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Stokes Parameters
• Specific intensity is related to quadratic combinations of the field.

• Define the intensity matrix (time averaged over oscillations)
〈EE†〉

• Hermitian matrix can be decomposed into Pauli matrices

P =
〈
EE†

〉
=

1

2
(Iσ0 +Qσ3 + U σ1 − V σ2) ,

where

σ0 =

(
1 0

0 1

)
,σ1 =

(
0 1

1 0

)
,σ2 =

(
0 −i
i 0

)
,σ3 =

(
1 0

0 −1

)

• Stokes parameters recovered as Tr(σiP)



Stokes Parameters
• Consider a general plane wave solution

E(t, z) = E1(t, z)ê1 + E2(t, z)ê2

E1(t, z) = A1e
iφ1ei(kz−ωt)

E2(t, z) = A2e
iφ2ei(kz−ωt)

• Explicitly:

I = 〈E1E
∗
1 + E2E

∗
2〉 = A2

1 + A2
2

Q = 〈E1E
∗
1 − E2E

∗
2〉 = A2

1 − A2
2

U = 〈E1E
∗
2 + E2E

∗
1〉 = 2A1A2 cos(φ2 − φ1)

V = −i 〈E1E
∗
2 − E2E

∗
1〉 = 2A1A2 sin(φ2 − φ1)

so that the Stokes parameters define the state up to an
unobservable overall phase of the wave



Detection
.
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• This suggests that
abstractly there are two
different ways to detect
polarization: separate
and difference orthogonal
modes (bolometers I , Q)
or correlate the separated
components (U , V ).

• In the correlator example the natural output would be U but one
can recover V by introducing a phase lag φ = π/2 on one arm, and
Q by having the OMT pick out directions rotated by π/4.

• Likewise, in the bolometer example, one can rotate the polarizer
and also introduce a coherent front end to change V to U .



Detection
• Techniques also differ in the systematics that can convert

unpolarized sky to fake polarization

• Differencing detectors are sensitive to relative gain fluctuations

• Correlation detectors are sensitive to cross coupling between the
arms

• More generally, the intended block diagram and systematic
problems map components of the polarization matrix onto others
and are kept track of through “Jones” or instrumental response
matrices Edet = JEin

Pdet = JPinJ
†

where the end result is either a differencing or a correlation of the
Pdet.



Polarization
• Radiation field involves a directed quantity, the electric field

vector, which defines the polarization

• Consider a general plane wave solution

E(t, z) = E1(t, z)ê1 + E2(t, z)ê2

E1(t, z) = ReA1e
iφ1ei(kz−ωt)

E2(t, z) = ReA2e
iφ2ei(kz−ωt)

or at z = 0 the field vector traces out an ellipse

E(t, 0) = A1 cos(ωt− φ1)ê1 + A2 cos(ωt− φ2)ê2

with principal axes defined by

E(t, 0) = A′1 cos(ωt)ê′1 − A′2 sin(ωt)ê′2

so as to trace out a clockwise rotation for A′1, A
′
2 > 0



Polarization
.
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• Define polarization angle

ê′1 = cosχê1 + sinχê2

ê′2 = − sinχê1 + cosχê2

• Match

E(t, 0) = A′1 cosωt[cosχê1 + sinχê2]

− A′2 cosωt[− sinχê1 + cosχê2]

= A1[cosφ1 cosωt+ sinφ1 sinωt]ê1

+ A2[cosφ2 cosωt+ sinφ2 sinωt]ê2



Polarization
• Define relative strength of two principal states

A′1 = E0 cos β A′2 = E0 sin β

• Characterize the polarization by two angles

A1 cosφ1 = E0 cos β cosχ, A1 sinφ1 = E0 sin β sinχ,

A2 cosφ2 = E0 cos β sinχ, A2 sinφ2 = −E0 sin β cosχ

Or Stokes parameters by

I = E2
0 , Q = E2

0 cos 2β cos 2χ

U = E2
0 cos 2β sin 2χ , V = E2

0 sin 2β

• So I2 = Q2 + U2 + V 2, double angles reflect the spin 2 field or
headless vector nature of polarization



Polarization
Special cases

• If β = 0, π/2, π then only one principal axis, ellipse collapses to a
line and V = 0→ linear polarization oriented at angle χ

If χ = 0, π/2, π then I = ±Q and U = 0

If χ = π/4, 3π/4... then I = ±U and Q = 0 - so U is Q in a
frame rotated by 45 degrees

• If β = π/4, 3π/4, then principal components have equal strength
and E field rotates on a circle: I = ±V and Q = U = 0→
circular polarization

• U/Q = tan 2χ defines angle of linear polarization and
V/I = sin 2β defines degree of circular polarization



Natural Light
• A monochromatic plane wave is completely polarized
I2 = Q2 + U2 + V 2

• Polarization matrix is like a density matrix in quantum mechanics
and allows for pure (coherent) states and mixed states

• Suppose the total Etot field is composed of different (frequency)
components

Etot =
∑
i

Ei

• Then components decorrelate in time average〈
EtotE

†
tot

〉
=
∑
ij

〈
EiE

†
j

〉
=
∑
i

〈
EiE

†
i

〉



Natural Light
• So Stokes parameters of incoherent contributions add

I =
∑
i

Ii Q =
∑
i

Qi U =
∑
i

Ui V =
∑
i

Vi

and since individual Q, U and V can have either sign:
I2 ≥ Q2 + U2 + V 2, all 4 Stokes parameters needed



Linear Polarization
• Q ∝ 〈E1E

∗
1〉 − 〈E2E

∗
2〉, U ∝ 〈E1E

∗
2〉+ 〈E2E

∗
1〉.

• Counterclockwise rotation of axes by θ = 45◦

E1 = (E ′1 − E ′2)/
√

2 , E2 = (E ′1 + E ′2)/
√

2

• U ∝ 〈E ′1E
′∗
1 〉 − 〈E ′2E

′∗
2 〉, difference of intensities at 45◦ or Q′

• More generally, P transforms as a tensor under rotations and

Q′ = cos(2θ)Q+ sin(2θ)U

U ′ = − sin(2θ)Q+ cos(2θ)U

or

Q′ ± iU ′ = e∓2iθ[Q± iU ]

acquires a phase under rotation and is a spin ±2 object



Coordinate Independent Representation
• Two directions: orientation of polarization and change in

amplitude, i.e. Q and U in the basis of the Fourier wavevector
(pointing with angle φl) for small sections of sky are called E and
B components

E(l)± iB(l) = −
∫
dn̂[Q′(n̂)± iU ′(n̂)]e−il·n̂

= −e∓2iφl

∫
dn̂[Q(n̂)± iU(n̂)]e−il·n̂

• For the B-mode to not vanish, the polarization must point in a
direction not related to the wavevector - not possible for density
fluctuations in linear theory

• Generalize to all-sky: plane waves are eigenmodes of the Laplace
operator on the tensor P.



Spin Harmonics
• Laplace Eigenfunctions

∇2
±2Y`m[σ3 ∓ iσ1] = −[l(l + 1)− 4]±2Y`m[σ3 ∓ iσ1]

• Spin s spherical harmonics: orthogonal and complete∫
dn̂sY

∗
`m(n̂)sY`m(n̂) = δ``′δmm′∑

`m

sY
∗
`m(n̂)sY`m(n̂′) = δ(φ− φ′)δ(cos θ − cos θ′)

where the ordinary spherical harmonics are Y`m = 0Y`m

• Given in terms of the rotation matrix

sY`m(βα) = (−1)m
√

2`+ 1

4π
D`
−ms(αβ0)



Statistical Representation
• All-sky decomposition

[Q(n̂)± iU(n̂)] =
∑
`m

[E`m ± iB`m]±2Y`m(n̂)

• Power spectra

〈E∗`mE`m〉 = δ``′δmm′C
EE
`

〈B∗`mB`m〉 = δ``′δmm′C
BB
`

• Cross correlation

〈E∗`mE`m〉 = δ``′δmm′C
ΘE
`

others vanish if parity is conserved



Thomson Scattering
• Polarization state of radiation in direction n̂ described by the

intensity matrix
〈
Ei(n̂)E∗j (n̂)

〉
, where E is the electric field vector

and the brackets denote time averaging.

• Differential cross section

dσ

dΩ
=

3

8π
|Ê′ · Ê|2σT ,

where σT = 8πα2/3me is the Thomson cross section, Ê′ and Ê

denote the incoming and outgoing directions of the electric field or
polarization vector.

• Summed over angle and incoming polarization∑
i=1,2

∫
dn̂′

dσ

dΩ
= σT



Polarization Generation
. E–mode

B–modee–

Linear
Polarization

Thomson
Scattering

Quadrupole

x k

y

z

• Heuristic:
incoming radiation shakes
an electron in direction
of electric field vector Ê′

• Radiates photon with
polarization also in direction Ê′

• But photon cannot be longitudinally polarized so that scattering
into 90◦ can only pass one polarization

• Linearly polarized radiation like polarization by reflection

• Unlike reflection of sunlight, incoming radiation is nearly isotropic

• Missing from direction orthogonal to original incoming direction

• Only quadrupole anisotropy generates polarization by Thomson
scattering



Acoustic Polarization
• Break down of tight-coupling leads to quadrupole anisotropy of

πγ ≈
k

τ̇
vγ

• Scaling kD = (τ̇ /η∗)
1/2 → τ̇ = k2

Dη∗

• Know: kDs∗ ≈ kDη∗ ≈ 10

• So:

πγ ≈
k

kD

1

10
vγ

∆P ≈
`

`D

1

10
∆T



Acoustic Polarization
• Gradient of velocity is along direction of wavevector, so

polarization is pure E-mode

• Velocity is 90◦ out of phase with temperature – turning points of
oscillator are zero points of velocity:

Θ + Ψ ∝ cos(ks); vγ ∝ sin(ks)

• Polarization peaks are at troughs of temperature power



Cross Correlation
• Cross correlation of temperature and polarization

(Θ + Ψ)(vγ) ∝ cos(ks) sin(ks) ∝ sin(2ks)

• Oscillation at twice the frequency

• Correlation: radial or tangential around hot spots

• Partial correlation: easier to measure if polarization data is noisy,
harder to measure if polarization data is high S/N or if bands do
not resolve oscillations

• Good check for systematics and foregrounds

• Comparison of temperature and polarization is proof against
features in initial conditions mimicking acoustic features



Polarization Power
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Angular Moments
• Define the angularly dependent Stokes perturbation

Θ(x, n̂, η), Q(x, n̂, η), U(x, n̂, η)

• Decompose into normal modes: plane waves for spatial part and
spherical harmonics for angular part

Gm
` (k,x, n̂) ≡ (−i)`

√
4π

2`+ 1
Y m
` (n̂) exp(ik · x)

±2G
m
` (k,x, n̂) ≡ (−i)`

√
4π

2`+ 1
±2Y

m
` (n̂) exp(ik · x)

• In a spatially curved universe generalize the plane wave part



Normal Modes
• Temperature and polarization fields

Θ(x, n̂, η) =

∫
d3k

(2π)3

∑
`m

Θ
(m)
` Gm

`

[Q± iU ](x, n̂, η) =

∫
d3k

(2π)3

∑
`m

[E
(m)
` ± iB(m)

` ]±2G
m
`

• For each k mode, work in coordinates where k ‖ z and so m = 0

represents scalar modes, m = ±1 vector modes, m = ±2 tensor
modes, |m| > 2 vanishes. Since modes add incoherently and
Q± iU is invariant up to a phase, rotation back to a fixed
coordinate system is trivial.



Liouville Equation
• In absence of scattering, the phase space distribution of photons in

each polarization state a is conserved along the propagation path

• Rewrite variables in terms of the photon propagation direction
q = qn̂, so fa(x, n̂, q, η) and

d

dη
fa(x, n̂, q, η) = 0

=

(
∂

∂η
+
dx

dη
· ∂
∂x

+
dn̂

dη
· ∂
∂n̂

+
dq

dη
· ∂
∂q

)
fa

• For simplicity, assume spatially flat universe K = 0 then
dn̂/dη = 0 and dx = n̂dη

ḟa + n̂ · ∇fa + q̇
∂

∂q
fa = 0



Scalar, Vector, Tensor
• Normalization of modes is chosen so that the lowest angular mode

for scalars, vectors and tensors are normalized in the same way as
the mode function

