projection
• Main content of Liouville equation is purely geometrical and

describes the projection of inhomogeneities into anisotropies

• Spatial gradient term hits plane wave:

n̂ · ∇eik·x = in̂ · keik·x = i

√
4π

3
kY 0

1 (n̂)eik·x

• Dipole term adds to angular dependence through the addition of
angular momentum√

4π

3
Y 0

1 Y
m
` =

κm`√
(2`+ 1)(2`− 1)

Y m
`−1 +

κm`+1√
(2`+ 1)(2`+ 3)

Y m
`+1

where κm` =
√
`2 −m2 is given by Clebsch-Gordon coefficients.



Temperature Hierarchy
• Absorb recoupling of angular momentum into evolution equation

for normal modes

Θ̇
(m)
` = k

[
κm`

2`+ 1
Θ

(m)
`−1 −

κm`+1

2`+ 3
Θ

(m)
`+1

]
− τ̇Θ

(m)
` + S

(m)
`

where S(m)
` are the gravitational (and later scattering sources;

added scattering suppression of anisotropy)

• An originally isotropic ` = 0 temperature perturbation will
eventually become a high order anisotropy by “free streaming” or
simple projection

• Original CMB codes solved the full hierarchy equations out to the
` of interest.



Integral Solution
• Hierarchy equation simply represents geometric projection,

exactly as we have seen before in the projection of temperature
perturbations on the last scattering surface

• In general, the solution describes the decomposition of the source
S

(m)
` with its local angular dependence as seen at a distance

x = Dn̂.

• Proceed by decomposing the angular dependence of the plane
wave

eik·x =
∑
`

(−i)`
√

4π(2`+ 1)j`(kD)Y 0
` (n̂)

• Recouple to the local angular dependence of Gm
`

Gm
`s =

∑
`

(−i)`
√

4π(2`+ 1)α
(m)
`s`

(kD)Y m
` (n̂)



Integral Solution
• Projection kernels:

`s = 0, m = 0 α
(0)
0` ≡ j`

`s = 1, m = 0 α
(0)
1` ≡ j′`

• Integral solution:

Θ
(m)
` (k, η0)

2`+ 1
=

∫ η0

0

dηe−τ
∑
`s

S
(m)
`s

α
(m)
`s`

(k(η0 − η))

• Power spectrum:

C` =
2

π

∫
dk

k

∑
m

k3〈Θ(m)∗
` Θ

(m)
` 〉

(2`+ 1)2

• Solving for C` reduces to solving for the behavior of a handful of
sources



Polarization Hierarchy
• In the same way, the coupling of a gradient or dipole angular

momentum to the spin harmonics leads to the polarization
hierarchy:

Ė
(m)
` = k

[
2κ

m
`

2`− 1
E

(m)
`−1 −

2m

`(`+ 1)
B

(m)
` − 2κ

m
`+1

2`+ 3
E

(m)
`+1

]
− τ̇E(m)

` + E (m)
`

Ḃ
(m)
` = k

[
2κ

m
`

2`− 1
B

(m)
`−1 +

2m

`(`+ 1)
E

(m)
` − 2κ

m
`+1

2`+ 3
B

(m)
`+1

]
− τ̇B(m)

` + B(m)
`

where 2κ
m
` =

√
(`2 −m2)(`2 − 4)/`2 is given by the

Clebsch-Gordon coefficients and E , B are the sources (scattering
only).

• Note that for vectors and tensors |m| > 0 and B modes may be
generated from E modes by projection. Cosmologically B(m)

` = 0



Polarization Integral Solution
• Again, we can recouple the plane wave angular momentum of the

source inhomogeneity to its local angular dependence directly

E
(m)
` (k, η0)

2`+ 1
=

∫ η0

0

dηe−τE (m)
`s

ε
(m)
`s`

(k(η0 − η))

B
(m)
` (k, η0)

2`+ 1
=

∫ η0

0

dηe−τE (m)
`s

β
(m)
`s`

(k(η0 − η))

• The only source to the polarization is from the quadrupole
anisotropy so we only need `s = 2, e.g. for scalars

ε
(0)
2` (x) =

√
3

8

(`+ 2)!

(`− 2)!

j`(x)

x2
β

(0)
2` = 0



Gravitational Terms
• As in our Newtonian gauge calculation, gravitational terms - now

including vectors and tensors in an arbitrary gauge, come from the
geodesic equation

• First define the slicing (lapse function A, shift function Bi)

g00 = −a−2(1− 2A) ,

g0i = −a−2Bi ,

A defines the lapse of proper time between 3-surfaces whereas Bi

defines the threading or relationship between the 3-coordinates of
the surfaces



Gravitational Terms
• This absorbs 1+3=4 degrees of freedom in the metric, remaining 6

is in the spatial surfaces which we parameterize as

gij = a−2(γij − 2HLγ
ij − 2H ij

T ) .

here (1) HL a perturbation to the spatial curvature; (5) H ij
T a

trace-free distortion to spatial metric (which also can perturb the
curvature)

• Geodesic equation gives the redshifting term

q̇

q
= − ȧ

a
− 1

2
ninjḢT ij − ḢL + niḂi − n̂ · ∇A

which is incorporated in the conservation and gauge
transformation equations



Source Terms
• Temperature source terms S(m)

l (rows ±|m|; flat assumption
τ̇Θ

(0)
0 − Ḣ

(0)
L τ̇ v

(0)
b + Ḃ(0) τ̇P (0) − 2

3
Ḣ

(0)
T

0 τ̇ v
(±1)
b + Ḃ(±1) τ̇P (±1) −

√
3

3
Ḣ

(±1)
T

0 0 τ̇P (±2) − Ḣ(±2)
T


where

P (m) ≡ 1

10
(Θ

(m)
2 −

√
6E

(m)
2 )

• Polarization source term

E (m)
` = −τ̇

√
6P (m)δ`,2

B(m)
` = 0



Truncated Hierarchy
• CMBFast introduced the hybrid truncated hierarchy, integral

solution technique

• Formal integral solution contains sources that are not external to
system but defined through the Boltzmann hierarchy itself

• Solution: recall that we used this technique in the tight coupling
regime by applying a closure condition from tight coupling

• CMBFast extends this idea by solving a truncated hierarchy of
equations, e.g. out to ` = 25 with non-reflecting boundary
conditions

• For completeness, we explicitly derive the scattering source term
via polarized radiative transfer in the last part of the notes



Polarized Radiative Transfer
• Define a specific intensity “vector”: Iν = (Θ‖,Θ⊥, U, V ) where

Θ = Θ‖ + Θ⊥, Q = Θ‖ −Θ⊥

dIν
dη

= τ̇(Sν − Iν)

.

