
A brief Introduction to CAMB and CosmoMC

Georgios Zacharegkas

University of Chicago

Monday, November 26 2018

Introduction

• In the current era of Cosmology, the very good agreement between theoretical
predictions and observations has led to the need for high-precision tools for
data analysis to look for new physics

• With a huge volume of data at hand and a powerful cosmological model we
need code that is capable of fast and accurate analysis that leads to
constraints of the model parameters

• There are a two main steps involved in this:

(I) We need to solve the equations of the model numerically and from that
get the predictions for the observables of interest

(II) Compare the predictions of the model at various points in parameter
space to data and, based on the likelihood, find the best-fit parameters

List of some Numerical Tools

• Code that deals with the physics:
CAMB (Code for Anisotropies in the Microwave Background), CMBFast,...

• Code for parameter-space exploration
CosmoMC (COSMOlogical Monte-Carlo), MontePython, Cosmosis,...

• Analysis of the final chains
GetDist (comes with a convenient GUI),...

CAMB

Overview and Installation

• It is based on CMBFast and is written in Fortran

• Is organized in modules, making it easy to modify, e.g. to include new physics

• It is used by many for papers, e.g. Planck

• Python wrapper exists (pycamb): Python CAMB documentation

• Installation:

(I) Download source code: clone git repository
(II) Unzip file and cd to extracted directory

(III) Compile the code (need gfortran): run ”make clean” and ”make”
(IV) To install pycamb, just run ”python setup.py install - -user” in the

pycamb directory

For more see: CAMB ReadMe

https://camb.readthedocs.io/en/latest/
https://github.com/cmbant/CAMB.git
https://camb.info/readme.html

Initialize a run

• Input parameters are defined in a ”params.ini” file that looks like this:

Run the code and Output files

• The ”params.ini” file contains all information about the cosmology
(cosmological parameter values, etc) and also this is where we ask CAMB to
output the observables of interest

• Run ”./camb params.ini”

• Output files are named in format ”name given x.dat”; for example:

(I) x=”scalCls” for Scalar power spectrum C`’s (TT, EE, TE)
(II) x=”tensCls” for Tensor power spectrum C`’s (TT, EE, BB, TE) - if

”get tensor cls = T”
(III) If ”do lensing = T” the lensed CMB power spectrum and the lensing

potential are also calculated ... there are more options
(IV) To use the python version, in your python code just ”import camb”

What does an output file look like?

• This is an example of a ”name given scalCls.dat” file:

• For a description of name conventions and output format see: CAMB ReadMe

https://camb.info/readme.html

Example of TT power spectra

The Physics of CAMB

Initial conditions

• Start from initial conditions in the early Universe:
”Quantum fluctuations + Inflation ⇒ Primordial perturbations”

• In CAMB:

lnPs = lnAs + (ns − 1) ln

(
k

ks

)
+
nrun

2

[
ln

(
k

ks

)]2

+
nrun,run

6

[
ln

(
k

ks

)]3

and

lnPt = lnAt + nt ln

(
k

kt

)
+
nt,run

2

[
ln

(
k

kt

)]2

• CAMB Input: As (”scalar power amp”), ks (”pivot scalar”), ns
(”scalar spectral index”), nrun (”scalar nrun”), nrun,run (”scalar nrunrun”),
plus parameters for tensor

The Gauge

• Small fluctuations of ∼ 10−5 allow the use linear perturbation theory, i.e.
evolve each mode independently of all others

• Two popular gauges are:

(I) Synchronous/CDM gauge:

ds2 = a2(τ)
[
−dτ2 + (δij + hij)dx

idxj
]

(II) Conformal Newtonian/longitudinal gauge:

ds2 = a2(τ)
[
−(1 + 2Ψ)dτ2 + (1− 2Φ)dxidxi

]
• CAMB uses the Synchronous gauge to work in, although the equations in the

Newtonian gauge are also mentioned

• The formalism for these can be found here: Ma and Bertschinger (1995)

• For more notes on CAMB equations see: CAMB Notes

https://arxiv.org/pdf/astro-ph/9506072.pdf
https://cosmologist.info/notes/CAMB.pdf

Background and metric perturbations evolution

• Background is fixed to homogeneous FRW:(
ȧ

a

)2

=
8πG

3
a2ρ̄−K

d

dη

(
ȧ

a

)
= −4πG

3
a2
(
ρ̄+ 3P̄

)
• Metric perturbations in synchronous gauge (the default):

k2η − ȧ

a
ḣ = 4πGa2δT 0

0

k2η̇ = 4πGa2
(
ρ̄+ P̄

)
ikjδT 0

j

ḧ+ 2
ȧ

a
ḣ− 2k2η = −8πGa2δT ii

ḧ+ 6η̈ + 2
ȧ

a

(
ḣ+ 6η̇

)
− 2k2η = 24πGa2(ρ̄+ P̄)

