Astro 448

Set 5: Polarization

Wayne Hu

Stokes Parameters

- Specific intensity is related to quadratic combinations of the field.
- Define the intensity matrix (time averaged over oscillations) $\langle \mathbf{E}\,\mathbf{E}^{\dagger} \rangle$
- Hermitian matrix can be decomposed into Pauli matrices

$$\mathbf{P} = \langle \mathbf{E} \, \mathbf{E}^{\dagger} \rangle = \frac{1}{2} \left(I \boldsymbol{\sigma}_0 + Q \, \boldsymbol{\sigma}_3 + U \, \boldsymbol{\sigma}_1 - V \, \boldsymbol{\sigma}_2 \right) ,$$

where

$$\boldsymbol{\sigma}_0 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \boldsymbol{\sigma}_1 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \boldsymbol{\sigma}_2 = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}, \boldsymbol{\sigma}_3 = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

• Stokes parameters recovered as $Tr(\sigma_i \mathbf{P})$

Stokes Parameters

Consider a general plane wave solution

$$\mathbf{E}(t,z) = E_1(t,z)\hat{\mathbf{e}}_1 + E_2(t,z)\hat{\mathbf{e}}_2$$

$$E_1(t,z) = A_1 e^{i\phi_1} e^{i(kz-\omega t)}$$

$$E_2(t,z) = A_2 e^{i\phi_2} e^{i(kz-\omega t)}$$

• Explicitly:

$$I = \langle E_1 E_1^* + E_2 E_2^* \rangle = A_1^2 + A_2^2$$

$$Q = \langle E_1 E_1^* - E_2 E_2^* \rangle = A_1^2 - A_2^2$$

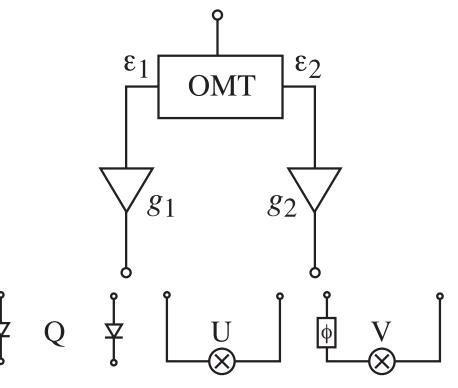
$$U = \langle E_1 E_2^* + E_2 E_1^* \rangle = 2A_1 A_2 \cos(\phi_2 - \phi_1)$$

$$V = -i \langle E_1 E_2^* - E_2 E_1^* \rangle = 2A_1 A_2 \sin(\phi_2 - \phi_1)$$

so that the Stokes parameters define the state up to an unobservable overall phase of the wave

Detection

• This suggests that abstractly there are two different ways to detect polarization: separate and difference orthogonal modes (bolometers I, Q) or correlate the separated components (U, V).



- In the correlator example the natural output would be U but one can recover V by introducing a phase lag $\phi=\pi/2$ on one arm, and Q by having the OMT pick out directions rotated by $\pi/4$.
- Likewise, in the bolometer example, one can rotate the polarizer and also introduce a coherent front end to change V to U.

Detection

- Techniques also differ in the systematics that can convert unpolarized sky to fake polarization
- Differencing detectors are sensitive to relative gain fluctuations
- Correlation detectors are sensitive to cross coupling between the arms
- More generally, the intended block diagram and systematic problems map components of the polarization matrix onto others and are kept track of through "Jones" or instrumental response matrices $\mathbf{E}_{\mathrm{det}} = \mathbf{J}\mathbf{E}_{\mathrm{in}}$

$$\mathbf{P}_{\mathrm{det}} = \mathbf{J} \mathbf{P}_{\mathrm{in}} \mathbf{J}^{\dagger}$$

where the end result is either a differencing or a correlation of the $P_{\rm det}$.

- Radiation field involves a directed quantity, the electric field vector, which defines the polarization
- Consider a general plane wave solution

$$\mathbf{E}(t,z) = E_1(t,z)\hat{\mathbf{e}}_1 + E_2(t,z)\hat{\mathbf{e}}_2$$

$$E_1(t,z) = \operatorname{Re}A_1 e^{i\phi_1} e^{i(kz-\omega t)}$$

$$E_2(t,z) = \operatorname{Re}A_2 e^{i\phi_2} e^{i(kz-\omega t)}$$

or at z = 0 the field vector traces out an ellipse

$$\mathbf{E}(t,0) = A_1 \cos(\omega t - \phi_1)\hat{\mathbf{e}}_1 + A_2 \cos(\omega t - \phi_2)\hat{\mathbf{e}}_2$$

with principal axes defined by

$$\mathbf{E}(t,0) = A_1' \cos(\omega t) \hat{\mathbf{e}}_1' - A_2' \sin(\omega t) \hat{\mathbf{e}}_2'$$

so as to trace out a clockwise rotation for $A'_1, A'_2 > 0$

• Define polarization angle

$$\hat{\mathbf{e}}_1' = \cos \chi \hat{\mathbf{e}}_1 + \sin \chi \hat{\mathbf{e}}_2$$

$$\hat{\mathbf{e}}_2' = -\sin \chi \hat{\mathbf{e}}_1 + \cos \chi \hat{\mathbf{e}}_2$$