Thomson 
Scattering

Θ

e

e

e

e

e-

'

'

• Thomson collision
based on differential cross section

dσT
dΩ

=
3

8π
|Ê′ · Ê|2σT ,



Polarized Radiative Transfer
• Ê′ and Ê denote the incoming and outgoing directions of the

electric field or polarization vector.

• Thomson scattering by 90 deg: Θ⊥ → Θ⊥ but Θ‖ does not scatter

• More generally if Θ is the scattering angle

Sν =
3

8π

∫
dΩ′


cos2 Θ 0 0 0

0 1 0 0

0 0 cos Θ 0

0 0 0 cos Θ

 I′ν

• But to calculate Stokes parameters in a fixed coordinate system
must rotate into the scattering basis, scatter and rotate back out to
the fixed coordinate system



Thomson Collision Term
• The U → U ′ transfer follows by writing down the polarization

vectors in the 45◦ rotated basis

Ê1 =
1√
2

(Ê‖ + Ê⊥), Ê2 =
1√
2

(Ê‖ − Ê⊥)

• Define the temperature in this basis

Θ1 ∝ |Ê1 · Ê1|2Θ′1 + |Ê1 · Ê2|2Θ′2

∝ 1

4
(cos β + 1)2Θ′1 +

1

4
(cos β − 1)2Θ′2

Θ2 ∝ |Ê2 · Ê2|2Θ′2 + |Ê2 · Ê1|2Θ′1

∝ 1

4
(cos β + 1)2Θ′2 +

1

4
(cos β − 1)2Θ′1

or Θ1 −Θ2 ∝ cos β(Θ′1 −Θ′2)



Scattering Matrix
• Transfer matrix of Stokes state T ≡ (Θ, Q+ iU , Q− iU )

T ∝ S(β)T′

S(β) =
3

4


cos2 β + 1 −1

2
sin2 β −1

2
sin2 β

−1
2

sin2 β 1
2
(cos β + 1)2 1

2
(cos β − 1)2

−1
2

sin2 β 1
2
(cos β − 1)2 1

2
(cos β + 1)2


normalization factor of 3 is set by photon conservation in scattering



Scattering Matrix
• Transform to a fixed basis, by a rotation of the incoming and

outgoing states T = R(ψ)T where

R(ψ) =


1 0 0

0 e−2iψ 0

0 0 e2iψ


giving the scattering matrix

R(−γ)S(β)R(α) =

1

2

√
4π

5


Y 0
2 (β, α) + 2

√
5Y 0

0 (β, α) −
√

3
2
Y −2
2 (β, α) −

√
3
2
Y 2
2 (β, α)

−
√
6 2Y

0
2 (β, α)e

2iγ 3 2Y
−2
2 (β, α)e2iγ 3 2Y

2
2 (β, α)e

2iγ

−
√
6−2Y

0
2 (β, α)e

−2iγ 3−2Y
−2
2 (β, α)e−2iγ 3−2Y

2
2 (β, α)e

−2iγ





Addition Theorem for Spin Harmonics
• Spin harmonics are related to rotation matrices as

sY
m
` (θ, φ) =

√
2`+ 1

4π
D`−ms(φ, θ, 0)

Note: for explicit evaluation sign convention differs from usual
(e.g. Jackson) by (−1)m

• Multiplication of rotations∑
m′′

D`mm′′(α2, β2, γ2)D`m′′m(α1, β1, γ1) = D`mm′(α, β, γ)

• Implies

∑
m

s1
Y m∗
` (θ′, φ′) s2

Y m
` (θ, φ) = (−1)s1−s2

√
2`+ 1

4π s2
Y −s1` (β, α)eis2γ



Sky Basis
• Scattering into the state (rest frame)

Cin[T] = τ̇

∫
dn̂′

4π
R(−γ)S(β)R(α)T(n̂′) ,

= τ̇

∫
dn̂′

4π
(Θ′, 0, 0) +

1

10
τ̇

∫
dn̂′

2∑
m=−2

P(m)(n̂, n̂′)T(n̂′) .

where the quadrupole coupling term is P(m)(n̂, n̂′) =


Y m∗2 (n̂′)Y m2 (n̂) −

√
3
2 2Y

m∗
2 (n̂′)Y m2 (n̂) −

√
3
2 −2Y

m∗
2 (n̂′)Y m2 (n̂)

−
√
6Y m∗2 (n̂′) 2Y

m
2 (n̂) 3 2Y

m∗
2 (n̂′) 2Y

m
2 (n̂) 3−2Y

m∗
2 (n̂′) 2Y

m
2 (n̂)

−
√
6Y m∗2 (n̂′)−2Y

m
2 (n̂) 3 2Y

m∗
2 (n̂′)−2Y

m
2 (n̂) 3−2Y

m∗
2 (n̂′)−2Y

m
2 (n̂)

 ,

expression uses angle addition relation above. We call this term
CQ.



Scattering Matrix
• Full scattering matrix involves difference of scattering into and out

of state

C[T] = Cin[T]− Cout[T]

• In the electron rest frame

C[T] = τ̇

∫
dn̂′

4π
(Θ′, 0, 0)− τ̇T + CQ[T]

which describes isotropization in the rest frame. All moments have
e−τ suppression except for isotropic temperature Θ0.
Transformation into the background frame simply induces a dipole
term

C[T] = τ̇

(
n̂ · vb +

∫
dn̂′

4π
Θ′, 0, 0

)
− τ̇T + CQ[T]



Schematic Outline
• Take apart features in the power spectrum
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Thomson Scattering
• Thomson scattering of photons off of free electrons is the most

important CMB process with a cross section (averaged over
polarization states) of

σT =
8πα2

3m2
e

= 6.65× 10−25cm2

• Density of free electrons in a fully ionized xe = 1 universe

ne = (1− Yp/2)xenb ≈ 10−5Ωbh
2(1 + z)3cm−3 ,

where Yp ≈ 0.24 is the Helium mass fraction, creates a high
(comoving) Thomson opacity

τ̇ ≡ neσTa

where dots are conformal time η ≡
∫
dt/a derivatives and τ is the

optical depth.