G0
0 = Q(0) G0

1 = niQ
(0)
i G0

2 ∝ ninjQ
(0)
ij

G±1
1 = niQ

(±1)
i G±1

2 ∝ ninjQ
(±1)
ij

G±2
2 = ninjQ

(±2)
ij

where recall

Q(0) = exp(ik · x)

Q
(±1)
i =

−i√
2

(ê1 ± iê2)iexp(ik · x)

Q
(±2)
ij = −

√
3

8
(ê1 ± iê2)i(ê1 ± iê2)jexp(ik · x)



Geometrical Projection
• Main content of Liouville equation is purely geometrical and

describes the projection of inhomogeneities into anisotropies

• Spatial gradient term hits plane wave:

n̂ · ∇eik·x = in̂ · keik·x = i

√
4π

3
kY 0

1 (n̂)eik·x

• Dipole term adds to angular dependence through the addition of
angular momentum√

4π

3
Y 0

1 Y
m
` =

κm`√
(2`+ 1)(2`− 1)

Y m
`−1 +

κm`+1√
(2`+ 1)(2`+ 3)

Y m
`+1

where κm` =
√
`2 −m2 is given by Clebsch-Gordon coefficients.



Temperature Hierarchy
• Absorb recoupling of angular momentum into evolution equation

for normal modes

Θ̇
(m)
` = k

[
κm`

2`+ 1
Θ

(m)
`−1 −

κm`+1

2`+ 3
Θ

(m)
`+1

]
− τ̇Θ

(m)
` + S

(m)
`

where S(m)
` are the gravitational (and later scattering sources;

added scattering suppression of anisotropy)

• An originally isotropic ` = 0 temperature perturbation will
eventually become a high order anisotropy by “free streaming” or
simple projection

• Original CMB codes solved the full hierarchy equations out to the
` of interest.



Integral Solution
• Hierarchy equation simply represents geometric projection,

exactly as we have seen before in the projection of temperature
perturbations on the last scattering surface

• In general, the solution describes the decomposition of the source
S

(m)
` with its local angular dependence as seen at a distance

x = Dn̂.

• Proceed by decomposing the angular dependence of the plane
wave

eik·x =
∑
`

(−i)`
√

4π(2`+ 1)j`(kD)Y 0
` (n̂)

• Recouple to the local angular dependence of Gm
`

Gm
`s =

∑
`

(−i)`
√

4π(2`+ 1)α
(m)
`s`

(kD)Y m
` (n̂)



Integral Solution
• Projection kernels:

`s = 0, m = 0 α
(0)
0` ≡ j`

`s = 1, m = 0 α
(0)
1` ≡ j′`

• Integral solution:

Θ
(m)
` (k, η0)

2`+ 1
=

∫ η0

0

dηe−τ
∑
`s

S
(m)
`s

α
(m)
`s`

(k(η0 − η))

• Power spectrum:

C` =
2

π

∫
dk

k

∑
m

k3〈Θ(m)∗
` Θ

(m)
` 〉

(2`+ 1)2

• Solving for C` reduces to solving for the behavior of a handful of
sources



Polarization Hierarchy
• In the same way, the coupling of a gradient or dipole angular

momentum to the spin harmonics leads to the polarization
hierarchy:

Ė
(m)
` = k

[
2κ

m
`

2`− 1
E

(m)
`−1 −

2m

`(`+ 1)
B

(m)
` − 2κ

m
`+1

2`+ 3
E

(m)
`+1

]
− τ̇E(m)

` + E (m)
`

Ḃ
(m)
` = k

[
2κ

m
`

2`− 1
B

(m)
`−1 +

2m

`(`+ 1)
E

(m)
` − 2κ

m
`+1

2`+ 3
B

(m)
`+1

]
− τ̇B(m)

` + B(m)
`

where 2κ
m
` =

√
(`2 −m2)(`2 − 4)/`2 is given by the

Clebsch-Gordon coefficients and E , B are the sources (scattering
only).