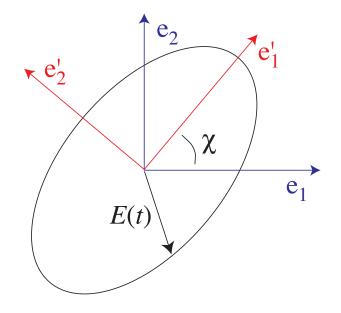
Match

$$\mathbf{E}(t,0) = A_1' \cos \omega t [\cos \chi \hat{\mathbf{e}}_1 + \sin \chi \hat{\mathbf{e}}_2]$$

$$- A_2' \cos \omega t [-\sin \chi \hat{\mathbf{e}}_1 + \cos \chi \hat{\mathbf{e}}_2]$$

$$= A_1 [\cos \phi_1 \cos \omega t + \sin \phi_1 \sin \omega t] \hat{\mathbf{e}}_1$$

$$+ A_2 [\cos \phi_2 \cos \omega t + \sin \phi_2 \sin \omega t] \hat{\mathbf{e}}_2$$



• Define relative strength of two principal states

$$A_1' = E_0 \cos \beta \quad A_2' = E_0 \sin \beta$$

Characterize the polarization by two angles

$$A_1 \cos \phi_1 = E_0 \cos \beta \cos \chi,$$
 $A_1 \sin \phi_1 = E_0 \sin \beta \sin \chi,$ $A_2 \cos \phi_2 = E_0 \cos \beta \sin \chi,$ $A_2 \sin \phi_2 = -E_0 \sin \beta \cos \chi$

Or Stokes parameters by

$$I = E_0^2$$
, $Q = E_0^2 \cos 2\beta \cos 2\chi$
 $U = E_0^2 \cos 2\beta \sin 2\chi$, $V = E_0^2 \sin 2\beta$

• So $I^2 = Q^2 + U^2 + V^2$, double angles reflect the spin 2 field or headless vector nature of polarization

Special cases

- If $\beta=0,\pi/2,\pi$ then only one principal axis, ellipse collapses to a line and $V=0\to$ linear polarization oriented at angle χ If $\chi=0,\pi/2,\pi$ then $I=\pm Q$ and U=0 If $\chi=\pi/4,3\pi/4...$ then $I=\pm U$ and Q=0 so U is Q in a frame rotated by 45 degrees
- If $\beta=\pi/4, 3\pi/4$, then principal components have equal strength and E field rotates on a circle: $I=\pm V$ and Q=U=0 circular polarization
- $U/Q = \tan 2\chi$ defines angle of linear polarization and $V/I = \sin 2\beta$ defines degree of circular polarization

Natural Light

- A monochromatic plane wave is completely polarized $I^2 = Q^2 + U^2 + V^2$
- Polarization matrix is like a density matrix in quantum mechanics and allows for pure (coherent) states and mixed states
- Suppose the total $\mathbf{E}_{\mathrm{tot}}$ field is composed of different (frequency) components

$$\mathbf{E}_{ ext{tot}} = \sum_i \mathbf{E}_i$$

• Then components decorrelate in time average

$$\left\langle \mathbf{E}_{\mathrm{tot}}\mathbf{E}_{\mathrm{tot}}^{\dagger}
ight
angle =\sum_{ij}\left\langle \mathbf{E}_{i}\mathbf{E}_{j}^{\dagger}
ight
angle =\sum_{i}\left\langle \mathbf{E}_{i}\mathbf{E}_{i}^{\dagger}
ight
angle$$

Natural Light

So Stokes parameters of incoherent contributions add

$$I = \sum_{i} I_{i} \quad Q = \sum_{i} Q_{i} \quad U = \sum_{i} U_{i} \quad V = \sum_{i} V_{i}$$

and since individual Q, U and V can have either sign: $I^2 \ge Q^2 + U^2 + V^2$, all 4 Stokes parameters needed

Linear Polarization

- $Q \propto \langle E_1 E_1^* \rangle \langle E_2 E_2^* \rangle$, $U \propto \langle E_1 E_2^* \rangle + \langle E_2 E_1^* \rangle$.
- Counterclockwise rotation of axes by $\theta = 45^{\circ}$

$$E_1 = (E_1' - E_2')/\sqrt{2}, \quad E_2 = (E_1' + E_2')/\sqrt{2}$$

- $U \propto \langle E_1' E_1'^* \rangle \langle E_2' E_2'^* \rangle$, difference of intensities at 45° or Q'
- More generally, P transforms as a tensor under rotations and

$$Q' = \cos(2\theta)Q + \sin(2\theta)U$$
$$U' = -\sin(2\theta)Q + \cos(2\theta)U$$

or

$$Q' \pm iU' = e^{\mp 2i\theta} [Q \pm iU]$$

acquires a phase under rotation and is a spin ± 2 object

Coordinate Independent Representation

• Two directions: orientation of polarization and change in amplitude, i.e. Q and U in the basis of the Fourier wavevector (pointing with angle ϕ_l) for small sections of sky are called E and B components

$$E(\mathbf{l}) \pm iB(\mathbf{l}) = -\int d\hat{\mathbf{n}} [Q'(\hat{\mathbf{n}}) \pm iU'(\hat{\mathbf{n}})] e^{-i\mathbf{l}\cdot\hat{\mathbf{n}}}$$
$$= -e^{\mp 2i\phi_l} \int d\hat{\mathbf{n}} [Q(\hat{\mathbf{n}}) \pm iU(\hat{\mathbf{n}})] e^{-i\mathbf{l}\cdot\hat{\mathbf{n}}}$$

- For the B-mode to not vanish, the polarization must point in a direction not related to the wavevector not possible for density fluctuations in linear theory
- Generalize to all-sky: plane waves are eigenmodes of the Laplace operator on the tensor **P**.