Tight Coupling Approximation
• Near recombination z ≈ 103 and Ωbh

2 ≈ 0.02, the (comoving)
mean free path of a photon

λC ≡
1

τ̇
∼ 2.5Mpc

small by cosmological standards!

• On scales λ� λC photons are tightly coupled to the electrons by
Thomson scattering which in turn are tightly coupled to the
baryons by Coulomb interactions

• Specifically, their bulk velocities are defined by a single fluid
velocity vγ = vb and the photons carry no anisotropy in the rest
frame of the baryons

• → No heat conduction or viscosity (anisotropic stress) in fluid



Zeroth Order Approximation
• Momentum density of a fluid is (ρ+ p)v, where p is the pressure

• Neglect the momentum density of the baryons

R ≡ (ρb + pb)vb
(ργ + pγ)vγ

=
ρb + pb
ργ + pγ

=
3ρb
4ργ

≈ 0.6

(
Ωbh

2

0.02

)( a

10−3

)
since ργ ∝ T 4 is fixed by the CMB temperature T = 2.73(1 + z)K
– OK substantially before recombination

• Neglect radiation in the expansion

ρm
ρr

= 3.6

(
Ωmh

2

0.15

)( a

10−3

)
• Neglect gravity



Fluid Equations
• Density ργ ∝ T 4 so define temperature fluctuation Θ

δγ = 4
δT

T
≡ 4Θ

• Real space continuity equation

δ̇γ = −(1 + wγ)kvγ

Θ̇ = −1

3
kvγ

• Euler equation (neglecting gravity)

v̇γ = −(1− 3wγ)
ȧ

a
vγ +

kc2
s

1 + wγ
δγ

v̇γ = kc2
s

3

4
δγ = 3c2

skΘ



Oscillator: Take One
• Combine these to form the simple harmonic oscillator equation

Θ̈ + c2
sk

2Θ = 0

where the sound speed is adiabatic

c2
s =

δpγ
δργ

=
ṗγ
ρ̇γ

here c2
s = 1/3 since we are photon-dominated

• General solution:

Θ(η) = Θ(0) cos(ks) +
Θ̇(0)

kcs
sin(ks)

where the sound horizon is defined as s ≡
∫
csdη



Harmonic Extrema
.

Ψi /2

0

–Ψi /2

Θ
+Ψ
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s/s*

0.2 0.4 0.6 0.8
s/s*

1st peak (k=π/s*)

Initial conditions (k<<π/s*)

2nd peak (k=2π/s*)
R=1/6

(a) Peak Scales (b) Baryons• All modes are frozen in
at recombination (denoted
with a subscript ∗)

• Temperature perturbations
of different amplitude
for different modes.

• For the adiabatic
(curvature mode) initial conditions

Θ̇(0) = 0

• So solution

Θ(η∗) = Θ(0) cos(ks∗)



Harmonic Extrema
• Modes caught in the extrema of their oscillation will have

enhanced fluctuations

kns∗ = nπ

yielding a fundamental scale or frequency, related to the inverse
sound horizon

kA = π/s∗

and a harmonic relationship to the other extrema as 1 : 2 : 3...



Peak Location
• The fundmental physical scale is translated into a fundamental

angular scale by simple projection according to the angular
diameter distance DA

θA = λA/DA

`A = kADA

• In a flat universe, the distance is simply DA = D ≡ η0 − η∗ ≈ η0,
the horizon distance, and kA = π/s∗ =

√
3π/η∗ so

θA ≈
η∗
η0

• In a matter-dominated universe η ∝ a1/2 so θA ≈ 1/30 ≈ 2◦ or

`A ≈ 200



Curvature
.

λ

α
• In a curved

universe, the apparent
or angular diameter
distance is no longer
the conformal distance
DA = R sin(D/R) 6= D

• Objects in a closed
universe are further than
they appear! gravitational lensing of the background...

• Curvature scale of the universe must be substantially larger than
current horizon



Curvature
.
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• Flat universe indicates critical
density and implies missing
energy given local measures of
the matter density “dark energy”

• D also depends
on dark energy density ΩDE and
equation of state w = pDE/ρDE.

• Expansion rate at recombination
or matter-radiation ratio enters into calculation of kA.



Fixed Deceleration Epoch
• CMB determination of matter density controls all determinations

in the deceleration (matter dominated) epoch

• WMAP7: Ωmh
2 = 0.133± 0.006→ 4.5%

• Distance to recombination D∗ determined to 1
4
4.5% ≈ 1%

• Expansion rate during any redshift in the deceleration epoch
determined to 4.5%

• Distance to any redshift in the deceleration epoch determined as

D(z) = D∗ −
∫ z∗

z

dz

H(z)

• Volumes determined by a combination dV = D2
AdΩdz/H(z)

• Structure also determined by growth of fluctuations from z∗

• Ωmh
2 can be determined to ∼ 1% from Planck.



Doppler Effect
• Bulk motion of fluid changes the observed temperature via

Doppler shifts (
∆T

T

)
dop

= n̂ · vγ

• Averaged over directions(
∆T

T

)
rms

=
vγ√

3

• Acoustic solution

vγ√
3

= −
√

3

k
Θ̇ =

√
3

k
kcs Θ(0)sin(ks)

= Θ(0)sin(ks)



Doppler Peaks?
• Doppler effect for the photon dominated system is of equal

amplitude and π/2 out of phase: extrema of temperature are
turning points of velocity

• Effects add in quadrature:(
∆T

T

)2

= Θ2(0)[cos2(ks) + sin2(ks)] = Θ2(0)

• No peaks in k spectrum! However the Doppler effect carries an
angular dependence that changes its projection on the sky
n̂ · vγ ∝ n̂ · k̂



Doppler Peaks?
• Coordinates where ẑ ‖ k̂

Y10Y`0 → Y`±1 0

recoupling j′`Y`0: no peaks in Doppler effect
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Restoring Gravity
• Take a simple photon dominated system with gravity

• Continuity altered since a gravitational potential represents a
stretching of the spatial fabric that dilutes number densities –
formally a spatial curvature perturbation

• Think of this as a perturbation to the scale factor a→ a(1 + Φ) so
that the cosmogical redshift is generalized to

ȧ

a
→ ȧ

a
+ Φ̇

so that the continuity equation becomes

Θ̇ = −1

3
kvγ − Φ̇



Restoring Gravity
• Gravitational force in momentum conservation F = −m∇Ψ

generalized to momentum density modifies the Euler equation to

v̇γ = k(Θ + Ψ)

• General relativity says that Φ and Ψ are the relativistic analogues
of the Newtonian potential and that Φ ≈ −Ψ.

