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Abstract

Notes on the cosmological constant problem.
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1 The cosmological constant in Einstein gravity

Einstein’s equations read

Rµν −
1

2
Rgµν =

1

M2
Pl

Tµν , (1.1)
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where Rµν is the Ricci curvature tensor and Tµν is the stress-energy tensor for matter components.

The principle underlying these equations is diffemorphism covariance—under a diffeomorphism,

these objects transform like tensors. Einstein gravity may be though of as the lowest order term in

a derivative expansion of the metric: R ∼ ∂2g.

Aside from higher-derivative corrections R2 ∼ ∂4g, there is a lower derivative term which can be

added to Einstein’s equations, which is also diffeomorphism covariant ∼ Λgµν so that we have

Rµν −
1

2
Rgµν + Λgµν =

1

M2
Pl

Tµν . (1.2)

This term is known as the cosmological constant (CC). The possibility of adding this term was

actually realized by Einstein himself [1], though his motivation was to construct a static cosmological

model.

For a long time (for reasons that we will elaborate on), the cosmological constant was thought to

be exactly zero in our universe. Consequently, it was very surprising in 1998 when observations

of type Ia supernovae led to the discovery that expansion of the universe is accelerating [2, 3],

implying that Λ is nonzero and positive. The observed value of the CC is rather small, in particle

physics units Λobs. ∼ (10−3eV)4, while in units more natural to gravity,

Λobs. ∼ (10−30MPl)
4. (1.3)

This is a very small number. In what follows, we will try to understand why this should concern

us—the smallness of the observed Λ is the essence of the cosmological constant problem. Our näıve

expectation is that the natural value for the CC to take is ∼M4
Pl, so we would like to understand

why this is not the case.

In what follows we will elucidate the precise nature of the cosmological constant problem, and

point out how it differs from other “smallness” problems in physics. After understanding this, we

will discuss some possible ways to address the CC problem, and difficulties they face. Off the bat

it should be said that there are no known solutions to the cosmological constant problem—if you

find one, please let me know!

An inspiring review of the cosmological constant problem (from which much of the following is

drawn) is Weinberg’s article [4]. Other nice reviews include [5], which examines a wide variety of

possible solutions (and shows why they don’t work) and [6], which shows in great detail many of

the calculations underlying our understanding of the nature of the CC problem.

2 The cosmological constant problem

In this Section, we will describe what precisely is meant by the cosmological constant “problem.” It

should be stressed that this problem is not a problem in the usual sense—it is not an inconsistency

between experiment and our description of a system, and does not arise in a regime where we

expect our approximations to break down. Instead the CC problem is one of naturalness. This is a

very loaded word, it has a precise technical meaning in the context of quantum field theory, which
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we will review, which goes beyond the aesthetic discomfort that the number appearing in (1.3) is

small.

Oftentimes people separate the CC problem into the “old” CC problem and the “new” CC problem;

the distinction is essentially the following:

• Old: Why is the CC not large?

• New: Why is the CC small (but nonzero)? And why is it comparable to the matter energy

density today?

To me this is not really a useful distinction to make—the real problem is the “old” problem, as we

will see.

What is our expectation for the size of the CC anyway? We expect at least a contribution1 to the

cosmological constant of the form [4]

〈Tµν〉 ∼ −〈ρ〉gµν , (2.1)

from quantum-mechanical processes involving Standard Model fields. Let’s begin by heuristically

estimating its size by modeling SM fields as a collection of independent harmonic oscillators at each

point in space and then summing over their zero-point energies

〈ρ〉 ∼
∫ ΛUV

0

d3k

(2π)3

1

2
~Ek ∼

∫ ΛUV

0
dk k2

√
k2 +m2 ∼ Λ4

UV + Λ2
UVm

2 − m4

2
log

ΛUV

m
+ · · · . (2.2)

Here ΛUV is the cutoff of our theory—the energy scale up to which we can trust predictions.

Most conservatively, the Standard Model has been extremely well tested up to energies around

electron mass, ΛUV ∼ m ∼ MeV. Plugging in this value, we find a theoretical expectation for the

cosmological constant to be around

Λtheory ∼ (MeV)4 ∼ 10−88 M4
Pl, (2.3)

which is extremely far from the observed value (1.3) (off by 32 orders of magnitude). Let’s do this

calculation a little bit more carefully in order to understand better what is going on.

2.1 Contribution from matter fields

Let’s calculate carefully how matter fields contribute to the effective cosmological constant. This

is an inherently quantum-mechanical question, so we have to employ some quantum field theory

formalism. Don’t be afraid, the only stuff we will need is basically fancy gaussian integration.

Recall the formula for a gaussian integral:∫
dx e−

ax2

2 =

(
2π

a

)1/2

. (2.4)

1The form of this contribution may be deduced by noting that on flat space, Lorentz invariance forces 〈Tµν〉 ∝ ηµν .

Then, we invoke the equivalence principle to promote ηµν 7→ gµν .
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This formula has an immediate generalization to the matrix gaussian integral (A is an N × N

matrix): ∫
d~x e−

1
2

(~x,A~x) =
(2π)N/2

(detA)1/2
, (2.5)

which is proven by diagonalizing the matrix and then applying (2.4).

The only piece of information we need in addition to this from QFT is that the object

Z =

∫
Dφ exp iS[φ], (2.6)

contains the full quantum-mechanical information about a system. This is the Feynman path

integral, where Dφ means that we should integrate over all field configurations, and S[φ] is the

action for some collection of fields, φ.

We will proceed to do part of this integral. For simplicity, we only consider a non-self-interacting

heavy scalar Φ—coupled to the fields of interest—so that the action is quadratic in Φ. In this case,

the path integral over Φ can be done exactly, and the effective action for φ is given by a functional

determinant (in essentially the same way as (2.5))

exp iSeff [φ] =

∫
DΦ exp iSφ,Φ = det

(
δ2Sφ,Φ
δΦδΦ

)−1/2

exp iSφ,Φ=0 . (2.7)

We want to think of this determinant as a contribution to the effective action for the remaining

degrees of freedom:

exp i∆ΦSeff = det

(
δ2Sφ,Φ
δΦδΦ

)−1/2

= exp

(
−1

2
Tr log

δ2Sφ,Φ
δΦδΦ

)
. (2.8)

Integrating out a heavy field coupled to gravity: We begin by considering the action

S =

∫
d4x
√
−g

(
M2

PlR

2
− Λ− δΛ +

1

2
Φ(�−M2)Φ

)
. (2.9)

Here δΛ is a counter-term which we will see that we need later on. As before, the integral over Φ

is Gaussian, so the contribution to the effective action for gµν from integrating it out is of the form

∆ΦSeff =
i

2
Tr log

δ2S

δΦδΦ
=
i

2
Tr log

√
−g(�−M2). (2.10)

We can discard the metric determinant piece, as it vanishes in dimensional regularization.2 What

we are trying to compute is the correction to the
√
−g term which appears in the action (2.9). We

2To see this explicitly, note that for an arbitrary differential operator Ô we have

Tr log
√
−g Ô = Tr

[
log
√
−g + log Ô

]
=

∫
d4x 〈x| log

√
−g|x〉+Tr log Ô =

∫
d4x log

√
−g(x)δ4(0)+Tr log Ô, (2.11)

and the divergence δ4(0) is zero in dimensional regularization, so we can consider just the Tr log Ô piece.
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will do this perturbatively in hµν by expanding gµν = ηµν + hµν . Note that when we do this, the

metric determinant has an infinite number of terms

√
−g ≈ 1 +

1

2
h+

1

8
h2 − 1

4
hµνh

µν + · · · (2.12)

so it would seem like we are making more work for ourselves. However, we will exploit diffeomor-

phism invariance. We will only compute the correction to the h term, diff invariance will fix all the

other coefficients in the series in terms of this coefficient.

We are therefore interested in computing

∆ΦSeff =
i

2
Tr log(�−M2) =

i

2
Tr log(∂2 −M2 − hµν∂µ∂ν − ∂νhνµ∂µ +

1

2
∂αh ∂α + . . .) . (2.13)

We can pull out a factor of the scalar propagator (this is basically the vacuum bubble contribution,

so we will neglect it). Beginning at linear order in hµν , we need to calculate

∆ΦSeff =
i

2
Tr log

[
1 +

1

∂2 −M2

(
−hµν∂µ∂ν − ∂νhνµ∂µ +

1

2
∂αh ∂α

)
+ . . .

]
(2.14)

=
i

2
Tr

[
1

∂2 −M2

(
−hµν∂µ∂ν − ∂νhνµ∂µ +

1

2
∂αh ∂α

)]
+ · · · , (2.15)

where we have used log(1 + α) = α− α2

2 + α3

3 + · · · . The only term that contributes to the h term

in the action is

∆ΦSeff ⊃ −
i

2
Tr

[
1

∂2 −M2
hµν∂µ∂ν

]
, (2.16)

so we just need to compute this trace. To do this, we make a quantum-mechanics analogy. We

promote the coordinates and derivatives to operators acting on a Hilbert space as

xµ 7→ x̂µ , ∂µ 7→ ip̂µ. (2.17)

We then introduce sets of position eigenstates, |x〉 and momentum eigenstates |p〉, which satisfy

the orthogonality and completeness relations

〈x|y〉 = δ(x− y) 〈p|k〉 = δ(p− k) (2.18)∫
ddx |x〉〈x| = 1

∫
ddp |p〉〈p| = 1. (2.19)

The inner product between these two bases is given by3

〈x|p〉 =
1

(2π)d/2
eip·x. (2.21)

3We employ the following convention for Fourier transformation

f(x) =

∫
ddk

(2π)d
eik·xf̃(k) f̃(k) =

∫
ddx e−ik·xf(x). (2.20)
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The action of the x̂µ and p̂µ operators on these eigenstates is the obvious one

x̂µ|x〉 = xµ|x〉 (2.22)

p̂µ|p〉 = pµ|p〉. (2.23)

The operator hµν∂µ∂ν then gets mapped to

hµν∂µ∂ν 7→ hµν(x̂)(ip̂)µ(ip̂)ν . (2.24)

We can then evaluate the matrix element of this operator between momentum eigenstates by

inserting a complete set of position eigenstates

〈k|hµν(x̂)(ip̂)µ(ip̂)ν |p〉 =

∫
ddx 〈k|hµν(x̂)|x〉〈x|(ip̂)µ(ip̂)ν |p〉 =

∫
ddxhµν(x)ipµipν〈k|x〉〈x|p〉

=

∫
ddx

(2π)d
e−i(k−p)·xhµν(x)ipµipν = (2π)−dh̃(k − p)ipµipν , (2.25)

Using this, we find (note that in the trace, the object h̃(0) appears, we interpret this as the∫
ddxhµν(x))

= − i
2
µ4−d

∫
ddp 〈p| 1

∂2 −M2
hµν∂µ∂ν |p〉 = − i

2
µ4−d

∫
ddxhµν(x)

∫
ddp

pµpν
p2 +M2

.

(2.26)

Note that this is exactly the result we would have gotten from a traditional Feynman diagram

computation, but here we haven’t had to worry about Feynman rules or anything, the trace (2.10)

is the only thing we have to worry about. Now we just have to to the integral in (2.26). First, note

that we can replace pµpν 7→ 1
dp

2ηµν because the non-trace piece will vanish by symmetry (integral

of an odd function over a symmetric domain) so we are left with computing (we first send p0 7→ ipd,

to yield a Euclidean integral)

1

d

∫
ddp

p2

p2 +M2
=
i

d

∫
dΩd−1dp

(2π)d
pd+1

p2 +M2
=

i

d(4π)d/2
Md Γ

(
1 + d

2

)
Γ
(
−d

2

)
Γ
(
d
2

) , (2.27)

where Γ is the Euler gamma function. The reason that we had to do this stuff in d-dimensions is

that the integral we wanted to do is divergent in d = 4, as can be seen by writing d = 4 − ε and

taking ε→ 0 in (2.27)

i

d(4π)d/2
Md Γ

(
1 + d

2

)
Γ
(
−d

2

)
Γ
(
d
2

) d→4

−−−→ iM4

32πε
− iM4

64π2

(
log

M2

µ2
− log 4π + γ − 3

2

)
+ · · · (2.28)

This expression has a pole at ε = 0. What we have just done is an example of dimensional

regularization. Note also that the scale µ that we introduced is completely unphysical, we merely

had to introduce it in order to make all the dimensions correct, so we are free to redefine it to absorb

the finite pieces − log 4π + γ − 3
2 . Note that we cannot change the coefficient of the logarithmic

term (though we can change the argument). This is a recurring theme in QFT—the coefficients of
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logs are physical things. Putting this all together, we find a contribution to the effective action of

the form

=

∫
d4x

1

2
h
M4

64π2

(
2

ε
− log

M2

µ2

)
. (2.29)

As noted above, we should think of this as the first term in an infinite series which will re-sum to

give a contribution to the cosmological constant

√
−g ∼ + + + · · · (2.30)

which will be of the form

Seff ⊃
∫

d4x
√
−g
[
−Λ− δΛ +

M4

64π2

(
2

ε
− log

M2

µ2

)]
. (2.31)

Now for the magic of renormalization: none of these terms individually are physical, it is only

really their sum that can be measured. Therefore, we are free to choose δΛ to cancel the (infinite)

contribution M4

64π2
2
ε , which leaves a “renormalized” value for the CC of

ΛR = Λ +
M4

64π2
log

M2

µ2
. (2.32)

This value is still not really physical, as it still depends on the unphysical scale µ, and can also be

freely adjusted by a finite amount by changing δΛ, but this is fine; it is no different from anything

else in QFT, we go out and measure ΛR (we can think of doing the measurement at the scale µ

and this fixes Λ at that scale, then they both change in a compensatory way as we change µ).

The thing I want to focus on is that the contribution from Φ to the CC scales as ∼ M4. This

means that if we imagine that we compute ΛR, go out and measure it, and then imagine that we can

shift M 7→ M + ∆M , then ΛR will be power-law sensitive to this change. Alternatively, we could

imagine holding everything fixed and introducing another heavy particle into the theory, the value

of Λ would also be power-law sensitive to this introduction. This is the essence of the cosmological

constant problem—the renormalized value of the CC is extremely sensitive to the masses of other

particles in the theory.4 The Higgs hierarchy problem in the Standard Model is essentially the

same.

2.2 A foil: fermion masses

Here I want to illustrate that the answer that we got in the CC case is not how things always go.

To see this, consider a toy example

L =
1

2
Φ(�−M2)Φ + ψ̄(i/∂ −m)ψ + λΦψ̄ψ, (2.33)

4Often, people will phrase the CC problem as having to tune ΛR at 1-loop and then having to change the tuning

at 2-loops and so on. I think that this characterization misses the point. Above we computed an example which

is 1-loop exact, and there is still a CC problem. The real essence of the problem is that the value of the CC is

extremely sensitive to deformations of the theory by changing the masses of the heavy states holding regularization

and renormalization schemes fixed.
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which consists of a scalar field coupled to a Dirac fermion. Similar to what we did with the CC

we can integrate out the scalar and see how it corrects the mass term for the fermion. In this case

the functional method we used above is a little clumsy, so you will just have to believe me that the

mass correction goes like

δm ∼ ∼ λ2

∫
ddp

(2π)d
Tr(/p+ /k −m)

((p− k)2 +m2)(k2 +M2)
∼ λ2

16π2
m log

m

µ
. (2.34)

The precise value of the correction is not important, what is important is that δm ∝ m—the mass

of the fermion is renormalized proportional to itself. This is known as multiplicative renormalization

(as opposed to the additive renormalization the CC received above). It is for this reason that we

do not worry that fermion masses are small in the Standard Model. Indeed, in weak scale units,

the electron mass is very small (∼ 10−7TeV).

There is a symmetry reason for this result, in the limit m→ 0, the lagrangian (2.33) has a chiral

symmetry

ψ 7→ γ5ψ, Φ 7→ −Φ, (2.35)

which is broken by the presence of the mass term. (Under the symmetry ψ̄ψ 7→ −ψ̄ψ). In this

limit, any quantum corrections to the mass term must vanish, because they violate the symmetry,

so the corrections that we do get away from this point must be proportional to m so that they

vanish in the limit. This symmetry expectation is borne out by the explicit computation (2.34).

If a parameter in a theory leads to an enhanced symmetry in the limit it is taken to be zero, it is

said to be technically natural for the parameter to be small.5 The fermion mass considered here is

one example of a technically natural parameter (owing to the chiral symmetry). No symmetry is

known that would make the CC technically natural.

3 Some solutions that don’t work

Now that we understand what the problem is, let’s try to solve it.

3.1 Supersymmetry

Supersymmetry is an extension of the symmetry algebra of spacetime to include fermionic genera-

tors (supercharges). In the simplest scenario, the anticommutator of these supercharges is related

to the momentum generator of the Poincaré algebra:

{Qα, Q̄β̇} = σµ
αβ̇
Pµ. (3.1)

Imagine now that the vacuum which describes our world is supersymmetric, i.e., Qα|0〉 = Q̄α̇|0〉 = 0.

Then, we can take the inner product of the state Qα|0〉 with itself (and do the same for Qα̇|0〉 and

add them) ,

〈0|QαQ̄β̇ + Q̄β̇Qα|0〉 = σµ
αβ̇
〈0|Pµ|0〉 = 0 =⇒ 〈0|Pµ|0〉 = 0, (3.2)

5This nomenclature is due to ’t Hooft.
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the last equality follows from σµ being nonzero. In particular, this implies that 〈0|P0|0〉 = 〈0|H|0〉 =

0, which means that the CC has to vanish in this vacuum. So, if the world were supersymmetric,

the CC would be zero. We could then imagine that SUSY is broken at a scale ∼ meV, leading

to a residual CC around this magnitude. However, we are pretty sure that the world is not

supersymmetric at meV scales, so this proposed solution doesn’t work.

The real situation is slightly more complicated than this because we should also make gravity

dynamical and ask this question in the context of supergravity, but this additional complication

does not change the story very much, see [4].

3.2 Weyl invariance

In the same vein as SUSY, we could recognize that the Weyl transformation

gµν 7→ Ω2gµν , (3.3)

causes the determinant to transform as

√
−g 7→ Ω4√−g. (3.4)

So if gravity were Weyl invariant, a cosmological constant would not be allowed. However, this idea

doesn’t really get off the ground, the Einstein–Hilbert term itself isn’t Weyl invariant either, so we

would need to consider some completely different theory of gravity. One proposal is Weyl gravity

S = M2
Pl

∫
d4x
√
−g CµνρσCµνρσ, (3.5)

where Cµνρσ is the traceless part of the Riemann tensor (the Weyl tensor), which is Weyl invariant.

However, this theory has a ghost. One might also imagine introducing a scalar field as in

S =

∫
d4x
√
−g
(
−(∂φ)2 − 1

6
φ2R

)
, (3.6)

which is Weyl invariant where the metric transforms as (3.3) and where the scalar transforms as

φ 7→ Ω−1φ. However, in this case, the term
√
−g φ4 is also Weyl invariant, which is just the CC

upon fixing a gauge for φ. The fact that this doesn’t work shouldn’t really surprise us, φ is just

a Stückelberg field for the Weyl invariance, and introducing gauge symmetries can’t change the

physics.

3.3 Unimodular gravity

Another attempt to solve the CC problem is unimodular gravity. In this theory, one considers the

traceless Einstein equations

Rµν −
1

4
Rgµν =

1

M2
Pl

(
Tµν −

1

4
Tgµν

)
. (3.7)
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Taking a covariant divergence and utilizing the Bianchi identity, one finds the following

∇µR = −∇µT , (3.8)

which upon integrating yields

T = −R+ Λ , (3.9)

where Λ is an integration constant. Plugging this expression back into (3.7) yields precisely the

full Einstein equations, but where Λ is now an integration constant, unrelated to any bare CC in

the action.

The idea is then that one chooses the integration constant to reproduce the observed value of

the CC. However, this falls short of being a true solution to the cosmological constant problem.

The reason is somewhat subtle, it is basically because we are restricting the solutions to Einstein’s

equations by imposing some boundary conditions on the fields—essentially fixing the Ricci scalar at

infinity. This exact same thing could be done in Einstein gravity, it’s not clear that we have gained

anything. Indeed, we still have some somewhat arbitrarily fix Λ to match the observed value.

This theory is called unimodular because the equations (3.7) can be derived from the Einstein–

Hilbert action from a variational principle that restricts the determinant to be -1. Another question

surrounding unimodular gravity is that it is not clear to what degree it and Einstein gravity are

equivalent at the quantum-mechanical level.

3.4 Letting Λ be a dynamical field (Weinberg’s no-go theorem)

Here we consider an alluring idea—that the cosmological constant may be able to dynamically relax

to a small value—and its obstructions. Most prominent among these is a celebrated no-go result

of Weinberg [4]. In essence, this result says that we cannot achieve anything by tying the value of

the CC to the potential of some scalar field—we must fine-tune the potential just as much as we

would have had to fine-tune the bare CC.

Here we follow Weinberg’s original argument [4], and consider a set-up in which we have a scalar

field coupled to gravity in any way we like6

S =
M2

Pl

2

∫
d4x
√
−gR+ S[φ, gµν ] , (3.10)

where S[φ, gµν ] can depend arbitrarily on φ, gµν and their derivatives. We look for a solution where

φ = φ̄ = constant (3.11)

gµν = ηµν . (3.12)

6Actually, the theorem proved in [4] is even more general, allowing the for N fields, which can be either scalars or

tensors, but here we will restrict to a single scalar for simplicity.
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With such an ansatz, the Euler–Lagrange equations become very simple

δL
δφ

∣∣∣∣
gµν ;φ=const.

=
∂L
∂φ

= 0 (3.13)

δL
δgµν

∣∣∣∣
gµν ;φ=const.

=
∂L
∂gµν

= 0 . (3.14)

In order for a solution to (3.13) and (3.14) to be natural, we want the trace of the gravitational

equation of motion to be satisfied automatically as a consequence of the scalar equations (this is

basically because φ is the source for T ). Another way of saying this is that the trace of the metric

equation of motion must be of the form:

gµν
∂L
∂gµν

= f(φ)
∂L
∂φ

. (3.15)

Demanding this equation be satisfied is equivalent to demanding a particular symmetry of the

Lagrangian [4]. To see this, note that the variation of the action (3.10) is

δS =

∫
d4x

(
δL
δgµν

δgµν +
δL
δφ
δφ

)
. (3.16)

If we consider the variations

δgµν = εgµν ; δφ = −εf(φ) , (3.17)

then (3.15) implies that the action is invariant under this symmetry when the fields are taken to

be constant. If we start with a Lagrangian invariant under (3.17), if it admits a solution φ̄ = const.

with ∂L
∂φ

∣∣
φ=φ̄

= 0, then the gravitational equation will be satisfied. However, this turns out to be

impossible to arrange without some degree of fine tuning.

To see this, consider doing a field redefinition of φ into ψ so that the symmetry transforma-

tion (3.17) is [4]

δgµν = 2εgµν , δψ = −ε . (3.18)

This transformation is now nothing but a conformal transformation, with ψ playing the role of a

dilaton. This means that when the fields are constant, the Lagrangian can be written as a function

of the conformal metric

ĝµν = e2ψgµν . (3.19)

When all the fields are set to constants, all the curvature invariants of this metric vanish, so the

on-shell Lagrangian must be of the form

L =
√
−ĝL(σ) =

√
−ge4ψL(σ), (3.20)

where L(σ) is meant to stand for other possible fields in the theory. However, the equation
∂L
∂gµν

∣∣
gµν=const.

= 0 implies that we must have

√
−ge4ψL(σ)

∣∣∣
gµν ;ψ;σ=const.

= e4ψV (σ̄) = 0 , (3.21)
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which is clearly a fine-tuning (we are tuning the potential for σ to have a minimum at V (σ̄) = 0).

It is worthwhile to examine the assumptions which went into this no-go theorem. First, we assumed

that there were a finite number of scalar fields—it is possible that the conclusions could be avoided

with an infinite number of fields, but to date this loophole has not been exploited. More promising

would be to give up the assumption of constant fields; indeed, some people have tried to exploit

this loophole in scenarios where the scalar sector has non-trivial coordinate dependence.

4 Some ideas that might work

Let’s move on to some more promising avenues.

4.1 Anthropics and the landscape

A popular approach to the cosmological constant problem is that of anthropics. This approach

has its origins in an old argument of Weinberg [7] that the cosmological constant in our universe

cannot be very large or else cosmological large scale structures would not have been able to form,

and consequently we would not be around to ask questions about the cosmological constant. Inter-

estingly, Weinberg predicted that we should observe a cosmological constant somewhere near this

upper bound prior to the observational discovery of the accelerating universe. It is then a genuine

prediction.

Before trying to understand the anthropic approach to the CC problem, it is helpful to make a few

anthropic reasonings about the structure of planets in the solar system as an orientation. Consider

the following two facts

1. The Earth is at a distance from the Sun that the temperature varies between ∼ 0◦C and

∼ 30◦C.

2. The Moon is at a distance from the Sun that it subtends the same angle as the Sun, allowing

for solar eclipses.

Both of these appear to be fine-tunings; however, only one of them is anthropic. As you well

know, if the Earth were at any other distance from the Sun, things would be either too hot or too

cold for human life to develop. Therefore, it is not surprising that we find ourselves this distance

from the Sun. In order for this to be predictive there must be an ensemble of planets at varying

distances from stars and some mechanism for populating this ensemble. For the Earth-Sun case,

this mechanism is precisely standard planetary formation. Conversely, the fact that solar eclipses

can happen is a pure accident, it is just a random fine tuning.

Proponents of the anthropic principle argue that the value of the cosmological constant is like the

Earth-Sun distance. In order for large scales structures to form, we must have that ΩΛ(zg)∼< Ωm(zg),

where zg is the redshift where the first galaxies form. This then implies that

ΩΛ(0)

Ωm(0)
≤ (1 + zg)3 ∼ 103. (4.1)
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This puts an anthropic upper bound on the magnitude of the CC to be roughly 3 orders of magnitude

larger than the observed value. If the CC were negative, it would still be possible to form galaxies,

but spacetime would collapse into a singularity on a timescale of order Λ−1, this puts a lower bound

that the CC must be around the matter density today

ΩΛ(0)

Ωm(0) ∼
> − 10. (4.2)

Weinberg argued that the CC should be observed to be near one of the endpoints of this range,

as there was no anthropic reason for it to be smaller. The observed value differs from this by a

couple order of magnitude, but this amount of tuning is already much better than the 120 orders

of magnitude fine tuning needed above.

At this level, the anthropic argument is tautological; we observe the parameter value we do because

we wouldn’t be around to observe it otherwise. In order for this argument to be explanatory

or predictive, it needs the second aspect that our Earth-Sun example had: there needs to be

an ensemble of vacua with different values of the cosmological constant, and some mechanism to

populate them. We would then like for the value we observe to be statistically likely in this ensemble.

The idea is that the ensemble is provided by the string theory landscape and the mechanism for

populating the vacua is eternal inflation.

The current understanding of string theory is that is possesses an extremely large number of

solutions (anywhere from ∼ 10500 to exponentially more) with a wide variety of values of the

cosmological constant. The idea is that if eternal inflation took place, Coleman–de Luccia tunneling

would populate all of these vacua, leading to different values of the cosmological constant in different

regions of the multiverse. The hope is then that we can argue that our observed value of the CC

is statistically likely (or at the very least not unlikely). Even better would be if there were some

other property which was correlated with having a small value of Λ, which we could then go out

at measure or observe.

To me, this seems like a promising thing to pursue, but it there are several open problems which

must be resolved in order for this to a compelling solution:

• It must be demonstrated that there exist de Sitter solutions in string theory with a variety

of values of the cosmological constant (further, these must be much more closely spaced than

10−120M4
Pl). To date there are no fully compelling de Sitter solutions in string theory.

• It must be demonstrated that eternal inflation occurs; this is suspected, but it has not been

rigorously established that it is a necessary consequence of inflation (which itself is not guar-

anteed to have happened).

• It must be established that the combination of eternal inflation and vacuum tunneling pop-

ulates all of the putative de Sitter vacua.

• Finally, it must be shown that vacua like ours are statistically likely amongst the landscape,

or at least are more likely to be populated. This step has proven to be difficult as well—

typically many quantities are infinite in eternal inflation, and this requires regulating these

infinities in some way. This is known as the measure problem.
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4.2 Modifying gravity in the infrared

Another approach to the cosmological constant involves changing the rules of gravity—maybe

Einstein gravity is not the correct theory of gravity at the longest wavelengths. Before considering

changing gravity, let’s first explore the assumptions needed to arrive at Einstein gravity in the first

place.

4.2.1 Einstein gravity is massless spin-2

It turns out that under the following assumptions:

• Lorentz invariance, locality

• massless spin-2 field, interacting

• low energy (meaning long distances or lowest order in derivatives)

we are led uniquely to Einstein gravity. Let’s sketch the argument. Our starting point is the action

for a free massless spin-2 field at lowest order in derivatives7

S = −1

2

∫
d4x hµν

(
�hµν − ∂µ∂αhαν − ∂ν∂αhαµ + ∂µ∂νh+ ηµν

(
∂α∂βhαβ −�h

))
, (4.4)

where the field hµν has dimensions of mass. The action is invariant under the gauge transformation

δξhµν = ∂µξν + ∂νξµ , (4.5)

with gauge parameter ξµ = ξµ(x). These are nothing more than linearized diffeomorphisms. The

equation of motion following from this action is

�hµν − ∂µ∂αhαν − ∂ν∂αhαµ + ∂µ∂νh+ ηµν

(
∂α∂βhαβ −�h

)
= 0 . (4.6)

As a theory on its own, (4.4) is perfectly fine, but the field hµν is free; let’s see what happens when

we try to introduce interactions by coupling it to its own energy momentum tensor (note that hµν
should couple to the full stress tensor, including its own). The action is schematically

S ∼
∫

d4x
(
hµνEαβµν hαβ + hµνS(2)

µν

)
, (4.7)

where Eαβµν is the Lichnerowicz operator and S
(2)
µν is some tensor quadratic in the field h, chosen

such that
δ

δhµν

(
hαβS

(2)
αβ

)
= Θ(2)

µν , (4.8)

7This structure is imposed upon us by demanding that our Lagrangian be manifestly Lorentz invariant, local and

that it describes the two polarizations of a massless spin-2 particle. The field operator, hµν , is not a tensor under

Lorentz transformations, rather it transforms inhomogeneously [8]

U(Λ)hµνU
−1(Λ) = ΛαµΛβνhαβ(Λ−1x) + ∂µξν(x,Λ) + ∂νξµ(x,Λ) , (4.3)

where the explicit form of ξµ is not important. Therefore, in order to have a Lagrangian which propagates the desired

degrees of freedom, we must construct it so that it both looks Lorentz invariant and is invariant under the additional

transformation δhµν = ