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Set 5: Polarization
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Stokes Parameters

e Specific intensity 1s related to quadratic combinations of the field.

e Define the intensity matrix (time averaged over oscillations)
(EET)

e Hermitian matrix can be decomposed into Pauli matrices

1
P:<EET>:§(IUO+Q03+U‘71_VU2)’

where

1 0 0 1 0 —2 1 0
O) = ,O1 = , 092 = , O3 =
0 1 1 0 : 0 0 —1

e Stokes parameters recovered as Tr(o;P)



Stokes Parameters

e Consider a general plane wave solution

E(ta Z) — El (ta Z)él + EQ(ta Z)é2
Ei(t,z) = A el eilkz—wt)
Es(t, z) = Ase™? el(kz—wt)

e Explicitly:

[ = (BB} + B:E3) = A} + A2

Q = (E\E} — EyE3) = Al — A;

U= (B\Ej + B2 Ef) = 2A, Ay cos(¢a — 1)

V = —i(E\E} — ExEY) = 24, Ay sin(¢s — ¢1)

so that the Stokes parameters define the state up to an
unobservable overall phase of the wave



Detection

e This suggests that T

€ €
abstractly there are two U omt 2
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e In the correlator example the natural output would be U but one
can recover V' by introducing a phase lag ¢ = /2 on one arm, and
() by having the OMT pick out directions rotated by 7 /4.

e Likewise, in the bolometer example, one can rotate the polarizer
and also introduce a coherent front end to change V' to U.



Detection

e Techniques also differ in the systematics that can convert
unpolarized sky to fake polarization

e Differencing detectors are sensitive to relative gain fluctuations

e Correlation detectors are sensitive to cross coupling between the
arms

e More generally, the intended block diagram and systematic
problems map components of the polarization matrix onto others
and are kept track of through “Jones” or instrumental response
matrices Eq. = JE;,

Pdet — J]-Dan]L

where the end result 1s either a differencing or a correlation of the
Pdet-



Polarization

e Radiation field involves a directed quantity, the electric field
vector, which defines the polarization

e Consider a general plane wave solution
E(ta Z) — El (ta Z)él =+ EQ(t7 Z)éQ

Ei(t, z) = ReA;e1eibz—wt)

Es(t, z) = ReAye?2eilkz—wt)
or at z = 0 the field vector traces out an ellipse

E(t, O) E— Al COS(Cdt — le)él —+ AQ COS(CUt — ng)ég
with principal axes defined by
E(t,0) = A} cos(wt)é] — A} sin(wt)é,

so as to trace out a clockwise rotation for A7, A;, > 0



Polarization

e Define polarization angle

~/ ~ . A
€; = COs x€1 + Sl x€s

A

/ . A A
€, = — SIn Y€1 + COoS X €2

e Match

E(t,0) = A] coswt[cos y€; + sin yé,]
— A, cos wt|— sin y€; + cos x€s)
= Ai[cos ¢y cos wt + sin ¢ sin wt|e;

+ As|cos ¢ cos wt + sin ¢g sin wit|és




Polarization
e Define relative strength of two principal states
Al = Eycos A, = Eysinf3
e Characterize the polarization by two angles
Ajcos ¢y = Eycos fcosy, Ajqsin¢; = Eysin 8 sin vy,
Ay cos ¢y = Eycos fsin vy, Ay sin g = —FEjy sin 5 cos
Or Stokes parameters by
[ =E;, Q= Ejcos23cos2y
U= E5cos2Bsin2y, V = Ejsin2f

o So I? = (Q* + U? + V#, double angles reflect the spin 2 field or
headless vector nature of polarization



Polarization

Special cases

e If 3 = 0,7/2, 7w then only one principal axis, ellipse collapses to a
line and V' = 0 — linear polarization oriented at angle

If y=0,7/2,mthen ] =+Q and U =0
If y=n/4,37/4...then ] = +U and Q) =0-soU is Q) ina
frame rotated by 45 degrees

o If 5 = 7 /4,3m/4, then principal components have equal strength

and F field rotatesonacircle: [ =+Vand @ =U =0 —
circular polarization

e U/() = tan 2y defines angle of linear polarization and
V /I = sin 25 defines degree of circular polarization