• In our matter-dominated approximation, Φ represents matter
density fluctuations through the cosmological Poisson equation

k2Φ = 4πGa2ρm∆m

where the difference comes from the use of comoving coordinates
for k (a2 factor), the removal of the background density into the
background expansion (ρ∆m) and finally a coordinate subtlety that
enters into the definition of ∆m



Constant Potentials
• In the matter dominated epoch potentials are constant because

infall generates velocities as vm ∼ kηΨ

• Velocity divergence generates density perturbations as
∆m ∼ −kηvm ∼ −(kη)2Ψ

• And density perturbations generate potential fluctuations

Φ =
4πGa2ρ∆

k2
≈ 3

2

H2a2

k

2

∆ ∼ ∆

(kη)2
∼ −Ψ

keeping them constant. Note that because of the expansion, density
perturbations must grow to keep potentials constant.



Constant Potentials
• More generally, if stress perturbations are negligible compared

with density perturbations ( δp� δρ ) then potential will remain
roughly constant

• More specifically a variant called the Bardeen or comoving
curvature is strictly constant

R = const ≈ 5 + 3w

3 + 3w
Φ

where the approximation holds when w ≈const.



Oscillator: Take Two
• Combine these to form the simple harmonic oscillator equation

Θ̈ + c2
sk

2Θ = −k
2

3
Ψ− Φ̈

• In a CDM dominated expansion Φ̇ = Ψ̇ = 0. Also for photon
domination c2

s = 1/3 so the oscillator equation becomes

Θ̈ + Ψ̈ + c2
sk

2(Θ + Ψ) = 0

• Solution is just an offset version of the original

[Θ + Ψ](η) = [Θ + Ψ](0) cos(ks)

• Θ + Ψ is also the observed temperature fluctuation since photons
lose energy climbing out of gravitational potentials at
recombination



Effective Temperature
• Photons climb out of potential wells at last scattering

• Lose energy to gravitational redshifts

• Observed or effective temperature

Θ + Ψ

• Effective temperature oscillates around zero with amplitude given
by the initial conditions

• Note: initial conditions are set when the perturbation is outside of
horizon, need inflation or other modification to matter-radiation
FRW universe.

• GR says that initial temperature is given by initial potential



Sachs-Wolfe Effect and the Magic 1/3
• A gravitational potential is a perturbation to the temporal

coordinate [formally a gauge transformation]

δt

t
= Ψ

• Convert this to a perturbation in the scale factor,

t =

∫
da

aH
∝
∫

da

aρ1/2
∝ a3(1+w)/2

where w ≡ p/ρ so that during matter domination

δa

a
=

2

3

δt

t

• CMB temperature is cooling as T ∝ a−1 so

Θ + Ψ ≡ δT

T
+ Ψ = −δa

a
+ Ψ =

1

3
Ψ



Sachs-Wolfe Normalization
• Use measurements of ∆T/T ≈ 10−5 in the Sachs-Wolfe effect to

infer ∆2
R

• Recall in matter domination Ψ = −3R/5

`(`+ 1)C`
2π

≈ ∆2
T ≈

1

25
∆2
R

• So that the amplitude of initial curvature fluctuations is
∆R ≈ 5× 10−5

• Modern usage: WMAP’s measurement of 1st peak plus known
radiation transfer function is used to convert ∆T/T to ∆R.



Baryon Loading
• Baryons add extra mass to the photon-baryon fluid

• Controlling parameter is the momentum density ratio:

R ≡ pb + ρb
pγ + ργ

≈ 30Ωbh
2
( a

10−3

)
of order unity at recombination

• Momentum density of the joint system is conserved

(ργ + pγ)vγ + (ρb + pb)vb ≈ (pγ + pγ + ρb + ργ)vγ

= (1 +R)(ργ + pγ)vγb

where the controlling parameter is the momentum density ratio:

R ≡ pb + ρb
pγ + ργ

≈ 30Ωbh
2
( a

10−3

)
of order unity at recombination



New Euler Equation
• Momentum density ratio enters as

[(1 +R)vγb]
· = kΘ + (1 +R)kΨ

• Photon continuity remains the same

Θ̇ = −k
3
vγb − Φ̇

• Modification of oscillator equation

[(1 +R)Θ̇]· +
1

3
k2Θ = −1

3
k2(1 +R)Ψ− [(1 +R)Φ̇]·



Oscillator: Take Three
• Combine these to form the not-quite-so simple harmonic oscillator

equation

c2
s

d

dη
(c−2
s Θ̇) + c2

sk
2Θ = −k

2

3
Ψ− c2

s

d

dη
(c−2
s Φ̇)

where c2
s ≡ ṗγb/ρ̇γb

c2
s =

1

3

1

1 +R

• In a CDM dominated expansion Φ̇ = Ψ̇ = 0 and the adiabatic
approximation Ṙ/R� ω = kcs

[Θ + (1 +R)Ψ](η) = [Θ + (1 +R)Ψ](0) cos(ks)



Baryon Peak Phenomenology
.
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(a) Peak Scales (b) Baryons• Photon-baryon
ratio enters in three ways

• Overall larger amplitude:

[Θ + (1 +R)Ψ](0) =
1

3
(1 + 3R)Ψ(0)

• Even-odd peak modulation of
effective temperature

[Θ + Ψ]peaks = [±(1 + 3R)− 3R]
1

3
Ψ(0)

[Θ + Ψ]1 − [Θ + Ψ]2 = [−6R]
1

3
Ψ(0)

• Shifting of the sound horizon down or `A up

`A ∝
√

1 +R



Photon Baryon Ratio Evolution
• Actual effects smaller since R evolves

• Oscillator equation has time evolving mass

c2
s

d

dη
(c−2
s Θ̇) + c2

sk
2Θ = 0

• Effective mass is is meff = 3c−2
s = (1 +R)

• Adiabatic invariant

E

ω
=

1

2
meffωA

2 =
1

2
3c−2
s kcsA

2 ∝ A2(1 +R)1/2 = const.