Spin Harmonics

Laplace Eigenfunctions

$$\nabla^2_{\pm 2} Y_{\ell m} [\boldsymbol{\sigma}_3 \mp i \boldsymbol{\sigma}_1] = -[l(l+1) - 4]_{\pm 2} Y_{\ell m} [\boldsymbol{\sigma}_3 \mp i \boldsymbol{\sigma}_1]$$

• Spin s spherical harmonics: orthogonal and complete

$$\int d\hat{\mathbf{n}}_s Y_{\ell m}^*(\hat{\mathbf{n}})_s Y_{\ell m}(\hat{\mathbf{n}}) = \delta_{\ell \ell'} \delta_{m m'}$$
$$\sum_{\ell m} {}_s Y_{\ell m}^*(\hat{\mathbf{n}})_s Y_{\ell m}(\hat{\mathbf{n}}') = \delta(\phi - \phi') \delta(\cos \theta - \cos \theta')$$

where the ordinary spherical harmonics are $Y_{\ell m} = {}_{0}Y_{\ell m}$

Given in terms of the rotation matrix

$$_{s}Y_{\ell m}(\beta\alpha) = (-1)^{m} \sqrt{\frac{2\ell+1}{4\pi}} D_{-ms}^{\ell}(\alpha\beta0)$$

Statistical Representation

All-sky decomposition

$$[Q(\hat{\mathbf{n}}) \pm iU(\hat{\mathbf{n}})] = \sum_{\ell m} [E_{\ell m} \pm iB_{\ell m}]_{\pm 2} Y_{\ell m}(\hat{\mathbf{n}})$$

Power spectra

$$\langle E_{\ell m}^* E_{\ell m} \rangle = \delta_{\ell \ell'} \delta_{m m'} C_{\ell}^{EE}$$
$$\langle B_{\ell m}^* B_{\ell m} \rangle = \delta_{\ell \ell'} \delta_{m m'} C_{\ell}^{BB}$$

Cross correlation

$$\langle E_{\ell m}^* E_{\ell m} \rangle = \delta_{\ell \ell'} \delta_{m m'} C_{\ell}^{\Theta E}$$

others vanish if parity is conserved

Thomson Scattering

- Polarization state of radiation in direction $\hat{\mathbf{n}}$ described by the intensity matrix $\langle E_i(\hat{\mathbf{n}})E_j^*(\hat{\mathbf{n}})\rangle$, where \mathbf{E} is the electric field vector and the brackets denote time averaging.
- Differential cross section

$$\frac{d\sigma}{d\Omega} = \frac{3}{8\pi} |\hat{\mathbf{E}}' \cdot \hat{\mathbf{E}}|^2 \sigma_T,$$

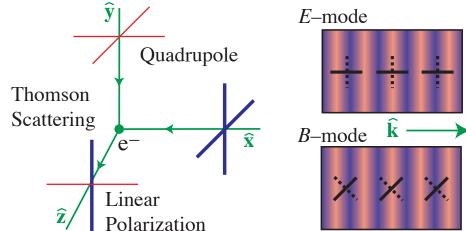
where $\sigma_T = 8\pi\alpha^2/3m_e$ is the Thomson cross section, $\hat{\mathbf{E}}'$ and $\hat{\mathbf{E}}$ denote the incoming and outgoing directions of the electric field or polarization vector.

• Summed over angle and incoming polarization

$$\sum_{i=1,2} \int d\hat{\mathbf{n}}' \frac{d\sigma}{d\Omega} = \sigma_T$$

Polarization Generation

- Heuristic: incoming radiation shakes an electron in direction of electric field vector $\hat{\mathbf{E}}'$
- Radiates photon with polarization also in direction $\hat{\mathbf{E}}'$



- But photon cannot be longitudinally polarized so that scattering into 90° can only pass one polarization
- Linearly polarized radiation like polarization by reflection
- Unlike reflection of sunlight, incoming radiation is nearly isotropic
- Missing from direction orthogonal to original incoming direction
- Only quadrupole anisotropy generates polarization by Thomson scattering

Acoustic Polarization

• Break down of tight-coupling leads to quadrupole anisotropy of

$$\pi_{\gamma} pprox rac{k}{\dot{ au}} v_{\gamma}$$

- Scaling $k_D = (\dot{\tau}/\eta_*)^{1/2} \to \dot{\tau} = k_D^2 \eta_*$
- Know: $k_D s_* \approx k_D \eta_* \approx 10$
- So:

$$\pi_{\gamma} \approx \frac{k}{k_D} \frac{1}{10} v_{\gamma}$$

$$\Delta_P \approx \frac{\ell}{\ell_D} \frac{1}{10} \Delta_T$$

Acoustic Polarization

- Gradient of velocity is along direction of wavevector, so polarization is pure E-mode
- Velocity is 90° out of phase with temperature turning points of oscillator are zero points of velocity:

$$\Theta + \Psi \propto \cos(ks); \quad v_{\gamma} \propto \sin(ks)$$

• Polarization peaks are at troughs of temperature power

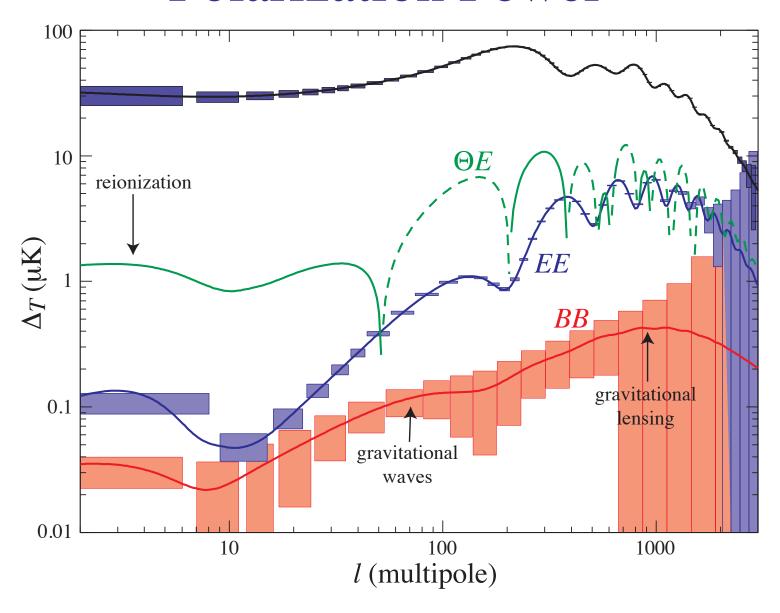
Cross Correlation

Cross correlation of temperature and polarization

$$(\Theta + \Psi)(v_{\gamma}) \propto \cos(ks)\sin(ks) \propto \sin(2ks)$$

- Oscillation at twice the frequency
- Correlation: radial or tangential around hot spots
- Partial correlation: easier to measure if polarization data is noisy, harder to measure if polarization data is high S/N or if bands do not resolve oscillations
- Good check for systematics and foregrounds
- Comparison of temperature and polarization is proof against features in initial conditions mimicking acoustic features

Polarization Power



Angular Moments

• Define the angularly dependent Stokes perturbation

$$\Theta(\mathbf{x}, \hat{\mathbf{n}}, \eta), \quad Q(\mathbf{x}, \hat{\mathbf{n}}, \eta), \quad U(\mathbf{x}, \hat{\mathbf{n}}, \eta)$$

 Decompose into normal modes: plane waves for spatial part and spherical harmonics for angular part

$$G_{\ell}^{m}(\mathbf{k}, \mathbf{x}, \hat{\mathbf{n}}) \equiv (-i)^{\ell} \sqrt{\frac{4\pi}{2\ell + 1}} Y_{\ell}^{m}(\hat{\mathbf{n}}) \exp(i\mathbf{k} \cdot \mathbf{x})$$

$${}_{\pm 2}G_{\ell}^{m}(\mathbf{k}, \mathbf{x}, \hat{\mathbf{n}}) \equiv (-i)^{\ell} \sqrt{\frac{4\pi}{2\ell + 1}} {}_{\pm 2}Y_{\ell}^{m}(\hat{\mathbf{n}}) \exp(i\mathbf{k} \cdot \mathbf{x})$$

• In a spatially curved universe generalize the plane wave part

Normal Modes

• Temperature and polarization fields

$$\Theta(\mathbf{x}, \hat{\mathbf{n}}, \eta) = \int \frac{d^3k}{(2\pi)^3} \sum_{\ell m} \Theta_{\ell}^{(m)} G_{\ell}^{m}$$
$$[Q \pm iU](\mathbf{x}, \hat{\mathbf{n}}, \eta) = \int \frac{d^3k}{(2\pi)^3} \sum_{\ell m} [E_{\ell}^{(m)} \pm iB_{\ell}^{(m)}]_{\pm 2} G_{\ell}^{m}$$

• For each k mode, work in coordinates where k \parallel z and so m=0 represents scalar modes, $m=\pm 1$ vector modes, $m=\pm 2$ tensor modes, |m|>2 vanishes. Since modes add incoherently and $Q\pm iU$ is invariant up to a phase, rotation back to a fixed coordinate system is trivial.

Liouville Equation

- In absence of scattering, the phase space distribution of photons in each polarization state a is conserved along the propagation path
- Rewrite variables in terms of the photon propagation direction $\mathbf{q} = q\hat{\mathbf{n}}$, so $f_a(\mathbf{x}, \hat{\mathbf{n}}, q, \eta)$ and

$$\frac{d}{d\eta} f_a(\mathbf{x}, \hat{\mathbf{n}}, q, \eta) = 0$$

$$= \left(\frac{\partial}{\partial \eta} + \frac{d\mathbf{x}}{d\eta} \cdot \frac{\partial}{\partial \mathbf{x}} + \frac{d\hat{\mathbf{n}}}{d\eta} \cdot \frac{\partial}{\partial \hat{\mathbf{n}}} + \frac{dq}{d\eta} \cdot \frac{\partial}{\partial q} \right) f_a$$

• For simplicity, assume spatially flat universe K=0 then $d\hat{\mathbf{n}}/d\eta=0$ and $d\mathbf{x}=\hat{\mathbf{n}}d\eta$

$$\dot{f}_a + \hat{\mathbf{n}} \cdot \nabla f_a + \dot{q} \frac{\partial}{\partial q} f_a = 0$$