Natural Light

e A monochromatic plane wave 1s completely polarized
P=Q*+U*+V?

e Polarization matrix 1s like a density matrix in quantum mechanics
and allows for pure (coherent) states and mixed states

e Suppose the total E;; field 1s composed of different (frequency)
components

Etot — Z Ei

e Then components decorrelate in time average

(BwEle) =Y (BE])) =Y (BE])

1 )



Natural Light

e So Stokes parameters of incoherent contributions add

I=) 1 Q=) Q U= U V=)V

and since individual (), U and V' can have either sign:
I* > Q? + U? + V72, all 4 Stokes parameters needed



Linear Polarization
o ) x (E1EY) — (EuE3), U o< (E1ES) + (EyEY).
e Counterclockwise rotation of axes by 6 = 45°
By = (B, —E)/V2, Ey,=(E,+E)/V?2

o U x (EE*) — (EyES), difference of intensities at 45° or '
e More generally, P transforms as a tensor under rotations and

Q' = cos(20)Q + sin(20)U

U' = —sin(20)Q + cos(20)U

or
Q' +iU = eT[Q + iU

acquires a phase under rotation and 1s a spin +2 object



Coordinate Independent Representation

e Two directions: orientation of polarization and change in
amplitude, i.e. () and U in the basis of the Fourier wavevector

(pointing with angle ¢;) for small sections of sky are called £ and
B components

E(1) £4B(1) = — / di[Q' () 4 iU’ (f)]e "™

= —eTH / da[Q(n) £ iU (f)]e "™

e For the B-mode to not vanish, the polarization must point in a
direction not related to the wavevector - not possible for density
fluctuations in linear theory

e Generalize to all-sky: plane waves are eigenmodes of the Laplace
operator on the tensor P.



Spin Harmonics

e Laplace Eigenfunctions

VQiQYEm[O'?, Fio| = —[l(l+1) —4]Y|o3 Fioq]

e Spin s spherical harmonics: orthogonal and complete

/dﬂs}/em( ) Yvém( )— 5@6’5mm’

an )sYem(B') = 6(¢ — ¢)d(cos 0 — cos ¢')

where the ordinary spherical harmonics are Yy,,, = oY

e (Given 1n terms of the rotation matrix

2€—|—1
47

snm(ﬁg) — (_1) (0450)



Statistical Representation

e All-sky decomposition

Q1) +iU(R)] = > [Epm £ iBom]2Yim(0)

m

e Power spectra

<EZmE€m> — 5@8’5mm’ EEE

<BZmB€m> — 5@6’5mm’ KBB
e Cross correlation
<EZmE€m> — 5%’5mm’C[@E

others vanish if parity 1s conserved



Thomson Scattering

e Polarization state of radiation in direction n described by the
intensity matrix ( F;(n)E?(n)), where E is the electric field vector
and the brackets denote time averaging.

e Differential cross section

do
df)

where o = 8ma?/3m, is the Thomson cross section, E' and E

3 . .
= —W]E’-E\QJT,

denote the incoming and outgoing directions of the electric field or
polarization vector.

e Summed over angle and incoming polarization

> [l

1=1,2



Polarization Generation

y E—-mode

e Heuristic:

B—mode k —>

e But photon cannot be longitudinally polarized so that scattering

. . . . Quadrupole
incoming radiation shakes J

. . . Thomson

an electron 1n direction Scattering )

. ~ <
of electric field vector E’

Linear
Polarization

N)

e Radiates photon with
polarization also in direction E’

into 90° can only pass one polarization
e Linearly polarized radiation like polarization by reflection
e Unlike reflection of sunlight, incoming radiation 1s nearly 1sotropic
e Missing from direction orthogonal to original incoming direction

e Only quadrupole anisotropy generates polarization by Thomson
scattering



Acoustic Polarization

Break down of tight-coupling leads to quadrupole anisotropy of

k
7T,y ~ ;/U'Y
Scaling kp = (7/n.)Y? — 7 = k%,
Know: kps, ~ kpn, ~ 10

So:



Acoustic Polarization

e Gradient of velocity 1s along direction of wavevector, so
polarization 1s pure f~-mode

e Velocity 1s 90° out of phase with temperature — turning points of
oscillator are zero points of velocity:

© + VU  cos(ks); v, o< sin(ks)

e Polarization peaks are at troughs of temperature power



Cross Correlation

e Cross correlation of temperature and polarization

(© 4+ ¥)(v,) x cos(ks)sin(ks) o sin(2ks)
e Oscillation at twice the frequency

e Correlation: radial or tangential around hot spots

e Partial correlation: easier to measure if polarization data 1s noisy,
harder to measure if polarization data is high S/ or if bands do
not resolve oscillations

e Good check for systematics and foregrounds

e Comparison of temperature and polarization 1s proof against
features 1n 1nitial conditions mimicking acoustic features



Polarization Power
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Angular Moments

e Define the angularly dependent Stokes perturbation

O(x,n,7), Qx,n,n), Ux,n,n)

e Decompose into normal modes: plane waves for spatial part and
spherical harmonics for angular part

G (k,x,n) = 2€+ 1Y€ ) exp(ik - x)
LGk, x,n) = ( \/%JrlizYe ) exp(ik - x)

e In a spatially curved universe generalize the plane wave part



Normal Modes

e Temperature and polarization fields

X Ak (m) ~m
@(X,ﬂ,?’]) = WZ@K Gﬁ

3
O +iU](x. h, —/ K 5 LB £ B G

e For each k mode, work in coordinates where k || z and so m = 0
represents scalar modes, m = +1 vector modes, m = +2 tensor
modes, |m| > 2 vanishes. Since modes add incoherently and
() £ U 1is invariant up to a phase, rotation back to a fixed
coordinate system is trivial.



Liouville Equation

e In absence of scattering, the phase space distribution of photons in
each polarization state a 1s conserved along the propagation path

e Rewrite variables in terms of the photon propagation direction
q = ¢n, 50 fo(x,1,¢,7) and

%fa(xa ﬂaQan) =0
_<a ix & dh 0 dg a>f

3n+dnoﬁx+dn.5’ﬂ+dn.8q

e For simplicity, assume spatially flat universe K = 0 then
dn/dn = 0 and dx = ndn

fa_l—n vfa—l_q fa—o



Scalar, Vector, Tensor

e Normalization of modes 1s chosen so that the lowest angular mode
for scalars, vectors and tensors are normalized 1in the same way as
the mode function

Go=Q0 GY=n'Q” GYoxnin’Q)
Gl = niQEﬂ) Gt niang;tl)

G§t2 — n'n? QS’E”

where recall

QY = exp(ik-x)
Qgil) = _—Z(él + zég)zexp(zk . X)

V2
3. . . . .
QS-EQ) —\/g(el + 1€5);(€1 £ i€2),exp(ik - x)



Geometrical Projection

e Main content of Liouville equation 1s purely geometrical and
describes the projection of inhomogeneities into anisotropies

e Spatial gradient term hits plane wave:

. . 4 .
n- Ve** = in - ke™™ = i/ %leo(fl)eZk'x

e Dipole term adds to angular dependence through the addition of
angular momentum

4 K" K"
—YOYm: 14 Y’riL + (+1 Ym
V3t T Jeirnei-n Y Jeir @iy

where k7' = /(2 — m? is given by Clebsch-Gordon coefficients.




Temperature Hierarchy

e Absorb recoupling of angular momentum into evolution equation
for normal modes

. K/

204+1 1 2043 | =7 + 5

where Sém) are the gravitational (and later scattering sources;
added scattering suppression of anisotropy)

e An originally isotropic £ = 0 temperature perturbation will
eventually become a high order anisotropy by “free streaming” or
simple projection

e Original CMB codes solved the full hierarchy equations out to the
¢ of interest.