• Amplitude of oscillation A ∝ (1 +R)−1/4 decays adiabatically as
the photon-baryon ratio changes



Baryons in the Power Spectrum
• Relative heights of peaks
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Oscillator: Take Three and a Half
• The not-quite-so simple harmonic oscillator equation is a forced

harmonic oscillator

c2
s

d

dη
(c−2
s Θ̇) + c2

sk
2Θ = −k

2

3
Ψ− c2

s

d

dη
(c−2
s Φ)

changes in the gravitational potentials alter the form of the
acoustic oscillations

• If the forcing term has a temporal structure that is related to the
frequency of the oscillation, this becomes a driven harmonic
oscillator

• Term involving Ψ is the ordinary gravitational force

• Term involving Φ involves the Φ̇ term in the continuity equation as
a (curvature) perturbation to the scale factor



Potential Decay
• Matter-to-radiation ratio

ρm
ρr
≈ 24Ωmh

2
( a

10−3

)
of order unity at recombination in a low Ωm universe

• Radiation is not stress free and so impedes the growth of structure

k2Φ = 4πGa2ρr∆r

∆r ∼ 4Θ oscillates around a constant value, ρr ∝ a−4 so the
Netwonian curvature decays.

• General rule: potential decays if the dominant energy component
has substantial stress fluctuations, i.e. below the generalized sound
horizon or Jeans scale



Radiation Driving
• Decay is timed precisely to drive the oscillator - close to fully

coherent

|[Θ + Ψ](η)| = |[Θ + Ψ](0) + ∆Ψ−∆Φ|

= |1
3

Ψ(0)− 2Ψ(0)| = |5
3

Ψ(0)|

105 15 20

Ψi

–Ψi

Ψ

Θ+Ψ

πγ

ks/π

damping

driving

• 5× the amplitude of the Sachs-Wolfe effect!



External Potential Approach
• Solution to homogeneous equation

(1 +R)−1/4cos(ks) , (1 +R)−1/4sin(ks)

• Give the general solution for an external potential by propagating
impulsive forces

(1 +R)1/4Θ(η) = Θ(0)cos(ks) +

√
3

k

[
Θ̇(0) +

1

4
Ṙ(0)Θ(0)

]
sin ks

+

√
3

k

∫ η

0

dη′(1 +R′)3/4sin[ks− ks′]F (η′)

where

F = −Φ̈− Ṙ

1 +R
Φ̇− k2

3
Ψ

• Useful if general form of potential evolution is known



Matter-Radiation in the Power Spectrum
.
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• Coherent
approximation is exact for
a photon-baryon fluid but reality
is reduced to ∼ 4× because of
neutrino contribution to radiation

• Actual initial conditions
are Θ + Ψ = Ψ/2 for radiation
domination but comparison to
matter dominated SW correct



Damping
• Tight coupling equations assume a perfect fluid: no viscosity, no

heat conduction

• Fluid imperfections are related to the mean free path of the
photons in the baryons

λC = τ̇−1 where τ̇ = neσTa

is the conformal opacity to Thomson scattering

• Dissipation is related to the diffusion length: random walk
approximation

λD =
√
NλC =

√
η/λC λC =

√
ηλC

the geometric mean between the horizon and mean free path

• λD/η∗ ∼ few %, so expect the peaks > 3 to be affected by
dissipation



Equations of Motion
• Continuity

Θ̇ = −k
3
vγ − Φ̇ , δ̇b = −kvb − 3Φ̇

where the photon equation remains unchanged and the baryons
follow number conservation with ρb = mbnb

• Navier-Stokes (Euler + heat conduction, viscosity)

v̇γ = k(Θ + Ψ)− k

6
πγ − τ̇(vγ − vb)

v̇b = − ȧ
a
vb + kΨ + τ̇(vγ − vb)/R

where the photons gain an anisotropic stress term πγ from radiation
viscosity and a momentum exchange term with the baryons and
are compensated by the opposite term in the baryon Euler equation



Viscosity
• Viscosity is generated from radiation streaming from hot to cold

regions

• Expect

πγ ∼ vγ
k

τ̇

generated by streaming, suppressed by scattering in a wavelength
of the fluctuation. Radiative transfer says

πγ ≈ 2Avvγ
k

τ̇

where Av = 16/15

v̇γ = k(Θ + Ψ)− k

3
Av
k

τ̇
vγ



Oscillator: Penultimate Take
• Adiabatic approximation ( ω � ȧ/a)

Θ̇ ≈ −k
3
vγ

• Oscillator equation contains a Θ̇ damping term

c2
s

d

dη
(c−2
s Θ̇) +

k2c2
s

τ̇
AvΘ̇ + k2c2

sΘ = −k
2

3
Ψ− c2

s

d

dη
(c−2
s Φ̇)

• Heat conduction term similar in that it is proportional to vγ and is
suppressed by scattering k/τ̇ . Expansion of Euler equations to
leading order in kτ̇ gives

Ah =
R2

1 +R

since the effects are only significant if the baryons are dynamically
important



Oscillator: Final Take
• Final oscillator equation

c2
s

d

dη
(c−2
s Θ̇) +

k2c2
s

τ̇
[Av + Ah]Θ̇ + k2c2

sΘ = −k
2

3
Ψ− c2

s

d

dη
(c−2
s Φ̇)

• Solve in the adiabatic approximation

Θ ∝ exp(i

∫
ωdη)

−ω2 +
k2c2

s

τ̇
(Av + Ah)iω + k2c2

s = 0



Dispersion Relation
• Solve

ω2 = k2c2
s

[
1 + i

ω

τ̇
(Av + Ah)

]
ω = ±kcs

[
1 +

i

2

ω

τ̇
(Av + Ah)

]
= ±kcs

[
1± i

2

kcs
τ̇

(Av + Ah)