(
k̂ik̂

j − 1

3
δji

)(
T ij −

1

3
δijT

k
k

)

The covariant approach: PSTF decomposition

• For more on the formalism that follows see: Challinor (2000)

• Typically, one would expand in spherical harmonics, Y`m(θ, φ)

• The coordinate-free version of this is the Projected-Symmetric Trace-Free
(PSTF) multipole expansion

• PSTF multipoles are indexed A` = a1 · · · a` in the general basis eA`
= e1 · · · e`

• The PSTF part of the expansion reads:

S〈ab〉 =

(
hc(ah

d
b) −

1

3
habh

cd

)
Scd

where the projector tensor is hαβ = gαβ − uαuβ and the 4-velocity is uα

• For example:

X(E, ec) =

∞∑
`=0

XA`
(E)eA` ; XA`

(E) =
(2`+ 1)!

4π(−2)`(`!)2

∫
dΩX(E, ec)e〈A`〉

https://arxiv.org/pdf/astro-ph/9911481.pdf

Decomposition of the polarization matrix

• The CMB radiation can be described by the Stokes parameters {I,Q, U, V }
• Intensity: I(E, ea) for photon energy E in direction ea

• At observation point form the orthonormal tetrad {ua, (e1)α, (e2)α, ea}
• Polarization tensor:

Pab(ei)
a(ej)

b =
1

2

(
I +Q U + V
U − V I −Q

)
• If define the projector perpendicular to both uα and eα, Hab = hab + eaeb:

Pab = −1

2
I(E, ed)Hab + Pab(E, ed) +

1

2
V (E, ed)εabce

c

where εabc the projected-alternating tensor and the linear polarization tensor is

Pab(ei)a(ej)b =
1

2

(
Q U
U −Q

)

PSTF decomposition of the radiation field

• Intensity I(E, ec):

IA`
(E) ∝

∫
dΩ I(E, ec)e〈A`〉

• Polarization V (E, ec) (scalar function of the sphere):

VA`
(E) ∝

∫
dΩ V (E, ec)e〈A`〉

• Linear polarization E- and B-modes:

EA`
(E) ∝

∫
dΩ e〈A`−2

Pa`−1a`〉(E, e
c)

BA`
(E) ∝

∫
dΩ ebε

bd
〈a`eA`−2

Pa`−1〉d(E, e
c)

TT Power spectrum and correlation function

• PSTF-decompose the temperature field:

δT (ec) ∝
∞∑
`=0

IA`
eA`

• Then, the temperature power spectrum is defined by:〈
IA`

IB`′
〉
∝ CTT` δ``′h

〈B`〉
〈A`〉

• Calculate the correlation function:

〈δT (ec)δT (e′
c
)〉 =

∞∑
`=0

2`+ 1

4π
CTT` P`(−ece′c)

where P` are the Legendre polynomials

• Similarly for polarization and cross-power spectra

Boltzmann equation for intensity

• (Phase-space evolution) = (Photon-matter interactions):

L[E−3Pab(E, e
c)] = Kab(E, e

c)

• The multipole-decomposed equations are:

İA`
+

4

3
ΘIA`

− `

(2`+ 1)
D〈a`IA`−1〉 +

4

3
IAa1δ`1 −

8

15
Iσa1a2δ`2

= −neσT
(
IA`
− Iδ`0 −

4

3
Iva1δ`1 −

2

15
ζa1a2δ`2

)
• Definitions: Θ ≡ ∇αuα, Aα ≡ u̇α, σab ≡ D〈aub〉, ζab ≡ 3Iab/4 + 9Eab/2,

I(ec) ≡
∫
dEI(E, ec), va is the electron 4-velocity, DaSb...c ≡ hdaheb...h

f
d∇dSe...f ,

Da` ≡ Da1Da2 ...Da` and ˙≡ ua∇a

Boltzmann equations for polarization

• The multipole-decomposed, energy-integrated equations are:

ĖA`
+

4

3
ΘEA`

+
(`+ 3)(`− 1)

(`+ 1)2
DbEbA`

− `

2`+ 1
D〈a`EA`−1〉 −

2

`+ 1
curlBA`

= −neσT
(
EA`
− 2

15
ζa1a2δ`2

)

ḂA`
+

4

3
ΘBA`

+
(`+ 3)(`− 1)

(`+ 1)2
DbBbA`

+
`

2`+ 1
D〈a`BA`−1〉 −

2

`+ 1
curlEA`

= 0

V̇A`
+

4

3
ΘVA`

− `

(2`+ 1)
D〈a`VA`−1〉 +DbVbA`

= −neσT
(
VA`
− 1

2
Va1δ

1
`

)

Scalar-vector-tensor decomposition
and Harmonic expansion

• Linearity allows to decompose general rank-` PSTF tensors into constituent
rank-m tensors: Scalars (m = 0), vectors (m = 1), tensors (m = 2), etc:

XA`
=
∑̀
m=0

Xm
A`

• To solve the equations numerically the ”div”’s and ”curl”’s must go away, so a
Harmonic expansion is required in terms of QmAm

, the eigenfunctions of the
comoving Laplacian operator S2DaD

a:

D2QmAm
≡ DaDaQ

m
Am

=
k2

S2
QmAm

where the ”covariantly”-defined scale factor S satisfies Ṡ/S = Θ/3

Harmonic expansion of the
scalar-vector-tensor decomposed radiation field

• For the intensity:

ImA`
∝
∑
k,±

Im±` (k)Qm±A`

• The polarizations become:

EmA`
∝
∑
k,±
Em±` (k)Qm±A`

and
BmA`
∝
∑
k,±
Bm±` (k)Qm±A`

• Substitute these into Boltzmann hierarchy

Final Boltzmann Hierarchy

I ′` +
k

2`+ 1

[
βm`+1

(`+ 1)2 −m2

`+ 1
I`+1 − `I`−1

]
= −SneσT

(
I` − Iδ`0 −

4

3
vδ`1 −

2

15
ζδ`2

)
+

8

15
kσδ`2 − 4h′δ`0 −

4

3
kAδ`1

Em±′` + k

[
βm`+1

(`+ 3)(`− 1)

(`+ 1)3

(`+ 1)2 −m2

(2`+ 1)
Em±`+1 −

`

2`+ 1
Em±`−1 −

2m

`(`+ 1)

√
βm0 B

m∓
`

]
= −SneσT

(
Em±` − 2

15
ζm±δ`2

)

Bm±′` + k

[
βm`+1

(`+ 3)(`− 1)

(`+ 1)3

(`+ 1)2 −m2

(2`+ 1)
Bm±`+1 −

`

2`+ 1
Bm±`−1 +

2m

`(`+ 1)

√
βm0 E

m∓
`

]
= 0

How many equations are solved and how?

• CAMB solves the equations in the synchronous gauge, a.k.a the CDM gauge

• Uses the Runge-Kutta integration scheme

• In total it solves for:

(I) A few hundred or more equations for ` modes in the Boltzmann hierarchy
(II) A few hundred decoupled wavemodes k

(III) ≤ 3 types of perturbations, i.e. scalar, vector, tensor
(IV) It also evolves the equations for baryons, dark matter, etc
(V) Plus it solves for neutrinos

(VI) And evolves the gravitational perturbations
(VII) It does the above over conformal time η steps

Transfer function and observables

• In the linear approximation primordial quantities are related to later values
via the transfer function, defined by

T
(`)
X (k, η) ≡ X(`)(k, η)

X(`)(k, ηi)

• Since early universe to today many things change
⇒ Need to evolve several modes over time
⇒ This is what CAMB does that by evolving the Boltzmann equations

• So, finally, CAMB calculates the power spectra using these transfer functions
by integrating for all modes over the primordial power spectrum:

CXY` ∝
∫
d ln kPR(k)T

(`)
X (k)T

(`)
Y (k)

Example of time evolution of perturbations

CosmoMC

Overview and Installation

• Performs the MCMC exploration of the parameter space

• Written in Fortran and fully integrated with CAMB, i.e. in each run
CosmoMC basically performs what we saw above to get the observables it
needs

• Python wrapper exists (cobaya)

• Installation:

(I) Download code (e.g., clone git repository)
(II) Unzip file and cd to extracted directory

(III) Compile the code: run ”make”
(IV) To use CosmoMC with Planck data we also need to download and

compile the Planck likelihood: Planck Legacy Archive

https://cobaya.readthedocs.io/en/latest/
https://github.com/cmbant/CosmoMC.git
http://pla.esac.esa.int/pla

Initialize a run

• Like for CAMB, to initialize a CosmoMC run we need to setup the ”.ini” file

• It contains:

(I) The data we want to use and the corresponding likelihood
(II) The options for the cosmological parameters and the general settings

(III) Settings/options for the chains we will run

• To run the chains, we have two options:

(I) Do ”./cosmomc initfile.ini” to run a single chain
(II) Do ”mpirun -n x ./cosmomc initfile.ini” to run in parallel x chains (make

sure you have mpi setup)

Lots of built-in likelihoods and data

• We can find likelihoods in the ”/batch2/” directory:

Note that to use Planck likelihoods we need to download, compile it, and link
it appropriately (see CosmoMC and Planck)

• In the ”.ini” file we must include the likelihood; for example:

https://cosmologist.info/cosmomc/readme_planck.html

Choose an action

• First we need to specify the ”action”, i.e. what we want to do:

