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The light: colors

Broad-band 2.7 K BB
spectrum measured
across three decades
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The light: colors

Not prisms ...

Fourier Transform Spectrometry
at the heart measurements.
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The light: colors

COBE Far Infrared Absolute Spectrophotometer (FIRAS)
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Fits to the cosmic spectral distortion
parameters give 95% confidence limits of
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The light: colors

Lot of interesting physics in CMB Spectral Distortions

Cosmological Recombination Spectrum
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Probing energy injection from DM interactions / decays
Recombination lines etc. Several papers by Jens Chulba et al.



The light: colors
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The light: patterns Very roughly, sensitivity to some

AT scales with # detectors

Angular scale
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Noise-Equivalent-Temperature (NET) of a detector is measured /estimated.
Temperature-power of desired CMB feature is noted (Px)
NET/Ngets < Px

In detall ...



The light: patterns  Suppose we want to discover E-modes at ¢ ~103

Angular scale

o 10° I 0.1°
Temperature
102.
Beam has to small enough =
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Need to resolve our mode <
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*for a real experiment this will be > 100 Hz



The light: patterns  Suppose we want to discover E-modes at ¢ ~103

Angular scale
10° 1’ 0.1°

Temperature

The experiment needs sensitivity
2.>1 pK2or ¢, > 21 (nK rad)?

((€+1) Cyl 2 [uK?]

Suppose that we are scanning
at 1 deg/sec = /180 rad/s

Multipole moment ¢

->f(¢=103)= 103/180 = 5.55 Hz

-> Sampling rate >> 11.11 Hz*

and sampling time >> 0.18 sec For every 0.18 sec of scanning time

we collect one more ¢ =103 mode



The light: patterns  Suppose we want to discover E-modes at ¢ ~103

The experiment needs sensitivity ¢ > 2m (nK rad)?

Suppose that one detector has noise RMS given by w1 [uK/A/HZ],
simplified white noise power spectral density

Suppose we have Ngets and we are scanning for Ts ( >> 0.18 s) s

We know that the noise variance will scale with 1/Ngets

Longer scan duration (Ts) -> more modes captured, i.e. higher SNR

w3 6?
N;tj;zs < 27 [nK-rad]”

This is the (Knox) sensitivity limit for our case



detector output [NV, Hz, pPA...
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The light: patterns
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The noise RMS w4 [uK/y/HZz], is the
Noise Equivalent Temperature (NET)

Measurement / detector units are
usually Voltage, frequency etc. as a
function of time (or freq. by FFT). Let’s
call these units Yget.

1. Convert this to NEP or noise
equivalent power.

2. Convert to NET by using a
Black-Body-Jacobian



The Ilght: patterns Black-Body intensity I has dimensions of W/Sr/m2/Hz
2h1? 1

2 hv
ekt — 1

I(v,T) =

)

1. Conversion to NEP or noise equivalent power:

Measure yget for varying incident BB power and obtain the responsivity,
as a function of frequency (or FFT of time streams)

Spectral density of
R= 2 P = RUfals)  ShCCTEdensiyof

2. Conversion to NET by using a Black-Body-Jacobian

P(T) = /du dA dQY (W(v)-1(v,T))

0P

w; = NET = NEPJ !



The light: patterns NEP and photon noise limit

Noise Equivalent Power: input signal power that produces SNR = 1
at the output of a detector, given data-signaling rate / modulation
frequency, and effective noise bandwidth.

Thus it is the minimum detectable power per y/bandwidth.

The response of a detector can vary with frequency: NEP(f)



The light: patterns

NEP and photon noise limit

For a detector with negligible intrinsic (thermal) and readout
(laboratory) noise, photon counting determines the measurement limit

(Myms) = \/n + n?

<

hv < kgT hv > kgT
Bose bunching Poisson

35F 7 T

R = 9.7x10® w™!
Negs = 0.10

'Shirokoff -

thermal loading .

293K loading + coherent
source power

1000

1500 2000

Texternol [ K ]

Discussion about Noise Equivalent Power and its use for photon noise calculation. Samuel Leclercq. 2007-03-02.



The light: patterns

—or ground based experiments
NEP (CMB + hot optics + hot Sky)
imit is ~50 aW*/r/Hz

SPTpol, single detector <102 aW,
therefore with >103 detectors
CMB can be measured.

“TaW =108 W

Journal of Low Temperature Physics June 2012, Volume 167, Issue 5, pp 865-871

NEP and photon noise limit
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The light: patterns NEP and photon noise limit

detector w/ optical
loading =0, 1 []

|dark detector|___. .
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Let the light In



Let the light in

WMAP

Penzias
& Wilson




Let the light in

Reciprocity theorem:

Receive and transmit properties of an antenna are identical.
Radiation pattern in transmit mode = pattern in the receive mode.

metal
wire

voltage +r
source J -

dipole antenna

4

radiation pattern (3D view)

180
radiation pattern (cross-section)




Let the light in

~1% of TV noise is the CMB

But we can do better using horns ...