]
• Exponentiate

exp(i

∫
ωdη) = e±iks exp[−k2

∫
dη

1

2

c2
s

τ̇
(Av + Ah)]

= e±iks exp[−(k/kD)2]

• Damping is exponential under the scale kD



Diffusion Scale
• Diffusion wavenumber

k−2
D =

∫
dη

1

τ̇

1

6(1 +R)

(
16

15
+

R2

(1 +R)

)
• Limiting forms

lim
R→0

k−2
D =

1

6

16

15

∫
dη

1

τ̇

lim
R→∞

k−2
D =

1

6

∫
dη

1

τ̇

• Geometric mean between horizon and mean free path as expected
from a random walk

λD =
2π

kD
∼ 2π√

6
(ητ̇−1)1/2



Thomson Scattering
• Polarization state of radiation in direction n̂ described by the

intensity matrix
〈
Ei(n̂)E∗j (n̂)

〉
, where E is the electric field vector

and the brackets denote time averaging.

• Differential cross section

dσ

dΩ
=

3

8π
|Ê′ · Ê|2σT ,

where σT = 8πα2/3me is the Thomson cross section, Ê′ and Ê

denote the incoming and outgoing directions of the electric field or
polarization vector.

• Summed over angle and incoming polarization∑
i=1,2

∫
dn̂′

dσ

dΩ
= σT



Polarization Generation
. E–mode

B–modee–

Linear
Polarization

Thomson
Scattering

Quadrupole

x k

y

z

• Heuristic:
incoming radiation shakes
an electron in direction
of electric field vector Ê′

• Radiates photon with
polarization also in direction Ê′

• But photon cannot be longitudinally polarized so that scattering
into 90◦ can only pass one polarization

• Linearly polarized radiation like polarization by reflection

• Unlike reflection of sunlight, incoming radiation is nearly isotropic

• Missing from direction orthogonal to original incoming direction

• Only quadrupole anisotropy generates polarization by Thomson
scattering



Acoustic Polarization
• Break down of tight-coupling leads to quadrupole anisotropy of

πγ ≈
k

τ̇
vγ

• Scaling kD = (τ̇ /η∗)
1/2 → τ̇ = k2

Dη∗

• Know: kDs∗ ≈ kDη∗ ≈ 10

• So:

πγ ≈
k

kD

1

10
vγ

∆P ≈
`

`D

1

10
∆T



Acoustic Polarization
• Gradient of velocity is along direction of wavevector, so

polarization is pure E-mode

• Velocity is 90◦ out of phase with temperature – turning points of
oscillator are zero points of velocity:

Θ + Ψ ∝ cos(ks); vγ ∝ sin(ks)

• Polarization peaks are at troughs of temperature power



Cross Correlation
• Cross correlation of temperature and polarization

(Θ + Ψ)(vγ) ∝ cos(ks) sin(ks) ∝ sin(2ks)

• Oscillation at twice the frequency

• Correlation: radial or tangential around hot spots

• Partial correlation: easier to measure if polarization data is noisy,
harder to measure if polarization data is high S/N or if bands do
not resolve oscillations

• Good check for systematics and foregrounds

• Comparison of temperature and polarization is proof against
features in initial conditions mimicking acoustic features



Polarization Power

P OVRO

IAIABIA

SPSSPS

B MBAAAMB MMBB

RI

ViperV

BBABABABBBBBBBAABABB

ING

WDWD

I

SSSSSSSS

CCATC

TTTOTT OOOOOOOOOOOOCOOCOOCOCCOCOOOO OOOOOOO
askSaa

CBI

500 1000

20

40

60

80

Δ
T
 (
μ
K
)

Booom98o

DASI00D

Maxxima1x

100

10

10 100 1000

1

0.1

0.01

l (multipole)

Δ
T
 (
μ
K
)

reionization

gravitational
waves

gravitational
lensing

ΘE

EE

BB

10 20 30 40

10

20

30

40

50

COBEEE

Ten

FIRSFIRSFIRS

SP



Angular Moments
• Define the angularly dependent Stokes perturbation

Θ(x, n̂, η), Q(x, n̂, η), U(x, n̂, η)

• Decompose into normal modes: plane waves for spatial part and
spherical harmonics for angular part

Gm
` (k,x, n̂) ≡ (−i)`

√
4π

2`+ 1
Y m
` (n̂) exp(ik · x)

±2G
m
` (k,x, n̂) ≡ (−i)`

√
4π

2`+ 1
±2Y

m
` (n̂) exp(ik · x)

• In a spatially curved universe generalize the plane wave part



Normal Modes
• Temperature and polarization fields

Θ(x, n̂, η) =

∫
d3k

(2π)3

∑
`m

Θ
(m)
` Gm

`

[Q± iU ](x, n̂, η) =

∫
d3k

(2π)3

∑
`m

[E
(m)
` ± iB(m)

` ]±2G
m
`

• For each k mode, work in coordinates where k ‖ z and so m = 0

represents scalar modes, m = ±1 vector modes, m = ±2 tensor
modes, |m| > 2 vanishes. Since modes add incoherently and
Q± iU is invariant up to a phase, rotation back to a fixed
coordinate system is trivial.



Liouville Equation
• In absence of scattering, the phase space distribution of photons in

each polarization state a is conserved along the propagation path

• Rewrite variables in terms of the photon propagation direction
q = qn̂, so fa(x, n̂, q, η) and

d

dη
fa(x, n̂, q, η) = 0

=

(
∂

∂η
+
dx

dη
· ∂
∂x

+
dn̂

dη
· ∂
∂n̂

+
dq

dη
· ∂
∂q

)
fa

• For simplicity, assume spatially flat universe K = 0 then
dn̂/dη = 0 and dx = n̂dη

ḟa + n̂ · ∇fa + q̇
∂

∂q
fa = 0



Scalar, Vector, Tensor
• Normalization of modes is chosen so that the lowest angular mode

for scalars, vectors and tensors are normalized in the same way as
the mode function

G0
0 = Q(0) G0

1 = niQ
(0)
i G0

2 ∝ ninjQ
(0)
ij

G±1
1 = niQ

(±1)
i G±1

2 ∝ ninjQ
(±1)
ij

G±2
2 = ninjQ

(±2)
ij

where recall

Q(0) = exp(ik · x)

