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Inflation Motivation
I Inflation is the idea that the very early universe experienced a

period of accelerated expansion.

I Initially was introduced by Guth to resolve monopole problem.

I He realized that this framework could resolve the horizon and
flatness problems.

Figure 1: Alan Guth



Monomial Inflation Models

I Guth’s initial idea framed solution to the horizon and flatness
problems in terms of a mechanism that would ”super cool”
the universe. Didn’t have a clear picture of how to end
inflation and generated large inhomogeneities. Now referred
to as ”old inflation” (Guth, 1981).

I Steinhardt, Albrecht, Linde published work illuminating his
initial idea in the years immediately following.

I First instance of simple textbook models we study came from
Linde who studied the quartic potential V = λφ4 (Linde,
1983).

I This class of models have V proportional to φn and I’ve seen
them referred to as chaotic, monomial, and large field models.



Simple Models

I Simplest models of inflation action

S =
∫
d4x
√
g(R2 + φ̇2

2 − V (φ))

I Equation of state
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Key Predictions

1. Inflation drives the universe to flatness.

2. Nearly scale invariant density perturbations.

3. Ratio between tensor and scalar perturbations.



Connecting Predictions to Observables

1. Express the relationship between our inflaton field φ and the
number of e-folds N

N(φ) =

∫ φcmb

φend

dφ√
2εv

2. Relate to ns and r

ns = 1− 6ε+ 2η and r = 16ε

3. Obtain predictions for different models of inflation



Case: m2φ2

2

I Consider V = m2φ2

2 and εv (φ) =
M2

pl

2

(
V ′

V

)2
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2M2
pl

φ2

N(φ) =

∫ φcmb

φend

dφ√
2εv

=

(
φ2

4M2
pl

)
≈ 60

I Can now say at horizon crossing εv = 1
2N

I For this model ns = 1− 2
N ≈ .96 and r = 8

N ≈ .10



Case: λφ4

I Quartic potential is similar to quadratic case.

I Can do the same analysis with V = λφ4

N(φ) =

∫ φcmb

φend

dφ√
2εv

=

(
φ2

8M2
pl

)
≈ 60

I Can now say at horizon crossing εv = 1
N

I For this model r = 16
N ≈ .20



Lyth Bound

I Previous examples demonstrate that there is a relationship
between how the field evolves during e-folds of inflation and
the predicted tensor to scalar ratio.

I This is relationship is referred to as the Lyth Bound.

∆φ

Mpl
=

∫ Nend

Ncmb

dN

√
r

8

I The relationship can be approximated in the following way
which leads to classifying large and small field models.

∆φ

Mpl
≈ O(1)x

( r

.01

) 1
2



Large Field

Figure 2: credit Baumann (2012)



Small Field

Figure 3: credit Baumann (2012)



COBE Key Results (1999)

Figure 4:



COBE Key Results (1999)

I CMB is a near perfect blackbody with temperature
T = 2.725± .02K

I Detected faint anisotropies including the CMB’s dipole

I Placed upper limits on CMB polarization

I Measured spectral index ns = 1.2± .3



WMAP (2008)

Figure 5: 2008 WMAP Cosmological Parameters



Planck 2018 Constraints

Figure 6: 2018 Planck results



Hilltop Models

I Falls under the category of ”small field models”.

I Idea is that inflation takes place near a maximum of potential.

I Can write the potential in the following way.

V (φ) = V0

[
1−

(
φ

µ

)n]
+ ...



Hilltop Models

I Thinking back to the Lyth bound we expect this inflaton
potential to produce a smaller tensor to scalar ratio r.

I ∆φ will be smaller than in monomial models because V’ will
become important as V approaches the drop off.

I Generic bound on tensor to scalar ratio (Lyth, 2005).
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)2(φend
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Advantages

1. Obviously this class of models is consistent with recent
constraints from Planck.

2. Additionally they have some motivation from particle physics
(Baumann, 2012)

I Can cast this as a Higgs-like potential.

V (φ) = V0

[
1−

(
φ

µ

)2
]2

I Or Coleman-Weinberg potential which is important in GUTs.

V (φ) = V0

[(
φ

µ

)4(
ln
φ

µ
− 1

4

)
+

1

4

]



Disadvantages

1. These require more parameters and thus it can be argued that
they require more ”tuning”.

I height V0, width µ, and power n as opposed to a mass m and
power n in the monomial case.

2. They are arguably more favorable to the idea of eternal
inflation.

I ”The eternal nature of new inflation depends crucially on the
scalar field lingering at the top of the plateau (Guth, 2007)”.