Scalar, Vector, Tensor

• Normalization of modes is chosen so that the lowest angular mode for scalars, vectors and tensors are normalized in the same way as the mode function

$$G_0^0 = Q^{(0)} \quad G_1^0 = n^i Q_i^{(0)} \quad G_2^0 \propto n^i n^j Q_{ij}^{(0)}$$

$$G_1^{\pm 1} = n^i Q_i^{(\pm 1)} \quad G_2^{\pm 1} \propto n^i n^j Q_{ij}^{(\pm 1)}$$

$$G_2^{\pm 2} = n^i n^j Q_{ij}^{(\pm 2)}$$

where recall

$$Q^{(0)} = \exp(i\mathbf{k} \cdot \mathbf{x})$$

$$Q_i^{(\pm 1)} = \frac{-i}{\sqrt{2}}(\hat{\mathbf{e}}_1 \pm i\hat{\mathbf{e}}_2)_i \exp(i\mathbf{k} \cdot \mathbf{x})$$

$$Q_{ij}^{(\pm 2)} = -\sqrt{\frac{3}{8}}(\hat{\mathbf{e}}_1 \pm i\hat{\mathbf{e}}_2)_i (\hat{\mathbf{e}}_1 \pm i\hat{\mathbf{e}}_2)_j \exp(i\mathbf{k} \cdot \mathbf{x})$$

Geometrical Projection

- Main content of Liouville equation is purely geometrical and describes the projection of inhomogeneities into anisotropies
- Spatial gradient term hits plane wave:

$$\hat{\mathbf{n}} \cdot \nabla e^{i\mathbf{k} \cdot \mathbf{x}} = i\hat{\mathbf{n}} \cdot \mathbf{k} e^{i\mathbf{k} \cdot \mathbf{x}} = i\sqrt{\frac{4\pi}{3}} k Y_1^0(\hat{\mathbf{n}}) e^{i\mathbf{k} \cdot \mathbf{x}}$$

• Dipole term adds to angular dependence through the addition of angular momentum

$$\sqrt{\frac{4\pi}{3}}Y_1^0Y_\ell^m = \frac{\kappa_\ell^m}{\sqrt{(2\ell+1)(2\ell-1)}}Y_{\ell-1}^m + \frac{\kappa_{\ell+1}^m}{\sqrt{(2\ell+1)(2\ell+3)}}Y_{\ell+1}^m$$

where $\kappa_{\ell}^{m} = \sqrt{\ell^{2} - m^{2}}$ is given by Clebsch-Gordon coefficients.

Temperature Hierarchy

 Absorb recoupling of angular momentum into evolution equation for normal modes

$$\dot{\Theta}_{\ell}^{(m)} = k \left[\frac{\kappa_{\ell}^{m}}{2\ell + 1} \Theta_{\ell-1}^{(m)} - \frac{\kappa_{\ell+1}^{m}}{2\ell + 3} \Theta_{\ell+1}^{(m)} \right] - \dot{\tau} \Theta_{\ell}^{(m)} + S_{\ell}^{(m)}$$

where $S_{\ell}^{(m)}$ are the gravitational (and later scattering sources; added scattering suppression of anisotropy)

- An originally isotropic $\ell=0$ temperature perturbation will eventually become a high order anisotropy by "free streaming" or simple projection
- Original CMB codes solved the full hierarchy equations out to the ℓ of interest.

Integral Solution

- Hierarchy equation simply represents geometric projection, exactly as we have seen before in the projection of temperature perturbations on the last scattering surface
- In general, the solution describes the decomposition of the source $S_{\ell}^{(m)}$ with its local angular dependence as seen at a distance $\mathbf{x} = D\hat{\mathbf{n}}$.
- Proceed by decomposing the angular dependence of the plane wave

$$e^{i\mathbf{k}\cdot\mathbf{x}} = \sum_{\ell} (-i)^{\ell} \sqrt{4\pi(2\ell+1)} j_{\ell}(kD) Y_{\ell}^{0}(\hat{\mathbf{n}})$$

• Recouple to the local angular dependence of G_ℓ^m

$$G_{\ell_s}^m = \sum_{\ell} (-i)^{\ell} \sqrt{4\pi (2\ell+1)} \alpha_{\ell_s \ell}^{(m)}(kD) Y_{\ell}^m(\hat{\mathbf{n}})$$

Integral Solution

Projection kernels:

$$\ell_s = 0, \quad m = 0$$

$$\alpha_{0\ell}^{(0)} \equiv j_\ell$$

$$\ell_s = 1, \quad m = 0$$

$$\alpha_{1\ell}^{(0)} \equiv j'_\ell$$

• Integral solution:

$$\frac{\Theta_{\ell}^{(m)}(k,\eta_0)}{2\ell+1} = \int_0^{\eta_0} d\eta e^{-\tau} \sum_{\ell_s} S_{\ell_s}^{(m)} \alpha_{\ell_s \ell}^{(m)}(k(\eta_0 - \eta))$$

• Power spectrum:

$$C_{\ell} = \frac{2}{\pi} \int \frac{dk}{k} \sum_{m} \frac{k^3 \langle \Theta_{\ell}^{(m)*} \Theta_{\ell}^{(m)} \rangle}{(2\ell+1)^2}$$

• Solving for C_{ℓ} reduces to solving for the behavior of a handful of sources

Polarization Hierarchy

• In the same way, the coupling of a gradient or dipole angular momentum to the spin harmonics leads to the polarization hierarchy:

$$\dot{E}_{\ell}^{(m)} = k \left[\frac{2\kappa_{\ell}^{m}}{2\ell - 1} E_{\ell-1}^{(m)} - \frac{2m}{\ell(\ell+1)} B_{\ell}^{(m)} - \frac{2\kappa_{\ell+1}^{m}}{2\ell + 3} E_{\ell+1}^{(m)} \right] - \dot{\tau} E_{\ell}^{(m)} + \mathcal{E}_{\ell}^{(m)}$$

$$\dot{B}_{\ell}^{(m)} = k \left[\frac{2\kappa_{\ell}^{m}}{2\ell - 1} B_{\ell-1}^{(m)} + \frac{2m}{\ell(\ell+1)} E_{\ell}^{(m)} - \frac{2\kappa_{\ell+1}^{m}}{2\ell + 3} B_{\ell+1}^{(m)} \right] - \dot{\tau} B_{\ell}^{(m)} + \mathcal{B}_{\ell}^{(m)}$$

where ${}_{2}\kappa_{\ell}^{m} = \sqrt{(\ell^2 - m^2)(\ell^2 - 4)/\ell^2}$ is given by the Clebsch-Gordon coefficients and \mathcal{E} , \mathcal{B} are the sources (scattering only).

• Note that for vectors and tensors |m|>0 and B modes may be generated from E modes by projection. Cosmologically $\mathcal{B}_{\ell}^{(m)}=0$

Polarization Integral Solution

• Again, we can recouple the plane wave angular momentum of the source inhomogeneity to its local angular dependence directly

$$\frac{E_{\ell}^{(m)}(k,\eta_0)}{2\ell+1} = \int_0^{\eta_0} d\eta e^{-\tau} \mathcal{E}_{\ell_s}^{(m)} \epsilon_{\ell_s \ell}^{(m)}(k(\eta_0 - \eta))
\frac{B_{\ell}^{(m)}(k,\eta_0)}{2\ell+1} = \int_0^{\eta_0} d\eta e^{-\tau} \mathcal{E}_{\ell_s}^{(m)} \beta_{\ell_s \ell}^{(m)}(k(\eta_0 - \eta))$$

• The only source to the polarization is from the quadrupole anisotropy so we only need $\ell_s = 2$, e.g. for scalars

$$\epsilon_{2\ell}^{(0)}(x) = \sqrt{\frac{3}{8} \frac{(\ell+2)!}{(\ell-2)!} \frac{j_{\ell}(x)}{x^2}} \qquad \beta_{2\ell}^{(0)} = 0$$

Gravitational Terms

- As in our Newtonian gauge calculation, gravitational terms now including vectors and tensors in an arbitrary gauge, come from the geodesic equation
- First define the slicing (lapse function A, shift function B^i)

$$g^{00} = -a^{-2}(1 - 2A),$$

$$g^{0i} = -a^{-2}B^{i},$$

A defines the lapse of proper time between 3-surfaces whereas B^i defines the threading or relationship between the 3-coordinates of the surfaces

Gravitational Terms

• This absorbs 1+3=4 degrees of freedom in the metric, remaining 6 is in the spatial surfaces which we parameterize as

$$g^{ij} = a^{-2}(\gamma^{ij} - 2H_L\gamma^{ij} - 2H_T^{ij}).$$

here (1) H_L a perturbation to the spatial curvature; (5) H_T^{ij} a trace-free distortion to spatial metric (which also can perturb the curvature)

Geodesic equation gives the redshifting term

$$\frac{\dot{q}}{q} = -\frac{\dot{a}}{a} - \frac{1}{2}n^i n^j \dot{H}_{Tij} - \dot{H}_L + n^i \dot{B}_i - \hat{\mathbf{n}} \cdot \nabla A$$

which is incorporated in the conservation and gauge transformation equations

Source Terms

• Temperature source terms $S_l^{(m)}$ (rows $\pm |m|$; flat assumption

$$\begin{pmatrix}
\dot{\tau}\Theta_0^{(0)} - \dot{H}_L^{(0)} & \dot{\tau}v_b^{(0)} + \dot{B}^{(0)} & \dot{\tau}P^{(0)} - \frac{2}{3}\dot{H}_T^{(0)} \\
0 & \dot{\tau}v_b^{(\pm 1)} + \dot{B}^{(\pm 1)} & \dot{\tau}P^{(\pm 1)} - \frac{\sqrt{3}}{3}\dot{H}_T^{(\pm 1)} \\
0 & \dot{\tau}P^{(\pm 2)} - \dot{H}_T^{(\pm 2)}
\end{pmatrix}$$

where

$$P^{(m)} \equiv \frac{1}{10} (\Theta_2^{(m)} - \sqrt{6} E_2^{(m)})$$

Polarization source term

$$\mathcal{E}_{\ell}^{(m)} = -\dot{\tau}\sqrt{6}P^{(m)}\delta_{\ell,2}$$
$$\mathcal{B}_{\ell}^{(m)} = 0$$

Truncated Hierarchy

- CMBFast introduced the hybrid truncated hierarchy, integral solution technique
- Formal integral solution contains sources that are not external to system but defined through the Boltzmann hierarchy itself
- Solution: recall that we used this technique in the tight coupling regime by applying a closure condition from tight coupling
- CMBFast extends this idea by solving a truncated hierarchy of equations, e.g. out to $\ell=25$ with non-reflecting boundary conditions
- For completeness, we explicitly derive the scattering source term via polarized radiative transfer in the last part of the notes