Integral Solution

e Hierarchy equation simply represents geometric projection,
exactly as we have seen before in the projection of temperature
perturbations on the last scattering surface

e In general, the solution describes the decomposition of the source
Sém) with its local angular dependence as seen at a distance
x = Dn.

e Proceed by decomposing the angular dependence of the plane
wave

e =N (—i)'/Am(20 + 1)jo(kD)Y, (h)

e Recouple to the local angular dependence of G

G = (—i)'\/4Ar (20 + 1)oyy (kD)Y{™ (1)




Integral Solution

e Projection kernels:

e Power spectrum:

2 [ dk ~ k30" el™)
Cg_%/?; (20 + 1)

e Solving for C; reduces to solving for the behavior of a handful of

SOUrces



Polarization Hierarchy

e In the same way, the coupling of a gradient or dipole angular
momentum to the spin harmonics leads to the polarization
hierarchy:

. m 2m 2Ky,
E(m) — L 2k E(’m) o B(m) - +1 E(m) o 'E(’m) g(m)
¢ [%—J SR 2 DI 20+ | TR T

2/432"’
20 — 1

2m E(m) . 2"{?3!/—1
+1)° 20 + 3

B = k| 2B + B - B + B

where ok7' = /(02 — m?2)(¢2 — 4)/¢2 is given by the
Clebsch-Gordon coefficients and &£, BB are the sources (scattering
only).

e Note that for vectors and tensors |m| > 0 and B modes may be
generated from £ modes by projection. Cosmologically Bém) = 0



Polarization Integral Solution

e Again, we can recouple the plane wave angular momentum of the
source inhomogeneity to its local angular dependence directly

E(m)(ka 770) 0 —T

Bém)(]{7 o
20 + 1

)2/077 dne="E™ B (k(mo — 1))

e The only source to the polarization i1s from the quadrupole
anisotropy so we only need ¢, = 2, e.g. for scalars

0 3(+2)! je() 0
e;2<:c>\/§(€2)! o By =0




Gravitational Terms

e As in our Newtonian gauge calculation, gravitational terms - now
including vectors and tensors in an arbitrary gauge, come from the
geodesic equation

o First define the slicing (lapse function A, shift function B*)

g" = —a (1 -24),
O = —a2Bi
A defines the lapse of proper time between 3-surfaces whereas B®

defines the threading or relationship between the 3-coordinates of
the surfaces



Gravitational Terms

e This absorbs 1+3=4 degrees of freedom 1n the metric, remaining 6
1s 1n the spatial surfaces which we parameterize as

g9 = a*(y? —2H Y — 2H§;7)

here (1) H;, a perturbation to the spatial curvature; (5) H ;:7 a
trace-free distortion to spatial metric (which also can perturb the
curvature)

e Geodesic equation gives the redshifting term

) a 1 . .. . . )
g = —— — —n’nJHTij — HL -+ nZBi — 1 VA
q a 2

which is incorporated in the conservation and gauge

transformation equations



Source Terms

e Temperature source terms Sl(m) (rows +|m/|; flat assumption

(0 - HY #”+BO PO 20

0 Fos™) 4 BED pED 3 D
\ 0 0 PP — g
where
1 m m
P = (05" — VBE,™)

10

e Polarization source term

Eg(m) = —7V6P™ 5,
B =0



Truncated Hierarchy

e CMBPFast introduced the hybrid truncated hierarchy, integral
solution technique

e Formal integral solution contains sources that are not external to
system but defined through the Boltzmann hierarchy itself

e Solution: recall that we used this technique in the tight coupling
regime by applying a closure condition from tight coupling

e CMBPFast extends this 1dea by solving a truncated hierarchy of
equations, e.g. out to £ = 25 with non-reflecting boundary
conditions

e For completeness, we explicitly derive the scattering source term
via polarized radiative transfer in the last part of the notes



Polarized Radiative Transfer

o Define a specific intensity “vector”™: I, = (0,0, U, V') where
@:@|\+@l’Q:@|l — 0O,

dl,
=7(S, — 1
d77 ( 4 V)
e Thomson collision Ae;I
based on differential cross section e- Thomson
Te > \' Scattering
dO'T 3 ‘E/ E‘Q ©
- = . g
dQ) ST o v




Polarized Radiative Transfer

E’ and E denote the incoming and outgoing directions of the
electric field or polarization vector.

