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Inhomogeneity vs Anisotropy

e O is a function of position as well as direction but we only have
access to our position

e Light travels at the speed of light so the radiation we receive in
direction n was (1, — n)n at conformal time 7

e Inhomogeneity at a distance appears as an anisotopy to the
observer

e We need to transport the radiation from the initial conditions to the
observer

e This 1s done with the Boltzmann or radiative transfer equation
e In the absence of scattering, emission or absorption the Boltzmann

equation is simply
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Last Scattering
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e Angular distribution T
of radiation 1s the 3D k
temperature field

Doppler
effect

projected onto a shell
- surface of last scattering

e Shell radius
1s distance from the observer

JitkD )

to recombination: called
the last scattering surface

e Take the radiation
distribution at last scattering to also be described by an isotropic
temperature fluctuation field ©(x)



Integral Solution to Radiative Transter
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e Formal solution for specific intensity I,, = 2hv? f /c?

I,(1,) = 1,(0)e™™ +/ dr. S, (r))e~ (7=
0

e Specific intensity [, attenuated by absorption and replaced by
source function, attenuated by absorption from foreground matter

e Here O plays the role of specific intensity and 7, — 7, = 7 is
optical depth to Compton scattering from x = 0 to Dn



Angular Power Spectrum

e Take recombination to be instantaneous: dre™" = dDd(D — D,)
and the source to be the local temperature inhomogeneity

O(h) = /dD Ox)5(D — D,)

where D 1s the comoving distance and D, denotes recombination.

e Describe the temperature field by its Fourier moments

-

e Note that Fourier moments ©(k) have units of volume k3

e 2 point statistics of the real-space field are translationally and
rotationally invariant

e Described by power spectrum



Spatial Power Spectrum

e Translational invariance

O(x)0(x)) = (O +d)O(x+d))
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So two point function requires ¢ (k — k’); rotational invariance says
coefficient depends only on magnitude of £ not it’s direction

(O(k)"O(K)) = (27)°d(k — k') Pr(k)

Note that (k — k') has units of volume and so Pr must have units

of volume



Dimensionless Power Spectrum

e Variance

4= (e - (Zﬂ’j Pr(k)
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e Define power per logarithmic interval

k3 Pr(k)
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A (k) =

e This quantity 1s dimensionless.



Angular Power Spectrum

Temperature field

Multipole moments
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Expand out plane wave 1n spherical coordinates
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Angular Power Spectrum

e Power spectrum

(O = [ S (AmP " kD) (KD.)Yi (K)o () Pr(1)

= 5gg/5mm/4ﬂ' / dIn kjg(kD*)A%(k)

with [~ j7(z)dInz = 1/(20(¢ + 1)), slowly varying A7

e Angular power spectrum:

aTAZ(L/D,) 2w
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e Not surprisingly, a relationship between ¢*C, /21 and A% at £ > 1.

Cp = A% (¢/D,)

By convention use /(¢ 4 1) to make relationship exact



Generalized Source

e More generally, we know the Y,™’s are a complete angular basis
and plane waves are complete spatial basis

e General distribution can be decomposed into

Y, (n) exp(ik - x)
e The observer at the origin sees this distribution in projection
Y (0)e™ P ™ = dm Y i o (kD,)Y M ()Y ()Y (A)
o/

e We extract the observed multipoles by the addition of angular
momentum Y, (1)Y;*(n) — Y (f)

e Radial functions become linear sums over j, with the recoupling
(Clebsch-Gordan) coefficients

e Formal integral solution to the radiative transfer equation



Boltzmann Equation

e General integral solution for radiative transfer as long as the
angular distribution at emission 1s known

e Formalize further the evolution of angular moments in the
cosmological context:

Df
Dt

B . Of of
—f+q- @quX . =0

e Momentum q = gn, where n is a directional unit vector and in a
flat universe q = ¢qn

e Particle velocity x = q/F



Angular Moments

e Define the angularly dependent Stokes perturbation

O(x,n,7), Qx,n,n), Ux,n,n)

e Decompose into normal modes: plane waves for spatial part and
spherical harmonics for angular part

G (k,x,n) = 2€+ 1Y€ ) exp(ik - x)
LGk, x,n) = ( \/%JrlizYe ) exp(ik - x)

e In a spatially curved universe generalize the plane wave part



Normal Modes

e Temperature and polarization fields

X Ak (m) ~m
@(X,ﬂ,?’]) = WZ@K Gﬁ

3
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e For each k mode, work in coordinates where k || z and so m = 0
represents scalar modes, m = +1 vector modes, m = +2 tensor
modes, |m| > 2 vanishes. Since modes add incoherently and
() £ U 1is invariant up to a phase, rotation back to a fixed
coordinate system is trivial.



Liouville Equation

e In absence of scattering, the phase space distribution of photons in
each polarization state a 1s conserved along the propagation path

e Rewrite variables in terms of the photon propagation direction
q = ¢n, 50 fo(x,1,¢,7) and

%fa(xa ﬂaQan) =0
_<a ix & dh 0 dg a>f

3n+dnoﬁx+dn.5’ﬂ+dn.8q

e For simplicity, assume spatially flat universe K = 0 then
dn/dn = 0 and dx = ndn

fa_l—n vfa—l_q fa—o



Scalar, Vector, Tensor

e Normalization of modes 1s chosen so that the lowest angular mode
for scalars, vectors and tensors are normalized 1in the same way as
the mode function

Go=Q0 GY=n'Q” GYoxnin’Q)
Gl = niQEﬂ) Gt niang;tl)

G§t2 — n'n? QS’E”

where recall

QY = exp(ik-x)
Qgil) = _—Z(él + zég)zexp(zk . X)
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Geometrical Projection

e Main content of Liouville equation 1s purely geometrical and
describes the projection of inhomogeneities into anisotropies

e Spatial gradient term hits plane wave:

. . 4 .
n- Ve** = in - ke™™ = i/ %leo(fl)eZk'x

e Dipole term adds to angular dependence through the addition of
angular momentum

4 K" K"
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where k7' = /(2 — m? is given by Clebsch-Gordon coefficients.




Temperature Hierarchy

e Absorb recoupling of angular momentum into evolution equation
for normal modes

. K/

204+1 1 2043 | =7 + 5

where Sém) are the gravitational (and later scattering sources;
added scattering suppression of anisotropy)

e An originally isotropic £ = 0 temperature perturbation will
eventually become a high order anisotropy by “free streaming” or
simple projection

e Original CMB codes solved the full hierarchy equations out to the
¢ of interest.



Integral Solution

e Hierarchy equation simply represents geometric projection,
exactly as we have seen before in the projection of temperature
perturbations on the last scattering surface

e In general, the solution describes the decomposition of the source
Sém) with its local angular dependence as seen at a distance
x = Dn.

e Proceed by decomposing the angular dependence of the plane
wave

e =N (—i)'/Am(20 + 1)jo(kD)Y, (h)

e Recouple to the local angular dependence of G

G = (—i)'\/4Ar (20 + 1)oyy (kD)Y{™ (1)




Integral Solution

e Projection kernels:

e Power spectrum:

2 [ dk ~ k30" el™)
Cg_%/?; (20 + 1)

e Solving for C; reduces to solving for the behavior of a handful of

SOUrces



Polarization Hierarchy

e In the same way, the coupling of a gradient or dipole angular
momentum to the spin harmonics leads to the polarization
hierarchy:

. m 2m 2Ky,
E(m) — L 2k E(’m) o B(m) - +1 E(m) o 'E(’m) g(m)
¢ [%—J SR 2 DI 20+ | TR T

2/432"’
20 — 1
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B = k| 2B + B - B + B

where ok7' = /(02 — m?2)(¢2 — 4)/¢2 is given by the
Clebsch-Gordon coefficients and &£, BB are the sources (scattering
only).

e Note that for vectors and tensors |m| > 0 and B modes may be
generated from £ modes by projection. Cosmologically Bém) = 0



Polarization Integral Solution

e Again, we can recouple the plane wave angular momentum of the
source inhomogeneity to its local angular dependence directly

E(m)(ka 770) 0 —T

Bém)(]{7 o
20 + 1

)2/077 dne="E™ B (k(mo — 1))

e The only source to the polarization i1s from the quadrupole
anisotropy so we only need ¢, = 2, e.g. for scalars

0 3(+2)! je() 0
e;2<:c>\/§(€2)! o By =0




Gravitational Terms

e As in our Newtonian gauge calculation, gravitational terms - now
including vectors and tensors in an arbitrary gauge, come from the
geodesic equation

o First define the slicing (lapse function A, shift function B*)

g" = —a (1 -24),
O = —a2Bi
A defines the lapse of proper time between 3-surfaces whereas B®

defines the threading or relationship between the 3-coordinates of
the surfaces



Gravitational Terms

e This absorbs 1+3=4 degrees of freedom 1n the metric, remaining 6
1s 1n the spatial surfaces which we parameterize as

g9 = a*(y? —2H Y — 2H§;7)

here (1) H;, a perturbation to the spatial curvature; (5) H ;:7 a
trace-free distortion to spatial metric (which also can perturb the
curvature)

e Geodesic equation gives the redshifting term

) a 1 . .. . . )
g = —— — —n’nJHTij — HL -+ nZBi — 1 VA
q a 2

which is incorporated in the conservation and gauge

transformation equations



Source Terms

e Temperature source terms Sl(m) (rows +|m/|; flat assumption

(0 - HY #”+BO PO 20

0 Fos™) 4 BED pED 3 D
\ 0 0 PP — g
where
1 m m
P = (05" — VBE,™)
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e Polarization source term

Eg(m) = —7V6P™ 5,
B =0



Truncated Hierarchy

e CMBPFast introduced the hybrid truncated hierarchy, integral
solution technique

e Formal integral solution contains sources that are not external to
system but defined through the Boltzmann hierarchy itself

e Solution: recall that we used this technique in the tight coupling
regime by applying a closure condition from tight coupling

e CMBPFast extends this 1dea by solving a truncated hierarchy of
equations, e.g. out to £ = 25 with non-reflecting boundary
conditions

e For completeness, we explicitly derive the scattering source term
via polarized radiative transfer in the last part of the notes



Polarized Radiative Transfer

o Define a specific intensity “vector”™: I, = (0,0, U, V') where
@:@|\+@l’Q:@|l — 0O,

dl,
=7(S, — 1
d77 ( 4 V)
e Thomson collision Ae;I
based on differential cross section e- Thomson
Te > \' Scattering
dO'T 3 ‘E/ E‘Q ©
- = . g
dQ) ST o v




Polarized Radiative Transfer

E’ and E denote the incoming and outgoing directions of the
electric field or polarization vector.

Thomson scattering by 90 deg: ©;, — ©, but © does not scatter

More generally if O is the scattering angle

( cos’® 0 0 0 \
0 1 0 0

s, =~ [ ao I

ST 0 0 cos® 0

\ 0 0 0 COS@)

But to calculate Stokes parameters in a fixed coordinate system
must rotate into the scattering basis, scatter and rotate back out to
the fixed coordinate system



Thomson Collision Term

e The U — U’ transfer follows by writing down the polarization
vectors 1n the 45° rotated basis

A 1 . A
E, = E(EII +E1), E, =

e Define the temperature in this basis

%(E ~E))

0, x |E; - E{|?0 + |E; - E, |6,
1

1
x Z(COSB +1)*0 + Z(COSB —1)%6,

O, x |E, - By 20, + |E, - E, 26,
1 1
x Z(COS@ +1)*0, + Z(cosﬁ —1)%@]

or @1 — @2 X COS 6(6/1 _ 6/2)



Scattering Matrix
e Transfer matrix of Stokes state T' = (O, () + U, Q) — :U)

T oc S(8)T"
3 / cos” B+ 1 —2sin’ 8 —Lsin? 3 \
S(6) = 1 —% sin” %(Cosﬁ + 1)? %(COSB — 1)
\ —% sin? %(cosﬁ — 1)2 %(0056 4+ 1)2 )

normalization factor of 3 1s set by photon conservation in scattering



Scattering Matrix

e Transform to a fixed basis, by a rotation of the incoming and
outgoing states T = R(v)T where

(1

Ry)=10 e

\ 0

giving the scattering matrix

R(—7)S(B)R(a) =

. Y2(8, @) + 2v5Y5 (8, @)

s\ & —V6,Y5 (B, a)e*™
—\/6—23/20(5704)6_27;7

0

0

0 )
0
o201 )

—\/gyf (57 Oé)
3 2Y22 (57 a)e2i7
3 oYy (8, 04)6_%



Addition Theorem for Spin Harmonics

e Spin harmonics are related to rotation matrices as

20 1
Y70, 6) = || =D u(6,0,0)

Note: for explicit evaluation sign convention differs from usual
(e.g. Jackson) by (—1)™

e Multiplication of rotations
ZD m’’ 042752772) mlaa, B1,71) = Dfnm/(@,@ﬁ)

e Implies

mx [/ n/ / m 51—S82 2€ T 1 —81 159
Z 31Y£ ( 7¢) SQYvﬁ ((97¢) — (_1) 47T SQYE (ﬁ,@)e !

m




Sky Basis

e Scattering into the state (rest frame)

dn’

T =
Cin|T] =17 y

—R(—7)S(B)R(a)T (1),

/d (©,0,0) + —T/d ZP"”)ﬁﬁ T(n') .

m=—2

where the quadrupole coupling term is P™) (fi, h’) =

V) YR) /) Y R) /S e () Ye ()
—VOYZ™(0) Y3 () 3,Y3M(R),Y5M(R) 3 LY (), Y5 ()
—\/_Y2m*( )—2Y2 ( ) 32Y2m*( ) Yo" ( ) 3—2Y2m*( )—QYQ ( )

expression uses angle addition relation above. We call this term
Co.

Y



Scattering Matrix

e Full scattering matrix involves difference of scattering into and out
of state

e In the electron rest frame

CIT) =+ [ T5(0/,0,0) ~ T+ Col1]

which describes 1sotropization in the rest frame. All moments have
e~ suppression except for isotropic temperature ©y.
Transformation into the background frame simply induces a dipole
term

C[T] = + (n vb+/—@’ 0 0) — 7T + Cg[T]



Schematic Outline

e Take apart features in the power spectrum
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Thomson Scattering

e Thomson scattering of photons off of free electrons 1s the most
important CMB process with a cross section (averaged over
polarization states) of

87 a?
o —
3Im?2

e Density of free electrons in a fully 1onized x. = 1 universe

— 6.65 x 10™%°cm?

ne = (1-7Y,/2)xz.ny = 107°Qh*(1 + 2)’cm ™,

where Y, =~ 0.24 is the Helium mass fraction, creates a high
(comoving) Thomson opacity

T = N.OTa

where dots are conformal time 7 = [ dt/a derivatives and 7 is the
optical depth.



Tight Coupling Approximation
e Near recombination z ~ 10° and ,h* ~ 0.02, the (comoving)
mean free path of a photon

1
Ao = — ~ 2.5Mpc
T

small by cosmological standards!

e On scales A > A¢ photons are tightly coupled to the electrons by
Thomson scattering which in turn are tightly coupled to the
baryons by Coulomb interactions

e Specifically, their bulk velocities are defined by a single fluid
velocity v, = v, and the photons carry no anisotropy in the rest
frame of the baryons

e — No heat conduction or viscosity (anisotropic stress) in fluid



Zeroth Order Approximation

e Momentum density of a fluid is (p + p)v, where p is the pressure

e Neglect the momentum density of the baryons

(b + Do) _ Pt Do 3P
(py +Py)vy  py Dy Apy

0 2
~ 0.6 uh ( ¢ )
0.02 103
since p., o< T is fixed by the CMB temperature 7' = 2.73(1 + 2)K
— OK substantially before recombination

R

e Neglect radiation in the expansion

2
P _ 36 (Sl ( a )
Or 0.15 10—3

e Neglect gravity




Fluid Equations

e Density p, o< T* so define temperature fluctuation ©

0T

e Real space continuity equation

57 = —(1 +w,)kv,

: 1
@ — —gk?}7

e Euler equation (neglecting gravity)

. a kc?
Ufy = —(1 — Sw,y)a?}fy —+ m&y

3
Uy = kciidy = 3c’k©



Oscillator: Take One

e Combine these to form the simple harmonic oscillator equation
O+ k0 =0
where the sound speed 1s adiabatic

) _ 0Py _ Dy

C p—
0Py Pn

here ¢? = 1/3 since we are photon-dominated

e General solution:

O(0)
kc,

O(n) = O(0) cos(ks) + sin(ks)

where the sound horizon is defined as s = [ c.dn



Harmonic Extrema

e All modes are frozen in | (a) Peak Scales

Hil2 i Initial conditions (k<<7t/s..) ]

at recombination (denoted

with a subscript *)

>
+
o Temperature perturbations @
of different amplitude st peur (s
for different modes. “Hir 2nd peak (k=2m/s,) ]
e For the adiabatic 02 04 06 08

/8
(curvature mode) 1nitial conditions

e So solution



Harmonic Extrema

e Modes caught in the extrema of their oscillation will have
enhanced fluctuations

k.S, = nmw

yielding a fundamental scale or frequency, related to the inverse
sound horizon

kA:T(/S*

and a harmonic relationship to the other extremaas 1 : 2 : 3...



Peak LLocation

e The fundmental physical scale 1s translated into a fundamental
angular scale by simple projection according to the angular
diameter distance D 4

QA = )\A/DA
614 = ]CADA

e In a flat universe, the distance 1s ssmply D4 = D = 19 — 1. = 10,
the horizon distance, and k4 = 7/s, = V37 /My SO

(914%E
7o

e In a matter-dominated universe 1 o< a'/? so 04 ~ 1/30 ~ 2° or

gA ~ 200



Curvature

e In a curved

universe, the apparent g o \
or angular diameter : .
distance 1s no longer

the conformal distance

D4 = Rsin(D/R) # D A

e Objects in a closed

universe are further than
they appear! gravitational lensing of the background...

e Curvature scale of the universe must be substantially larger than
current horizon



Curvature

e Flat universe indicates critical
density and implies missing
energy given local measures of
the matter density “dark energy”

e [ also depends
on dark energy density {2pg and
equation of state w = ppg/pPpE.

e Expansion rate at recombination

100 -

r 02 04 06 08 10
Ll P

\ N Ll L
10 100 1000

or matter-radiation ratio enters into calculation of £ 4.



Fixed Deceleration Epoch

e CMB determination of matter density controls all determinations
in the deceleration (matter dominated) epoch

e WMAP7: Q,.h? =0.133 + 0.006 — 4.5%
e Distance to recombination [, determined to 54.5% ~ 1%

e Expansion rate during any redshift in the deceleration epoch
determined to 4.5%

e Distance to any redshift in the deceleration epoch determined as

= dz
D(z) =D, —
O-0- [ 5
e Volumes determined by a combination dV = D%4dQdz/H (z)

e Structure also determined by growth of fluctuations from z,

e (). h? can be determined to ~ 1% from Planck.



Doppler Eftect

e Bulk motion of fluid changes the observed temperature via

(AT) )
S — nNn-v
1 dop !

e Averaged over directions

(AT > vy
T rms \/§
e Acoustic solution

D —ﬁ@ = —3ch O(0)sin(ks)

V3 k k
= O(0)sin(ks)

Doppler shifts



Doppler Peaks?

e Doppler effect for the photon dominated system 1s of equal
amplitude and 7 /2 out of phase: extrema of temperature are
turning points of velocity

e Effects add in quadrature:

(%) = 0°(0)[cos®(ks) + sin*(ks)] = ©7(0)

e No peaks in k spectrum! However the Doppler effect carries an
angular dependence that changes its projection on the sky

n-v,xn-k



Doppler Peaks?

e Coordinates where z || k

YioYeo — Yiti0

recoupling j,Yyo: no peaks in Doppler effect

temperature

last scattering surface




Restoring Gravity

e Take a simple photon dominated system with gravity

e Continuity altered since a gravitational potential represents a
stretching of the spatial fabric that dilutes number densities —
formally a spatial curvature perturbation

e Think of this as a perturbation to the scale factor a — a(1 + ®) so
that the cosmogical redshift 1s generalized to
a a

- = -+
a a

so that the continuity equation becomes

. 1 .
@: —gkvv—q)



Restoring Gravity

e (Gravitational force in momentum conservation F = —mVW
generalized to momentum density modifies the Euler equation to

0 = k(O + 0)

e General relativity says that ® and W are the relativistic analogues
of the Newtonian potential and that & ~ —W.

e In our matter-dominated approximation, ¢ represents matter
density fluctuations through the cosmological Poisson equation

k*® = 4nGa’p,\,,

where the difference comes from the use of comoving coordinates
for k (a® factor), the removal of the background density into the
background expansion (pA,,) and finally a coordinate subtlety that
enters into the definition of A,



Constant Potentials

¢ In the matter dominated epoch potentials are constant because
infall generates velocities as v,, ~ knW

e Velocity divergence generates density perturbations as
A~ —knu, ~ —(kn)*W

e And density perturbations generate potential fluctuations

 AnGa’pA N 311120,22A A

o ~
2 2k (kn)2

~ —

keeping them constant. Note that because of the expansion, density
perturbations must grow to keep potentials constant.



Constant Potentials

e More generally, if stress perturbations are negligible compared
with density perturbations ( 0p < dp ) then potential will remain
roughly constant

e More specifically a variant called the Bardeen or comoving
curvature 1s strictly constant
5+ 3w

R = t ~ d
CONSY ™ 3T 80

where the approximation holds when w ~const.



Oscillator: Take Two

e Combine these to form the simple harmonic oscillator equation

. L2 .
@+éﬁ@:—§m—¢

e In a CDM dominated expansion ® = ¥ = 0. Also for photon
domination ¢? = 1/3 so the oscillator equation becomes

O+ U+ Ak2(O+ W) =0
e Solution is just an offset version of the original
O+ Ul(n) =[O + V](0) cos(ks)

e O + W is also the observed temperature fluctuation since photons
lose energy climbing out of gravitational potentials at
recombination



Effective Temperature

e Photons climb out of potential wells at last scattering
e Lose energy to gravitational redshifts

e Observed or effective temperature

O+ WV
e Effective temperature oscillates around zero with amplitude given
by the initial conditions

e Note: 1nitial conditions are set when the perturbation 1s outside of
horizon, need inflation or other modification to matter-radiation
FRW universe.

e GR says that initial temperature 1s given by initial potential



Sachs-Wolfe Eftect and the Magic 1/3

e A gravitational potential 1s a perturbation to the temporal
coordinate [formally a gauge transformation]

ot
t
e Convert this to a perturbation in the scale factor,

A 3(1-+w)/2
ol ap1/2

where w = p/p so that during matter domination

=V

oa 20t
a 3t
o CMB temperature is cooling as T o< a™ ! s0

5T 5 1
O+v="qU=—40=_U
A a 3



Sachs-Wolfe Normalization

e Use measurements of AT /T = 107" in the Sachs-Wolfe effect to
infer A%

e Recall in matter domination ¥ = —3R /5

MW+ Ly,
2T 25

e So that the amplitude of initial curvature fluctuations is
A R~ H X 10_5

e Modern usage: WMAP’s measurement of 1st peak plus known
radiation transfer function is used to convert AT /T to Ag.



Baryon Loading
e Baryons add extra mass to the photon-baryon fluid
e Controlling parameter 1s the momentum density ratio:
Rpr+pb%?)OQbh2( a )
Py + Py 10-3

of order unity at recombination

e Momentum density of the joint system 1s conserved

(py + Py) vy + (b + Do) s = (Py + Dy + po + py) 0y
— (1 + R) (:07 =+ pv)vvb

where the controlling parameter 1s the momentum density ratio:

Pv + Po
Py T P
of order unity at recombination

R =

~ 2 (4
~ 30047 (155



New Euler Equation

e Momentum density ratio enters as

(14 R)vyp] =kO + (1 4+ R)kEV
e Photon continuity remains the same

. 3 |
© = —g?},yb—q)

e Modification of oscillator equation

(14 RO + é/@?@ _ —%kQ(l LR - [(1+ R)®]



Oscillator: Take Three

e Combine these to form the not-quite-so simple harmonic oscillator

equation
d : k2 d .
2 —2 27.2 2 9
—(c, 7O kO = ——WV —ci—(c. " P
CS d/r] (CS ) _|_ CS 3 CS d/r} (CS )
where ¢ = py/pp
2o 1
31+ R

e In a CDM dominated expansion ® = U = 0 and the adiabatic
approximation R /R < w = ke,

O+ (1+ R)V|(n) =04+ (14 R)¥](0)cos(ks)



Baryon Peak Phenomenology

e Photon-baryon

ratio enters in three ways
e Overall larger amplitude:

0 + (14 R)W](0) = %(1 +3R)T(0)

e Even-odd peak modulation of

effective temperature | /s

© + Upeass = [£(1+87) — 3R] S (0)
O+ U, — [0+ U, = [-63]%@(0)

e Shifting of the sound horizon down or /4 up

lyxVvV1I+ R



Photon Baryon Ratio Evolution

e Actual effects smaller since X evolves

e Oscillator equation has time evolving mass

, d

ch—n(cf@) +c2k*0 =0

e Effective mass is is m.z = 3¢, * = (1 + R)
e Adiabatic invariant

E 1 1
= §meﬁwA2 = 5308_21@03142 x A%(1+4 R)Y2 = const.

W

e Amplitude of oscillation A o< (1 + 1)~/ decays adiabatically as
the photon-baryon ratio changes



Baryons in the Power Spectrum
e Relative heights of peaks

T
100 - N
80 -
A~
N
=60 -
~ I
~
< |
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20 |
I Quh2
- 002 004 006
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Oscillator: Take Three and a Half

e The not-quite-so simple harmonic oscillator equation 1s a forced
harmonic oscillator
k* d

((38_2@) —+ C§k2@ = —g\If — Czd—n(cs_2q))

d

¢ —

dn
changes 1n the gravitational potentials alter the form of the

acoustic oscillations

e If the forcing term has a temporal structure that is related to the
frequency of the oscillation, this becomes a driven harmonic
oscillator

e Term involving W is the ordinary gravitational force

e Term involving ® involves the ® term in the continuity equation as
a (curvature) perturbation to the scale factor



Potential Decay

e Matter-to-radiation ratio

P 24th2( a )
Pr 103

of order unity at recombination in a low {2,,, universe

e Radiation 1s not stress free and so impedes the growth of structure

20 = 4nGa’p, A\,

4

A, ~ 40 oscillates around a constant value, p, o< a~" so the

Netwonian curvature decays.

e General rule: potential decays if the dominant energy component
has substantial stress fluctuations, i.e. below the generalized sound
horizon or Jeans scale



Radiation Driving

e Decay 1s timed precisely to drive the oscillator - close to fully
coherent

[©+ Ul(n)| =1]1©+ T](0)+ AV — AD|

— %\p(o) —20(0)| = !§\If(0)|

NTATYTr=
lA A‘ A\ /9o :
dr]VI]; ' ' @+‘P ;

& L Dol
5 15 20
ks/mt

e 5x the amplitude of the Sachs-Wolfe effect!



External Potential Approach

e Solution to homogeneous equation

(14 R) Ycos(ks), (1 + R)™Y4sin(ks)

e Give the general solution for an external potential by propagating
impulsive forces

(1+ R)V*0(n) = ©(0)cos(ks) + g [@(O) + iR(O)@(O) sin ks

]
+ g / df (1 + R')**sin[ks — ks']F (1)
0

where

oo . . 2
Fe_b_ 5 _Fy
1+ R 3

e Useful if general form of potential evolution 1s known



Matter-Radiation 1n the Power Spectrum

e Coherent
approximation 1s exact for
a photon-baryon fluid but reality
1s reduced to ~ 4 x because of
neutrino contribution to radiation

e Actual initial conditions
are © + U = U /2 for radiation

domination but comparison to
matter dominated SW correct



Damping
e Tight coupling equations assume a perfect fluid: no viscosity, no

heat conduction

e Fluid imperfections are related to the mean free path of the
photons 1n the baryons

L' where 7 = n.ora

Ao =T
1s the conformal opacity to Thomson scattering

e Dissipation is related to the diffusion length: random walk
approximation

Ap = VNI = /1/ e Ao = /1o

the geometric mean between the horizon and mean free path

e \p/n. ~ few %, so expect the peaks > 3 to be affected by
dissipation



Equations of Motion

e Continuity

@:—gvv—cb, 5b:—k?}b—3q)

where the photon equation remains unchanged and the baryons
follow number conservation with p, = myn,

e Navier-Stokes (Euler + heat conduction, viscosity)

k
v, = k(@4 V) — 6™~ T(vy — Vp)
?.Jb = —gvb—l—kqf—kj'(’(},y—?]b)/R

where the photons gain an anisotropic stress term 7., from radiation
viscosity and a momentum exchange term with the baryons and
are compensated by the opposite term in the baryon Euler equation



Viscosity

e Viscosity 1s generated from radiation streaming from hot to cold
regions

e Expect

k
T~ N~ U~ —
Y 77_

generated by streaming, suppressed by scattering in a wavelength
of the fluctuation. Radiative transfer says

k
7Tfy ~ ZAU?J,Y ;

where A, = 16/15

kK k
’l.}fy — k(@ —|— \If) — §AU—,U7

T



Oscillator: Penultimate Take
e Adiabatic approximation (w > a/a)

: k
O ~ —g’l}fy
e Oscillator equation contains a O damping term
d : k% k* d :
2 —2 s 2 2 2 —2
— O A,©+Ek%°c,© = ——WVU — ¢l — o
CS dT] (CS ) —|_ 7_ —I_ CS 3 CS dT] (CS )

e Heat conduction term similar in that it 1s proportional to v., and is
suppressed by scattering % /7. Expansion of Euler equations to
leading order in k7 gives

R2
T 1+R
since the effects are only significant if the baryons are dynamically

Ap

important



Oscillator: Final Take

e Final oscillator equation

d . k22 . k2 d .
2 (¢7%0 STA, + A0 + K220 = —— U — 2— (¢
g (670) + AL+ A0+ KO = — 0 — i (")

e Solve 1n the adiabatic approximation

O exp(i/wdn)

k*c?
—w® A 2 (A, + Ap)iw + ke =0
T




Dispersion Relation

e Solve

w? = k*c {1 + ig(AU + Ah)}

o,
— t+ke, [1+=-—(A, + A
W C _ —|—27_( + h)]

I 1 ke
— tkc, |1 £+ = SAU A
| ;5 (Aot h)]

e Exponentiate

1 2
exp(i/wdn) = T ex Xp —kQ/dU§CT.S(Av + Ap)]

= =" exp[—(k/kp)?]

e Damping 1s exponential under the scale £ p




Diffusion Scale

e Diffusion wavenumber

k2/d1 1 16 R
b= YR T R\ T 1+ R)

e Limiting forms

116 1

. _2 _ o o

R0 = 51 )
1 1
. _2 - _ e
A k= G/dn%

e Geometric mean between horizon and mean free path as expected
from a random walk

2T 2T
Ap = =5~ ()2

kp /6



Thomson Scattering

e Polarization state of radiation in direction n described by the
intensity matrix ( F;(n)E?(n)), where E is the electric field vector
and the brackets denote time averaging.

e Differential cross section

do
df)

where o = 8ma?/3m, is the Thomson cross section, E' and E

3 . .
= —W]E’-E\QJT,

denote the incoming and outgoing directions of the electric field or
polarization vector.

e Summed over angle and incoming polarization

> [l

1=1,2



Polarization Generation

y E—-mode

e Heuristic:

B—mode k —>

e But photon cannot be longitudinally polarized so that scattering

. . . . Quadrupole
incoming radiation shakes J

. . . Thomson

an electron 1n direction Scattering )

. ~ <
of electric field vector E’

Linear
Polarization

N)

e Radiates photon with
polarization also in direction E’

into 90° can only pass one polarization
e Linearly polarized radiation like polarization by reflection
e Unlike reflection of sunlight, incoming radiation 1s nearly 1sotropic
e Missing from direction orthogonal to original incoming direction

e Only quadrupole anisotropy generates polarization by Thomson
scattering



Acoustic Polarization

Break down of tight-coupling leads to quadrupole anisotropy of

k
7T,y ~ ;/U'Y
Scaling kp = (7/n.)Y? — 7 = k%,
Know: kps, ~ kpn, ~ 10

So:



Acoustic Polarization

e Gradient of velocity 1s along direction of wavevector, so
polarization 1s pure f~-mode

e Velocity 1s 90° out of phase with temperature — turning points of
oscillator are zero points of velocity:

© + VU  cos(ks); v, o< sin(ks)

e Polarization peaks are at troughs of temperature power



Cross Correlation

e Cross correlation of temperature and polarization

(© 4+ ¥)(v,) x cos(ks)sin(ks) o sin(2ks)
e Oscillation at twice the frequency

e Correlation: radial or tangential around hot spots

e Partial correlation: easier to measure if polarization data 1s noisy,
harder to measure if polarization data is high S/ or if bands do
not resolve oscillations

e Good check for systematics and foregrounds

e Comparison of temperature and polarization 1s proof against
features 1n 1nitial conditions mimicking acoustic features



Polarization Power
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Angular Moments

e Define the angularly dependent Stokes perturbation

O(x,n,7), Qx,n,n), Ux,n,n)

e Decompose into normal modes: plane waves for spatial part and
spherical harmonics for angular part

G (k,x,n) = 2€+ 1Y€ ) exp(ik - x)
LGk, x,n) = ( \/%JrlizYe ) exp(ik - x)

e In a spatially curved universe generalize the plane wave part



Normal Modes

e Temperature and polarization fields

X Ak (m) ~m
@(X,ﬂ,?’]) = WZ@K Gﬁ

3
O +iU](x. h, —/ K 5 LB £ B G

e For each k mode, work in coordinates where k || z and so m = 0
represents scalar modes, m = +1 vector modes, m = +2 tensor
modes, |m| > 2 vanishes. Since modes add incoherently and
() £ U 1is invariant up to a phase, rotation back to a fixed
coordinate system is trivial.



Liouville Equation

e In absence of scattering, the phase space distribution of photons in
each polarization state a 1s conserved along the propagation path

e Rewrite variables in terms of the photon propagation direction
q = ¢n, 50 fo(x,1,¢,7) and

%fa(xa ﬂaQan) =0
_<a ix & dh 0 dg a>f

3n+dnoﬁx+dn.5’ﬂ+dn.8q

e For simplicity, assume spatially flat universe K = 0 then
dn/dn = 0 and dx = ndn

fa_l—n vfa—l_q fa—o



Scalar, Vector, Tensor

e Normalization of modes 1s chosen so that the lowest angular mode
for scalars, vectors and tensors are normalized 1in the same way as
the mode function

Go=Q0 GY=n'Q” GYoxnin’Q)
Gl = niQEﬂ) Gt niang;tl)

G§t2 — n'n? QS’E”

where recall

QY = exp(ik-x)
Qgil) = _—Z(él + zég)zexp(zk . X)

V2
3. . . . .
QS-EQ) —\/g(el + 1€5);(€1 £ i€2),exp(ik - x)



Geometrical Projection

e Main content of Liouville equation 1s purely geometrical and
describes the projection of inhomogeneities into anisotropies

e Spatial gradient term hits plane wave:

. . 4 .
n- Ve** = in - ke™™ = i/ %leo(fl)eZk'x

e Dipole term adds to angular dependence through the addition of
angular momentum

4 K" K"
—YOYm: 14 Y’riL + (+1 Ym
V3t T Jeirnei-n Y Jeir @iy

where k7' = /(2 — m? is given by Clebsch-Gordon coefficients.




Temperature Hierarchy

e Absorb recoupling of angular momentum into evolution equation
for normal modes

. K/

204+1 1 2043 | =7 + 5

where Sém) are the gravitational (and later scattering sources;
added scattering suppression of anisotropy)

e An originally isotropic £ = 0 temperature perturbation will
eventually become a high order anisotropy by “free streaming” or
simple projection

e Original CMB codes solved the full hierarchy equations out to the
¢ of interest.



Integral Solution

e Hierarchy equation simply represents geometric projection,
exactly as we have seen before in the projection of temperature
perturbations on the last scattering surface

e In general, the solution describes the decomposition of the source
Sém) with its local angular dependence as seen at a distance
x = Dn.

e Proceed by decomposing the angular dependence of the plane
wave

e =N (—i)'/Am(20 + 1)jo(kD)Y, (h)

e Recouple to the local angular dependence of G

G = (—i)'\/4Ar (20 + 1)oyy (kD)Y{™ (1)




Integral Solution

e Projection kernels:

e Power spectrum:

2 [ dk ~ k30" el™)
Cg_%/?; (20 + 1)

e Solving for C; reduces to solving for the behavior of a handful of

SOUrces



Polarization Hierarchy

e In the same way, the coupling of a gradient or dipole angular
momentum to the spin harmonics leads to the polarization
hierarchy:

. m 2m 2Ky,
E(m) — L 2k E(’m) o B(m) - +1 E(m) o 'E(’m) g(m)
¢ [%—J SR 2 DI 20+ | TR T

2/432"’
20 — 1

2m E(m) . 2"{?3!/—1
+1)° 20 + 3

B = k| 2B + B - B + B

where ok7' = /(02 — m?2)(¢2 — 4)/¢2 is given by the
Clebsch-Gordon coefficients and &£, BB are the sources (scattering
only).

e Note that for vectors and tensors |m| > 0 and B modes may be
generated from £ modes by projection. Cosmologically Bém) = 0



Polarization Integral Solution

e Again, we can recouple the plane wave angular momentum of the
source inhomogeneity to its local angular dependence directly

E(m)(ka 770) 0 —T

Bém)(]{7 o
20 + 1

)2/077 dne="E™ B (k(mo — 1))

e The only source to the polarization i1s from the quadrupole
anisotropy so we only need ¢, = 2, e.g. for scalars