• Available options are:

(I) ”action=0”: Run chains
(II) ”action=1”: Post-process the chains (i.e. the ”.dat” files) to importance

sample new data, quickly explore effects of new data on already
calculated chains by weighting each step appropriately, add corrections to
approximate theory, etc

(III) ”action=2”: After the chains are run this finds the maximum posterior
(IV) ”action=4”: Do some quick tests of the likelihoods

Many sampling methods available

• Then, choose a sampling method:

• Available sampling methods are:

- sampling method=1: Metropolis-Hastings (default)
- sampling method=2: Slice sampling
- sampling method=3: Fast Slice sampling
- sampling method=4: Slow-grid
- sampling method=5: Multi-Canonical
- sampling method=6: Wang-Landau algorithm
- sampling method=7: Fast dragging (good for Planck)

Metropolis-Hastings Algorithm

• We start from data, d, and a model, M(θ), that describes the data and
depends on parameters θ = {θ1, θ2, ..., θN}
• Do a random walk, instead, where in each step from θi we move to θi+1 at a

random direction

• Compute the likelihood at both points (e.g. by running CAMB) and compare
them, i.e. compute ri+1|i ≡ L(d|M,θi+1)/L(d|M,θi); i.e. for Gaussian

likelihood: −2 lnL ∝ χ2 ≡ (d−M(θ))TΣ−1(d−M(θ))

• If ri+1|i ≥ 1 accept θi, i.e. add it to the chain

• If ri+1|i < 1 do not move to new point, but add old point to the chain again
instead (i.e. the multiplicity of that point will increase)

• Choose a new direction and repeat

Convergence of the chains (Part I)

• Usually the Gelman-Rubin statistic is used

• Suppose we have M chains, each with N steps

• Each chain has mean θ̄i and variance σi (i = 1, 2, ...,M)

• The variance within the chains is quantified by:

W ≡ 1

M

M∑
i=1

σ2
i ; σ2

i =
1

N − 1

N∑
j=1

(θij − θ̄i)

• The variance between the chains will be:

B ≡ N

M − 1

M∑
i=1

(θ̄i − ¯̄θ) ; ¯̄θ =
1

M

M∑
i=1

θ̄i

Convergence of the chains (Part II)

• Then, the Gelman-Rubin (R) statistic is defined as:

R̂ ≡

√
V̂

W
; V̂ ≡

(
1− 1

N

)
W +

1

N
B

• At the limit of large N , we do not expect a lot of variations to the parameters
within of between the chains and W ≈ B, so that

R̂→ 1

• Thus, the convergence criterion requires that for convergence R̂− 1 becomes
smaller than some value (typically 0.01 or so)

• That’s why we need to do a mpi run to check for convergence

Check for convergence and set parameter values

• We can set the R̂− 1 value in the code in ”/batch1/common batch1.ini”:

• To set parameter ranges/values in ”/batch1/params CMB defaults.ini”:

CosmoMC base parameters

• The usual ΛCDM parameters:

{Ωbc
2,Ωch

2, H0, τreio, As, ns}

• More can be added (e.g. if want to test new physics with CAMB)

• Some minimal extensions in CosmoMC are:

(I) Curvature parameter, ΩK

(II) Massive neutrinos,
∑
mν

(III) Extra neutrino species, Neff

(IV) Dark Energy equation of state, (w0, wa)
(V) Scalar-to-tensor ratio, r = At/As

(VI) Running scalar index, nrun

Analysis of chains: What can GetDist give us?

• Covariance matrix which can be used in future runs as input

• Convergence diagnostics

• Best-fit parameters and its likelihood

• Marginalized values of parameters with mean and limits

• Correlation matrix for parameters

• Plots of posterior distributions

(I) Marginalized 1D plots
(II) Marginalized 2D plots

(III) 2D plots colored based on a third parameter
(IV) Triangle plots with 1D plots on the diagonal and 2D plots on lower

off-diagonal

Example of a triangle plot with GetDist

0.020 0.025

Ωbh
2

0.096

0.112

0.128

Ω
c
h

2

0.93 0.96 0.99 1.02

ns

0.020

0.025

Ω
b
h

2

0.096 0.112 0.128

Ωch
2

EE

TT

TE

TTTEEE

Example of a ”3D” triangle plot with GetDist

0.020 0.025

Ωbh
2

0.096

0.112

0.128

Ω
c
h

2

0.93 0.96 0.99 1.02

ns

0.020

0.025

Ω
b
h

2

0.096 0.112 0.128

Ωch
2

62.5

65.0

67.5

70.0

72.5

75.0

77.5

80.0

H
0

EE

TT

TE

TTTEEE

The End

	Introduction