Q
(±1)
i =

−i√
2

(ê1 ± iê2)iexp(ik · x)

Q
(±2)
ij = −

√
3

8
(ê1 ± iê2)i(ê1 ± iê2)jexp(ik · x)



Geometrical Projection
• Main content of Liouville equation is purely geometrical and

describes the projection of inhomogeneities into anisotropies

• Spatial gradient term hits plane wave:

n̂ · ∇eik·x = in̂ · keik·x = i

√
4π

3
kY 0

1 (n̂)eik·x

• Dipole term adds to angular dependence through the addition of
angular momentum√

4π

3
Y 0

1 Y
m
` =

κm`√
(2`+ 1)(2`− 1)

Y m
`−1 +

κm`+1√
(2`+ 1)(2`+ 3)

Y m
`+1

where κm` =
√
`2 −m2 is given by Clebsch-Gordon coefficients.



Temperature Hierarchy
• Absorb recoupling of angular momentum into evolution equation

for normal modes

Θ̇
(m)
` = k

[
κm`

2`+ 1
Θ

(m)
`−1 −

κm`+1

2`+ 3
Θ

(m)
`+1

]
− τ̇Θ

(m)
` + S

(m)
`

where S(m)
` are the gravitational (and later scattering sources;

added scattering suppression of anisotropy)

• An originally isotropic ` = 0 temperature perturbation will
eventually become a high order anisotropy by “free streaming” or
simple projection

• Original CMB codes solved the full hierarchy equations out to the
` of interest.



Integral Solution
• Hierarchy equation simply represents geometric projection,

exactly as we have seen before in the projection of temperature
perturbations on the last scattering surface

• In general, the solution describes the decomposition of the source
S

(m)
` with its local angular dependence as seen at a distance

x = Dn̂.

• Proceed by decomposing the angular dependence of the plane
wave

eik·x =
∑
`

(−i)`
√

4π(2`+ 1)j`(kD)Y 0
` (n̂)

• Recouple to the local angular dependence of Gm
`

Gm
`s =

∑
`

(−i)`
√

4π(2`+ 1)α
(m)
`s`

(kD)Y m
` (n̂)



Integral Solution
• Projection kernels:

`s = 0, m = 0 α
(0)
0` ≡ j`

`s = 1, m = 0 α
(0)
1` ≡ j′`

• Integral solution:

Θ
(m)
` (k, η0)

2`+ 1
=

∫ η0

0

dηe−τ
∑
`s

S
(m)
`s

α
(m)
`s`

(k(η0 − η))

• Power spectrum:

C` =
2

π

∫
dk

k

∑
m

k3〈Θ(m)∗
` Θ

(m)
` 〉

(2`+ 1)2

• Solving for C` reduces to solving for the behavior of a handful of
sources



Polarization Hierarchy
• In the same way, the coupling of a gradient or dipole angular

momentum to the spin harmonics leads to the polarization
hierarchy:

Ė
(m)
` = k

[
2κ

m
`

2`− 1
E

(m)
`−1 −

2m

`(`+ 1)
B

(m)
` − 2κ

m
`+1

2`+ 3
E

(m)
`+1

]
− τ̇E(m)

` + E (m)
`

Ḃ
(m)
` = k

[
2κ

m
`

2`− 1
B

(m)
`−1 +

2m

`(`+ 1)
E

(m)
` − 2κ

m
`+1

2`+ 3
B

(m)
`+1

]
− τ̇B(m)

` + B(m)
`

where 2κ
m
` =

√
(`2 −m2)(`2 − 4)/`2 is given by the

Clebsch-Gordon coefficients and E , B are the sources (scattering
only).

• Note that for vectors and tensors |m| > 0 and B modes may be
generated from E modes by projection. Cosmologically B(m)

` = 0



Polarization Integral Solution
• Again, we can recouple the plane wave angular momentum of the

source inhomogeneity to its local angular dependence directly

E
(m)
` (k, η0)

2`+ 1
=

∫ η0

0

dηe−τE (m)
`s

ε
(m)
`s`

(k(η0 − η))

B
(m)
` (k, η0)

2`+ 1
=

∫ η0

0

dηe−τE (m)
`s

β
(m)
`s`

(k(η0 − η))

• The only source to the polarization is from the quadrupole
anisotropy so we only need `s = 2, e.g. for scalars

ε
(0)
2` (x) =

√
3

8

(`+ 2)!

(`− 2)!

j`(x)

x2
β

(0)
2` = 0



Gravitational Terms
• As in our Newtonian gauge calculation, gravitational terms - now

including vectors and tensors in an arbitrary gauge, come from the
geodesic equation

• First define the slicing (lapse function A, shift function Bi)

g00 = −a−2(1− 2A) ,

g0i = −a−2Bi ,

A defines the lapse of proper time between 3-surfaces whereas Bi

defines the threading or relationship between the 3-coordinates of
the surfaces



Gravitational Terms
• This absorbs 1+3=4 degrees of freedom in the metric, remaining 6

is in the spatial surfaces which we parameterize as

gij = a−2(γij − 2HLγ
ij − 2H ij

T ) .

here (1) HL a perturbation to the spatial curvature; (5) H ij
T a

trace-free distortion to spatial metric (which also can perturb the
curvature)

• Geodesic equation gives the redshifting term

q̇

q
= − ȧ

a
− 1

2
ninjḢT ij − ḢL + niḂi − n̂ · ∇A

which is incorporated in the conservation and gauge
transformation equations



Source Terms
• Temperature source terms S(m)

l (rows ±|m|; flat assumption
τ̇Θ

(0)
0 − Ḣ

(0)
L τ̇ v

(0)
b + Ḃ(0) τ̇P (0) − 2

3
Ḣ

(0)
T

0 τ̇ v
(±1)
b + Ḃ(±1) τ̇P (±1) −

√
3

3
Ḣ

(±1)
T

0 0 τ̇P (±2) − Ḣ(±2)
T


where

P (m) ≡ 1

10
(Θ

(m)
2 −

√
6E

(m)
2 )

• Polarization source term

E (m)
` = −τ̇

√
6P (m)δ`,2

B(m)
` = 0



Truncated Hierarchy
• CMBFast introduced the hybrid truncated hierarchy, integral

solution technique

• Formal integral solution contains sources that are not external to
system but defined through the Boltzmann hierarchy itself

• Solution: recall that we used this technique in the tight coupling
regime by applying a closure condition from tight coupling

• CMBFast extends this idea by solving a truncated hierarchy of
equations, e.g. out to ` = 25 with non-reflecting boundary
conditions

• For completeness, we explicitly derive the scattering source term
via polarized radiative transfer in the last part of the notes



Polarized Radiative Transfer
• Define a specific intensity “vector”: Iν = (Θ‖,Θ⊥, U, V ) where

Θ = Θ‖ + Θ⊥, Q = Θ‖ −Θ⊥

dIν
dη

= τ̇(Sν − Iν)

.

Thomson 
Scattering

Θ

e

e

e

e

e-

'

'

• Thomson collision
based on differential cross section

dσT
dΩ

=
3

8π
|Ê′ · Ê|2σT ,



Polarized Radiative Transfer
• Ê′ and Ê denote the incoming and outgoing directions of the

electric field or polarization vector.

• Thomson scattering by 90 deg: Θ⊥ → Θ⊥ but Θ‖ does not scatter

• More generally if Θ is the scattering angle

Sν =
3

8π

∫
dΩ′


cos2 Θ 0 0 0

0 1 0 0

0 0 cos Θ 0

0 0 0 cos Θ

 I′ν

• But to calculate Stokes parameters in a fixed coordinate system
must rotate into the scattering basis, scatter and rotate back out to
the fixed coordinate system



Thomson Collision Term
• The U → U ′ transfer follows by writing down the polarization

vectors in the 45◦ rotated basis

Ê1 =
1√
2

(Ê‖ + Ê⊥), Ê2 =
1√
2

(Ê‖ − Ê⊥)

• Define the temperature in this basis

Θ1 ∝ |Ê1 · Ê1|2Θ′1 + |Ê1 · Ê2|2Θ′2

∝ 1

4
(cos β + 1)2Θ′1 +

1

4
(cos β − 1)2Θ′2

Θ2 ∝ |Ê2 · Ê2|2Θ′2 + |Ê2 · Ê1|2Θ′1

∝ 1

4
(cos β + 1)2Θ′2 +

1

4
(cos β − 1)2Θ′1

or Θ1 −Θ2 ∝ cos β(Θ′1 −Θ′2)



Scattering Matrix
• Transfer matrix of Stokes state T ≡ (Θ, Q+ iU , Q− iU )

T ∝ S(β)T′

S(β) =
3

4


cos2 β + 1 −1

2
sin2 β −1

2
sin2 β

−1
2

sin2 β 1
2
(cos β + 1)2 1

2
(cos β − 1)2

−1
2

sin2 β 1
2
(cos β − 1)2 1

2
(cos β + 1)2


normalization factor of 3 is set by photon conservation in scattering



Scattering Matrix
• Transform to a fixed basis, by a rotation of the incoming and

outgoing states T = R(ψ)T where

R(ψ) =


1 0 0

0 e−2iψ 0

0 0 e2iψ


giving the scattering matrix

R(−γ)S(β)R(α) = (1)

1

2

√
4π

5


Y 0
2 (β, α) + 2

√
5Y 0

0 (β, α) −
√

3
2
Y −2
2 (β, α) −

√
3
2
Y 2
2 (β, α)

−
√
6 2Y

0
2 (β, α)e

2iγ 3 2Y
−2
2 (β, α)e2iγ 3 2Y

2
2 (β, α)e

2iγ

−
√
6−2Y

0
2 (β, α)e

−2iγ 3−2Y
−2
2 (β, α)e−2iγ 3−2Y

2
2 (β, α)e

−2iγ


(2)



Addition Theorem for Spin Harmonics
• Spin harmonics are related to rotation matrices as

sY
m
` (θ, φ) =

√
2`+ 1

4π
D`−ms(φ, θ, 0)

Note: for explicit evaluation sign convention differs from usual
(e.g. Jackson) by (−1)m

• Multiplication of rotations∑
m′′

D`mm′′(α2, β2, γ2)D`m′′m(α1, β1, γ1) = D`mm′(α, β, γ)

• Implies

∑
m

s1
Y m∗
` (θ′, φ′) s2

Y m
` (θ, φ) = (−1)s1−s2

√
2`+ 1

4π s2
Y −s1` (β, α)eis2γ



Sky Basis
• Scattering into the state (rest frame)

Cin[T] = τ̇

∫
dn̂′

4π
R(−γ)S(β)R(α)T(n̂′) ,

= τ̇

∫
dn̂′

4π
(Θ′, 0, 0) +

1

10
τ̇

∫
dn̂′

2∑
m=−2

P(m)(n̂, n̂′)T(n̂′) .

where the quadrupole coupling term is P(m)(n̂, n̂′) =


Y m∗2 (n̂′)Y m2 (n̂) −

√
3
2 2Y

m∗
2 (n̂′)Y m2 (n̂) −

√
3
2 −2Y

m∗
2 (n̂′)Y m2 (n̂)

−
√
6Y m∗2 (n̂′) 2Y

m
2 (n̂) 3 2Y

m∗
2 (n̂′) 2Y

m
2 (n̂) 3−2Y

m∗
2 (n̂′) 2Y

m
2 (n̂)

−
√
6Y m∗2 (n̂′)−2Y

m
2 (n̂) 3 2Y

m∗
2 (n̂′)−2Y

m
2 (n̂) 3−2Y

m∗
2 (n̂′)−2Y

m
2 (n̂)

 ,

expression uses angle addition relation above. We call this term
CQ.



Scattering Matrix
• Full scattering matrix involves difference of scattering into and out

of state

C[T] = Cin[T]− Cout[T]

• In the electron rest frame

C[T] = τ̇

∫
dn̂′

4π
(Θ′, 0, 0)− τ̇T + CQ[T]

which describes isotropization in the rest frame. All moments have
e−τ suppression except for isotropic temperature Θ0.
Transformation into the background frame simply induces a dipole
term

C[T] = τ̇

(
n̂ · vb +

∫
dn̂′

4π
Θ′, 0, 0

)
− τ̇T + CQ[T]