Let the light In

main lobe

side lobes

Shape the lobes, so as to focus
the CMB from the sky and not
pick up terrestrial junk

Horsing around, but more
seriously....



A well defined
corrugated horn
antennae can
couple the
entire power in
the main lobe

Let the light In

dBi

208.2
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-17.3
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Let the light In




Let the light in

A horn has one well defined length-scale (L), and thus the
response or gain will drop for all v < ¢/LH

But ideally we want to pick up “equally” at large bandwidths and
then chop it into bands that we care for




Let the light In

Log periodic / fractal shape is “coherent” across decades

The broad-band signal is segmented by lumped-element on-
- chip filters (RLC) and passed to detectors for measurement

1.2 [~~"Band 1 Pol.A
——Band 1 Pol.B
1 i A - Band 2 Pol.A
;“,” 1\ \ - Band ? Pol.B
O ' M l'- )
- WY | ik
0.6} ', ¥ / \ '
Z "‘.;} \d ‘
! v
o) [ } \ !
- 0ol } / & .
ol ':::w*""\& ~ \M“‘
50 160 1150 2C0
Frequency [GHz]

SPT3G, PB2 etc.



Let the light In

SPT-3G Optics
Layout
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Various optical elements, lenses, collimators, filters etc. are non-trivial at
mm waves, especially for big (3G-like) instruments. R&D in microwave
material science is happening, and more effort is required



Seeing the light



Seeing the light

E(t)

At the heart of all CMB experiments, is guantum excitation

We will discuss:
WMAP receivers, SPT detectors and one CMBS4 technology



Seeing the light: WMAP

WMAP looked at the difference in signals from two horns
The “radio” signals are amplified by HEMT amplifiers

The amplified power is measured with diodes
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https://arxiv.org/pdf/astro-ph/0301164.pdf

Seeing the light: WMAP

The outputs of the two detectors then become
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4. Answer => V.-V



Resistance change of
a superconductor as
you heat it up a bit.

Seeing the light: SPT

Transition edge
sensors (TESS)

Sq8 R-T curves
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Sq8 R-T curves
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Seeing the light: SPT
We have to read

thousands of TESS! Ch1, Chi, .. ChN
Clever but complicated ) &
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We have to read thousands of Seeing the light: SPT
TESs! Clever but complicated
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| Seeing the light: SPT
Superconducting Quantum Interference

Device: sensitive magnetometer for
measuring tiny (fT) magnetic fields

N Finally a SQUID amplitier
LAcfoad - conelerjs used to read it all out
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https://en.wikipedia.org/wiki/Magnetometer
https://en.wikipedia.org/wiki/Magnetic_field

Seeing the light: S4 (potential)

Multiplexing factor is good, but not great: SPT-3G has 15,234
detectors at 68x multiplexing

0.5E6 detectors for CMB 54, thus naively multiplexing factor
should scale up by > 2E3

Of-course, we are likely to split the 0.5E6 detectors across a
few focal planes, and the readout can be further segmented

These can help us by O(10-100), but pushing by another
decade is going to very very challenging.

While 3G operations will be extremely illuminating, we
recognize it iIs not smooth sailing

Native multiplexing ...



Gao & Mazin (Caltech theses)

Seeing the light: S4 (potential)

Kinetic Inductance: Superconductors electronics in all generality
Zw)=R+1(X.+Xr)=R+i(1/wC +wL)
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High frequency oscillating fields will see a “mass” for the Cooper

Im
pairs, leading to a phase lag, or E(Z) >0



Seeing the light: S4 (potential)

Microwave Kinetic Inductance Detectors (MKIDSs)
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Photon absorption -> Cooper pair breaking -> Change in R & L
-> Resonance frequency shift, phase shift, peak broadening

Ben Mazin and SRON



Seeing the light: S4 (potential)

Microwave Kinetic Inductance Detectors (MKIDSs)

N FCe | | Because each detector is a
Tro s e e e e T8 mode, we can connect them in
oort 1 sort 2 series, I.e. a comb of modes

B I ‘ | | The amplitude of a mode ~
| ‘ \ ‘ 11 photon power on that detector

1S, | (4B}

Thus MKIDs are naturally
multiplexed photon detectors
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Ben Mazin and SRON For efforts at KICP and further details, see Amy Tang's talk



Conclusions

We discussed how colors and patterns of the
CMB can be measured

Rest of 448 course has shown the physics
behind these fluctuations

General sensitivity calculations were presented

Types of technologies were outlined

We did not cover: foreground subtraction, map making
algorithms and parameter estimations

Lucotions !