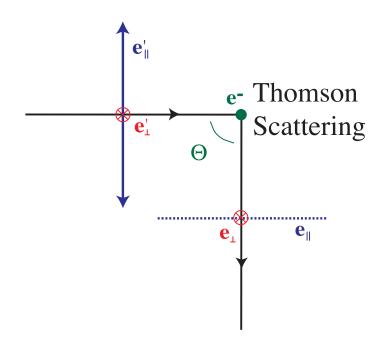
Polarized Radiative Transfer

• Define a specific intensity "vector": $\mathbf{I}_{\nu} = (\Theta_{\parallel}, \Theta_{\perp}, U, V)$ where $\Theta = \Theta_{\parallel} + \Theta_{\perp}, Q = \Theta_{\parallel} - \Theta_{\perp}$

$$\frac{d\mathbf{I}_{\nu}}{d\eta} = \dot{\tau}(\mathbf{S}_{\nu} - \mathbf{I}_{\nu})$$

Thomson collision
 based on differential cross section

$$\frac{d\sigma_T}{d\Omega} = \frac{3}{8\pi} |\hat{\mathbf{E}}' \cdot \hat{\mathbf{E}}|^2 \sigma_T,$$



Polarized Radiative Transfer

- $\hat{\mathbf{E}}'$ and $\hat{\mathbf{E}}$ denote the incoming and outgoing directions of the electric field or polarization vector.
- Thomson scattering by 90 deg: $\Theta_{\perp} \to \Theta_{\perp}$ but Θ_{\parallel} does not scatter
- More generally if Θ is the scattering angle

$$\mathbf{S}_{\nu} = \frac{3}{8\pi} \int d\Omega' \begin{pmatrix} \cos^2 \Theta & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & \cos \Theta & 0 \\ 0 & 0 & 0 & \cos \Theta \end{pmatrix} \mathbf{I}'_{\nu}$$

 But to calculate Stokes parameters in a fixed coordinate system must rotate into the scattering basis, scatter and rotate back out to the fixed coordinate system

Thomson Collision Term

• The $U \to U'$ transfer follows by writing down the polarization vectors in the 45° rotated basis

$$\hat{\mathbf{E}}_1 = \frac{1}{\sqrt{2}}(\hat{\mathbf{E}}_{\parallel} + \hat{\mathbf{E}}_{\perp}), \qquad \hat{\mathbf{E}}_2 = \frac{1}{\sqrt{2}}(\hat{\mathbf{E}}_{\parallel} - \hat{\mathbf{E}}_{\perp})$$

Define the temperature in this basis

$$\begin{aligned} \Theta_1 &\propto |\hat{\mathbf{E}}_1 \cdot \hat{\mathbf{E}}_1|^2 \Theta_1' + |\hat{\mathbf{E}}_1 \cdot \hat{\mathbf{E}}_2|^2 \Theta_2' \\ &\propto \frac{1}{4} (\cos \beta + 1)^2 \Theta_1' + \frac{1}{4} (\cos \beta - 1)^2 \Theta_2' \\ &\Theta_2 &\propto |\hat{\mathbf{E}}_2 \cdot \hat{\mathbf{E}}_2|^2 \Theta_2' + |\hat{\mathbf{E}}_2 \cdot \hat{\mathbf{E}}_1|^2 \Theta_1' \\ &\propto \frac{1}{4} (\cos \beta + 1)^2 \Theta_2' + \frac{1}{4} (\cos \beta - 1)^2 \Theta_1' \\ &\text{or } \Theta_1 - \Theta_2 &\propto \cos \beta (\Theta_1' - \Theta_2') \end{aligned}$$

Scattering Matrix

• Transfer matrix of Stokes state $T \equiv (\Theta, Q + iU, Q - iU)$

$$\mathbf{T} \propto \mathbf{S}(\beta)\mathbf{T}'$$

$$\mathbf{S}(\beta) = \frac{3}{4} \begin{pmatrix} \cos^2 \beta + 1 & -\frac{1}{2} \sin^2 \beta & -\frac{1}{2} \sin^2 \beta \\ -\frac{1}{2} \sin^2 \beta & \frac{1}{2} (\cos \beta + 1)^2 & \frac{1}{2} (\cos \beta - 1)^2 \\ -\frac{1}{2} \sin^2 \beta & \frac{1}{2} (\cos \beta - 1)^2 & \frac{1}{2} (\cos \beta + 1)^2 \end{pmatrix}$$

normalization factor of 3 is set by photon conservation in scattering

Scattering Matrix

• Transform to a fixed basis, by a rotation of the incoming and outgoing states $\mathbf{T} = \mathbf{R}(\psi)\mathbf{T}$ where

$$\mathbf{R}(\psi) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & e^{-2i\psi} & 0 \\ 0 & 0 & e^{2i\psi} \end{pmatrix}$$

giving the scattering matrix

$$\mathbf{R}(-\gamma)\mathbf{S}(\beta)\mathbf{R}(\alpha) =$$

$$\frac{1}{2}\sqrt{\frac{4\pi}{5}}\left(\begin{array}{ccc} Y_2^0(\beta,\alpha) + 2\sqrt{5}Y_0^0(\beta,\alpha) & -\sqrt{\frac{3}{2}}Y_2^{-2}(\beta,\alpha) & -\sqrt{\frac{3}{2}}Y_2^2(\beta,\alpha) \\ -\sqrt{6}\,_2Y_2^0(\beta,\alpha)e^{2i\gamma} & 3\,_2Y_2^{-2}(\beta,\alpha)e^{2i\gamma} & 3\,_2Y_2^2(\beta,\alpha)e^{2i\gamma} \\ -\sqrt{6}\,_{-2}Y_2^0(\beta,\alpha)e^{-2i\gamma} & 3\,_{-2}Y_2^{-2}(\beta,\alpha)e^{-2i\gamma} & 3\,_{-2}Y_2^2(\beta,\alpha)e^{-2i\gamma} \end{array}\right)$$

Addition Theorem for Spin Harmonics

Spin harmonics are related to rotation matrices as

$$_{s}Y_{\ell}^{m}(\theta,\phi) = \sqrt{\frac{2\ell+1}{4\pi}}\mathcal{D}_{-ms}^{\ell}(\phi,\theta,0)$$

Note: for explicit evaluation sign convention differs from usual (e.g. Jackson) by $(-1)^m$

Multiplication of rotations

$$\sum_{m''} \mathcal{D}_{mm''}^{\ell}(\alpha_2, \beta_2, \gamma_2) \mathcal{D}_{m''m}^{\ell}(\alpha_1, \beta_1, \gamma_1) = \mathcal{D}_{mm'}^{\ell}(\alpha, \beta, \gamma)$$

Implies

$$\sum_{m} {}_{s_1}Y_{\ell}^{m*}(\theta', \phi') {}_{s_2}Y_{\ell}^{m}(\theta, \phi) = (-1)^{s_1 - s_2} \sqrt{\frac{2\ell + 1}{4\pi}} {}_{s_2}Y_{\ell}^{-s_1}(\beta, \alpha) e^{is_2 \gamma}$$

Sky Basis

Scattering into the state (rest frame)

$$C_{\text{in}}[\mathbf{T}] = \dot{\tau} \int \frac{d\hat{\mathbf{n}}'}{4\pi} \mathbf{R}(-\gamma) \mathbf{S}(\beta) \mathbf{R}(\alpha) \mathbf{T}(\hat{\mathbf{n}}'),$$

$$= \dot{\tau} \int \frac{d\hat{\mathbf{n}}'}{4\pi} (\Theta', 0, 0) + \frac{1}{10} \dot{\tau} \int d\hat{\mathbf{n}}' \sum_{m=-2}^{2} \mathbf{P}^{(m)}(\hat{\mathbf{n}}, \hat{\mathbf{n}}') \mathbf{T}(\hat{\mathbf{n}}').$$

where the quadrupole coupling term is $\mathbf{P}^{(m)}(\hat{\mathbf{n}}, \hat{\mathbf{n}}') =$

$$\begin{pmatrix} Y_{2}^{m*}(\hat{\mathbf{n}}') Y_{2}^{m}(\hat{\mathbf{n}}) & -\sqrt{\frac{3}{2}} {}_{2}Y_{2}^{m*}(\hat{\mathbf{n}}') Y_{2}^{m}(\hat{\mathbf{n}}) & -\sqrt{\frac{3}{2}} {}_{-2}Y_{2}^{m*}(\hat{\mathbf{n}}') Y_{2}^{m}(\hat{\mathbf{n}}) \\ -\sqrt{6}Y_{2}^{m*}(\hat{\mathbf{n}}') {}_{2}Y_{2}^{m}(\hat{\mathbf{n}}) & 3 {}_{2}Y_{2}^{m*}(\hat{\mathbf{n}}') {}_{2}Y_{2}^{m}(\hat{\mathbf{n}}) & 3 {}_{-2}Y_{2}^{m*}(\hat{\mathbf{n}}') {}_{2}Y_{2}^{m}(\hat{\mathbf{n}}) \\ -\sqrt{6}Y_{2}^{m*}(\hat{\mathbf{n}}') {}_{-2}Y_{2}^{m}(\hat{\mathbf{n}}) & 3 {}_{2}Y_{2}^{m*}(\hat{\mathbf{n}}') {}_{-2}Y_{2}^{m}(\hat{\mathbf{n}}) & 3 {}_{-2}Y_{2}^{m*}(\hat{\mathbf{n}}') {}_{-2}Y_{2}^{m}(\hat{\mathbf{n}}) \end{pmatrix},$$

expression uses angle addition relation above. We call this term C_Q .

Scattering Matrix

• Full scattering matrix involves difference of scattering into and out of state

$$C[\mathbf{T}] = C_{\text{in}}[\mathbf{T}] - C_{\text{out}}[\mathbf{T}]$$

In the electron rest frame

$$C[\mathbf{T}] = \dot{\tau} \int \frac{d\hat{\mathbf{n}}'}{4\pi} (\Theta', 0, 0) - \dot{\tau} \mathbf{T} + C_Q[\mathbf{T}]$$

which describes isotropization in the rest frame. All moments have $e^{-\tau}$ suppression except for isotropic temperature Θ_0 .

Transformation into the background frame simply induces a dipole term

$$C[\mathbf{T}] = \dot{\tau} \left(\hat{\mathbf{n}} \cdot \mathbf{v}_b + \int \frac{d\hat{\mathbf{n}}'}{4\pi} \Theta', 0, 0 \right) - \dot{\tau} \mathbf{T} + C_Q[\mathbf{T}]$$