• Note that for vectors and tensors |m| > 0 and B modes may be
generated from E modes by projection. Cosmologically B(m)

` = 0



Polarization Integral Solution
• Again, we can recouple the plane wave angular momentum of the

source inhomogeneity to its local angular dependence directly

E
(m)
` (k, η0)

2`+ 1
=

∫ η0

0

dηe−τE (m)
`s

ε
(m)
`s`

(k(η0 − η))

B
(m)
` (k, η0)

2`+ 1
=

∫ η0

0

dηe−τE (m)
`s

β
(m)
`s`

(k(η0 − η))

• The only source to the polarization is from the quadrupole
anisotropy so we only need `s = 2, e.g. for scalars

ε
(0)
2` (x) =

√
3

8

(`+ 2)!

(`− 2)!

j`(x)

x2
β

(0)
2` = 0



Gravitational Terms
• As in our Newtonian gauge calculation, gravitational terms - now

including vectors and tensors in an arbitrary gauge, come from the
geodesic equation

• First define the slicing (lapse function A, shift function Bi)

g00 = −a−2(1− 2A) ,

g0i = −a−2Bi ,

A defines the lapse of proper time between 3-surfaces whereas Bi

defines the threading or relationship between the 3-coordinates of
the surfaces



Gravitational Terms
• This absorbs 1+3=4 degrees of freedom in the metric, remaining 6

is in the spatial surfaces which we parameterize as

gij = a−2(γij − 2HLγ
ij − 2H ij

T ) .

here (1) HL a perturbation to the spatial curvature; (5) H ij
T a

trace-free distortion to spatial metric (which also can perturb the
curvature)

• Geodesic equation gives the redshifting term

q̇

q
= − ȧ

a
− 1

2
ninjḢT ij − ḢL + niḂi − n̂ · ∇A

which is incorporated in the conservation and gauge
transformation equations



Source Terms
• Temperature source terms S(m)

l (rows ±|m|; flat assumption
τ̇Θ

(0)
0 − Ḣ

(0)
L τ̇ v

(0)
b + Ḃ(0) τ̇P (0) − 2

3
Ḣ

(0)
T

0 τ̇ v
(±1)
b + Ḃ(±1) τ̇P (±1) −

√
3

3
Ḣ

(±1)
T

0 0 τ̇P (±2) − Ḣ(±2)
T


where

P (m) ≡ 1

10
(Θ

(m)
2 −

√
6E

(m)
2 )

• Polarization source term

E (m)
` = −τ̇

√
6P (m)δ`,2

B(m)
` = 0



Truncated Hierarchy
• CMBFast introduced the hybrid truncated hierarchy, integral

solution technique

• Formal integral solution contains sources that are not external to
system but defined through the Boltzmann hierarchy itself

• Solution: recall that we used this technique in the tight coupling
regime by applying a closure condition from tight coupling

• CMBFast extends this idea by solving a truncated hierarchy of
equations, e.g. out to ` = 25 with non-reflecting boundary
conditions

• For completeness, we explicitly derive the scattering source term
via polarized radiative transfer in the last part of the notes



Polarized Radiative Transfer
• Define a specific intensity “vector”: Iν = (Θ‖,Θ⊥, U, V ) where

Θ = Θ‖ + Θ⊥, Q = Θ‖ −Θ⊥

dIν
dη

= τ̇(Sν − Iν)

.

Thomson 
Scattering

Θ

e

e

e

e

e-

'

'

• Thomson collision
based on differential cross section

dσT
dΩ

=
3

8π
|Ê′ · Ê|2σT ,



Polarized Radiative Transfer
• Ê′ and Ê denote the incoming and outgoing directions of the

electric field or polarization vector.

• Thomson scattering by 90 deg: Θ⊥ → Θ⊥ but Θ‖ does not scatter

• More generally if Θ is the scattering angle

Sν =
3

8π

∫
dΩ′


cos2 Θ 0 0 0

0 1 0 0

0 0 cos Θ 0

0 0 0 cos Θ

 I′ν

• But to calculate Stokes parameters in a fixed coordinate system
must rotate into the scattering basis, scatter and rotate back out to
the fixed coordinate system



Thomson Collision Term
• The U → U ′ transfer follows by writing down the polarization

vectors in the 45◦ rotated basis

Ê1 =
1√
2

(Ê‖ + Ê⊥), Ê2 =
1√
2

(Ê‖ − Ê⊥)