I Probability of field remaining near the maximum is non zero.
I Can still happen in monomial models, but more natural in

hilltop models.



Eternal Inflation

Figure 7: Credit Guth (2007)



Perspectives on Eternal Inflation

1. Guth, Linde, and others find eternal inflation intriguing
especially as a mechanism to populate the landscape of string
vacua. (Guth, 2007) and (Linde, 2007)

I ”In an eternally inflating universe, anything that can happen
will happen; in fact, it will happen an infinite number of times.
Thus, the question of what is possible becomes
trivial—anything is possible.”

2. Steinhardt dislikes these implications and worries that the
inflationary paradigm as currently constrained doesn’t actually
predict anything (Steinhardt, Loeb, Ijjas 2013)

I An eternally inflating multiverse renders ”inflationary theory
totally unpredictive.”



Are There Any Viable Alternatives?

I Depends on who you ask.

I Any alternative would have to at minimum reproduce the
successes of inflation.

I Steinhardt, Turok, and collaborators have worked on various
bouncing/cyclic scenarios to try to do this with varying
degrees of success.

I Will discuss how a contracting phase with a bounce can
reproduce some of the desired features.



Bouncing Models

I Recall

1. Friedmann equation H2 = 8πG
3 ρ

2. The horizon size is ∝ (H)−1

3. density ρ can be expressed in terms of the scale factor ρ ∝ 1
a2ε

with ε = 3
2

(
1 + p

ρ

)
4. Curvature parameter Ωk = k

a2H
−2

I This allows the following

1. Horizon size H−1 ∝ aε

2. Curvature parameter Ωk ∝ a2ε

a2



Bouncing Models

I Consider a contracting phase and the ratio between horizon
size to ”patch size” aε

a

I As the universe contracts the horizon shrinks more and can
bring previously causally connected regions out of contact
with each other.

I Similarly the curvature parameter Ωk ∝ a2ε

a2
will approach zero.

I Framework can resolve the horizon and flatness problems.



Bouncing Models and the Equation of State

I Important to have w = p
ρ ≥ 1 which means ε ≥ 6

I Can be seen from argument made earlier by Steinhardt and
Turok in proposing a cyclic model where V flips from positive
to negative (2004).

w =
p

ρ
=

φ̇2

2 − V

φ̇2

2 + V
≥ 1

I Also important for avoiding large inhomogeneities as this
allows scalar energy density to dominate over all other terms
during contraction.



Bouncing Cosmologies

Figure 8: Credit Ijjas and Steinhardt (2018)



Perturbations in Contracting Universe

I Can use a potential of the form V = −V0exp(−
√

3(1 + w)φ)
in describing contracting state with the requirements we have
discussed.

I Equation describing fluctuations is

δφ̈k + (k2 + V ′′)δφk = 0

I Very similar to the inflation scenario, but difference is in how
the metric changes.

I Can get scale invariant scalar perturbations, but not GW
(Steinhardt and Turok 2002).



Spectral Tilt

I Inflation with w = −1 gives

ns − 1 = −2ε+
dlog(ε)

dN

I Contraction with w > 1 gives

ns − 1 =
−2

ε
− dlog(ε)

dN

I Big Takeaway: Contracting phase can reproduce many of the
successes of inflation.



Biggest Problem

I How do we reverse contraction as energy density is increasing?

I Ḣ ∝ −(ρ+ p)

I This requires a Null Energy Condition (NEC) violating phase.

I Attempts to do this often result in ghost/gradient instabilities.



NEC Violating Bounce
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NEC Violating Bounce

S (2) =

∫
d4xa3(t)

(
A(t)ξ̇2 − B(t)

a2(t)
(∇ξ)2

)
where A(t) and B(t) determine stability.

A(t) =
kφ̇2 + (3q − 2b′)φ̇4 + 6Hbφ̇3 + 3

2b
2φ̇6

2
(
H − 1

2bφ̇
3
)2

B(t) =
kφ̇2 + qφ̇4 + 4Hbφ̇3 − 1

2b
2φ̇6 + 2bφ̈φ̇2

2
(
H − 1

2bφ̇
3
)2



Stable Solution

Figure 9: Credit Ijjas and Steinhardt (2016)



Conclusions

1. Post Planck it is hard to make simplest models with fewest
parameters work.

2. Still many viable inflation models, but these are arguably less
satisfying.

3. Important to look at alternatives because it is possible to
reproduce some of the successes with different paradigms.
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