Thomson scattering by 90 deg: ©;, — ©, but © does not scatter

More generally if O is the scattering angle

( cos’® 0 0 0 \
0 1 0 0

s, =~ [ ao I

ST 0 0 cos® 0

\ 0 0 0 COS@)

But to calculate Stokes parameters in a fixed coordinate system
must rotate into the scattering basis, scatter and rotate back out to
the fixed coordinate system



Thomson Collision Term

e The U — U’ transfer follows by writing down the polarization
vectors 1n the 45° rotated basis

A 1 . A
E, = E(EII +E1), E, =

e Define the temperature in this basis

%(E ~E))

0, x |E; - E{|?0 + |E; - E, |6,
1

1
x Z(COSB +1)*0 + Z(COSB —1)%6,

O, x |E, - By 20, + |E, - E, 26,
1 1
x Z(COS@ +1)*0, + Z(cosﬁ —1)%@]

or @1 — @2 X COS 6(6/1 _ 6/2)



Scattering Matrix
e Transfer matrix of Stokes state T' = (O, () + U, Q) — :U)

T oc S(8)T"
3 / cos” B+ 1 —2sin’ 8 —Lsin? 3 \
S(6) = 1 —% sin” %(Cosﬁ + 1)? %(COSB — 1)
\ —% sin? %(cosﬁ — 1)2 %(0056 4+ 1)2 )

normalization factor of 3 1s set by photon conservation in scattering



Scattering Matrix

e Transform to a fixed basis, by a rotation of the incoming and
outgoing states T = R(v)T where

(1

Ry)=10 e

\ 0

giving the scattering matrix

R(—7)S(B)R(a) =

. Y2(8, @) + 2v5Y5 (8, @)

s\ & —V6,Y5 (B, a)e*™
—\/6—23/20(5704)6_27;7

0

0

0 )
0
o201 )

—\/gyf (57 Oé)
3 2Y22 (57 a)e2i7
3 oYy (8, 04)6_%



Addition Theorem for Spin Harmonics

e Spin harmonics are related to rotation matrices as

20 1
Y70, 6) = || =D u(6,0,0)

Note: for explicit evaluation sign convention differs from usual
(e.g. Jackson) by (—1)™

e Multiplication of rotations
ZD m’’ 042752772) mlaa, B1,71) = Dfnm/(@,@ﬁ)

e Implies

mx [/ n/ / m 51—S82 2€ T 1 —81 159
Z 31Y£ ( 7¢) SQYvﬁ ((97¢) — (_1) 47T SQYE (ﬁ,@)e !

m




Sky Basis

e Scattering into the state (rest frame)

dn’

T =
Cin|T] =17 y

—R(—7)S(B)R(a)T (1),

/d (©,0,0) + —T/d ZP"”)ﬁﬁ T(n') .

m=—2

where the quadrupole coupling term is P™) (fi, h’) =

V) YR) /) Y R) /S e () Ye ()
—VOYZ™(0) Y3 () 3,Y3M(R),Y5M(R) 3 LY (), Y5 ()
—\/_Y2m*( )—2Y2 ( ) 32Y2m*( ) Yo" ( ) 3—2Y2m*( )—QYQ ( )

expression uses angle addition relation above. We call this term
Co.

Y



Scattering Matrix

e Full scattering matrix involves difference of scattering into and out
of state

e In the electron rest frame

CIT) =+ [ T5(0/,0,0) ~ T+ Col1]

which describes 1sotropization in the rest frame. All moments have
e~ suppression except for isotropic temperature ©y.
Transformation into the background frame simply induces a dipole
term

C[T] = + (n vb+/—@’ 0 0) — 7T + Cg[T]