0 3(+2)! je() 0
e;2<:c>\/§(€2)! o By =0




Gravitational Terms

e As in our Newtonian gauge calculation, gravitational terms - now
including vectors and tensors in an arbitrary gauge, come from the
geodesic equation

o First define the slicing (lapse function A, shift function B*)

g" = —a (1 -24),
O = —a2Bi
A defines the lapse of proper time between 3-surfaces whereas B®

defines the threading or relationship between the 3-coordinates of
the surfaces



Gravitational Terms

e This absorbs 1+3=4 degrees of freedom 1n the metric, remaining 6
1s 1n the spatial surfaces which we parameterize as

g9 = a*(y? —2H Y — 2H§;7)

here (1) H;, a perturbation to the spatial curvature; (5) H ;:7 a
trace-free distortion to spatial metric (which also can perturb the
curvature)

e Geodesic equation gives the redshifting term

) a 1 . .. . . )
g = —— — —n’nJHTij — HL -+ nZBi — 1 VA
q a 2

which is incorporated in the conservation and gauge

transformation equations



Source Terms

e Temperature source terms Sl(m) (rows +|m/|; flat assumption

(0 - HY #”+BO PO 20

0 Fos™) 4 BED pED 3 D
\ 0 0 PP — g
where
1 m m
P = (05" — VBE,™)

10

e Polarization source term

Eg(m) = —7V6P™ 5,
B =0



Truncated Hierarchy

e CMBPFast introduced the hybrid truncated hierarchy, integral
solution technique

e Formal integral solution contains sources that are not external to
system but defined through the Boltzmann hierarchy itself

e Solution: recall that we used this technique in the tight coupling
regime by applying a closure condition from tight coupling

e CMBPFast extends this 1dea by solving a truncated hierarchy of
equations, e.g. out to £ = 25 with non-reflecting boundary
conditions

e For completeness, we explicitly derive the scattering source term
via polarized radiative transfer in the last part of the notes



Polarized Radiative Transfer

o Define a specific intensity “vector”™: I, = (0,0, U, V') where
@:@|\+@l’Q:@|l — 0O,

dl,
=7(S, — 1
d77 ( 4 V)
e Thomson collision Ae;I
based on differential cross section e- Thomson
Te > \' Scattering
dO'T 3 ‘E/ E‘Q ©
- = . g
dQ) ST o v




Polarized Radiative Transfer

E’ and E denote the incoming and outgoing directions of the
electric field or polarization vector.

Thomson scattering by 90 deg: ©;, — ©, but © does not scatter

More generally if O is the scattering angle

( cos’® 0 0 0 \
0 1 0 0

s, =~ [ ao I

ST 0 0 cos® 0

\ 0 0 0 COS@)

But to calculate Stokes parameters in a fixed coordinate system
must rotate into the scattering basis, scatter and rotate back out to
the fixed coordinate system



Thomson Collision Term

e The U — U’ transfer follows by writing down the polarization
vectors 1n the 45° rotated basis

A 1 . A
E, = E(EII +E1), E, =

e Define the temperature in this basis

%(E ~E))

0, x |E; - E{|?0 + |E; - E, |6,
1

1
x Z(COSB +1)*0 + Z(COSB —1)%6,

O, x |E, - By 20, + |E, - E, 26,
1 1
x Z(COS@ +1)*0, + Z(cosﬁ —1)%@]

or @1 — @2 X COS 6(6/1 _ 6/2)



Scattering Matrix
e Transfer matrix of Stokes state T' = (O, () + U, Q) — :U)

T oc S(8)T"
3 / cos” B+ 1 —2sin’ 8 —Lsin? 3 \
S(6) = 1 —% sin” %(Cosﬁ + 1)? %(COSB — 1)
\ —% sin? %(cosﬁ — 1)2 %(0056 4+ 1)2 )

normalization factor of 3 1s set by photon conservation in scattering



Scattering Matrix

e Transform to a fixed basis, by a rotation of the incoming and
outgoing states T = R(v)T where

(1

Ry)=10 e

\ 0

giving the scattering matrix

R(—7)S(B)R(a) =

. Y2(8, @) + 2v5Y5 (8, @)

s\ & —V6,Y5 (B, a)e*™
—\/6—23/20(5704)6_27;7

0

0

0 )
0
o201 )

(1)
—\/gyf (57 Oé)
3 2Y22 (57 a)e2i7

3 —2Y22 (8, 04)6_%
(2)



Addition Theorem for Spin Harmonics

e Spin harmonics are related to rotation matrices as

20 1
Y70, 6) = || =D u(6,0,0)

Note: for explicit evaluation sign convention differs from usual
(e.g. Jackson) by (—1)™

e Multiplication of rotations
ZD m’’ 042752772) mlaa, B1,71) = Dfnm/(@,@ﬁ)

e Implies

mx [/ n/ / m 51—S82 2€ T 1 —81 159
Z 31Y£ ( 7¢) SQYvﬁ ((97¢) — (_1) 47T SQYE (ﬁ,@)e !

m




Sky Basis

e Scattering into the state (rest frame)

dn’

T =
Cin|T] =17 y

—R(—7)S(B)R(a)T (1),

/d (©,0,0) + —T/d ZP"”)ﬁﬁ T(n') .

m=—2

where the quadrupole coupling term is P™) (fi, h’) =

V) YR) /) Y R) /S e () Ye ()
—VOYZ™(0) Y3 () 3,Y3M(R),Y5M(R) 3 LY (), Y5 ()
—\/_Y2m*( )—2Y2 ( ) 32Y2m*( ) Yo" ( ) 3—2Y2m*( )—QYQ ( )

expression uses angle addition relation above. We call this term
Co.

Y



Scattering Matrix

e Full scattering matrix involves difference of scattering into and out
of state

e In the electron rest frame

CIT) =+ [ T5(0/,0,0) ~ T+ Col1]

which describes 1sotropization in the rest frame. All moments have
e~ suppression except for isotropic temperature ©y.
Transformation into the background frame simply induces a dipole
term

C[T] = + (n vb+/—@’ 0 0) — 7T + Cg[T]