• Define the temperature in this basis

Θ1 ∝ |Ê1 · Ê1|2Θ′1 + |Ê1 · Ê2|2Θ′2

∝ 1

4
(cos β + 1)2Θ′1 +

1

4
(cos β − 1)2Θ′2

Θ2 ∝ |Ê2 · Ê2|2Θ′2 + |Ê2 · Ê1|2Θ′1

∝ 1

4
(cos β + 1)2Θ′2 +

1

4
(cos β − 1)2Θ′1

or Θ1 −Θ2 ∝ cos β(Θ′1 −Θ′2)



Scattering Matrix
• Transfer matrix of Stokes state T ≡ (Θ, Q+ iU , Q− iU )

T ∝ S(β)T′

S(β) =
3

4


cos2 β + 1 −1

2
sin2 β −1

2
sin2 β

−1
2

sin2 β 1
2
(cos β + 1)2 1

2
(cos β − 1)2

−1
2

sin2 β 1
2
(cos β − 1)2 1

2
(cos β + 1)2


normalization factor of 3 is set by photon conservation in scattering



Scattering Matrix
• Transform to a fixed basis, by a rotation of the incoming and

outgoing states T = R(ψ)T where

R(ψ) =


1 0 0

0 e−2iψ 0

0 0 e2iψ


giving the scattering matrix

R(−γ)S(β)R(α) =

1

2

√
4π

5


Y 0
2 (β, α) + 2

√
5Y 0

0 (β, α) −
√

3
2
Y −2
2 (β, α) −

√
3
2
Y 2
2 (β, α)

−
√
6 2Y

0
2 (β, α)e

2iγ 3 2Y
−2
2 (β, α)e2iγ 3 2Y

2
2 (β, α)e

2iγ

−
√
6−2Y

0
2 (β, α)e

−2iγ 3−2Y
−2
2 (β, α)e−2iγ 3−2Y

2
2 (β, α)e

−2iγ





Addition Theorem for Spin Harmonics
• Spin harmonics are related to rotation matrices as

sY
m
` (θ, φ) =

√
2`+ 1

4π
D`−ms(φ, θ, 0)

Note: for explicit evaluation sign convention differs from usual
(e.g. Jackson) by (−1)m

• Multiplication of rotations∑
m′′

D`mm′′(α2, β2, γ2)D`m′′m(α1, β1, γ1) = D`mm′(α, β, γ)

• Implies

∑
m

s1
Y m∗
` (θ′, φ′) s2

Y m
` (θ, φ) = (−1)s1−s2

√
2`+ 1

4π s2
Y −s1` (β, α)eis2γ



Sky Basis
• Scattering into the state (rest frame)

Cin[T] = τ̇

∫
dn̂′

4π
R(−γ)S(β)R(α)T(n̂′) ,

= τ̇

∫
dn̂′

4π
(Θ′, 0, 0) +

1

10
τ̇

∫
dn̂′

2∑
m=−2

P(m)(n̂, n̂′)T(n̂′) .

where the quadrupole coupling term is P(m)(n̂, n̂′) =


Y m∗2 (n̂′)Y m2 (n̂) −

√
3
2 2Y

m∗
2 (n̂′)Y m2 (n̂) −

√
3
2 −2Y

m∗
2 (n̂′)Y m2 (n̂)

−
√
6Y m∗2 (n̂′) 2Y

m
2 (n̂) 3 2Y

m∗
2 (n̂′) 2Y

m
2 (n̂) 3−2Y

m∗
2 (n̂′) 2Y

m
2 (n̂)

−
√
6Y m∗2 (n̂′)−2Y

m
2 (n̂) 3 2Y

m∗
2 (n̂′)−2Y

m
2 (n̂) 3−2Y

m∗
2 (n̂′)−2Y

m
2 (n̂)

 ,

expression uses angle addition relation above. We call this term
CQ.



Scattering Matrix
• Full scattering matrix involves difference of scattering into and out

of state

C[T] = Cin[T]− Cout[T]

• In the electron rest frame

C[T] = τ̇

∫
dn̂′

4π
(Θ′, 0, 0)− τ̇T + CQ[T]

which describes isotropization in the rest frame. All moments have
e−τ suppression except for isotropic temperature Θ0.
Transformation into the background frame simply induces a dipole
term

C[T] = τ̇

(
n̂ · vb +

∫
dn̂′

4π
Θ′, 0, 0

)
− τ̇T + CQ[T]


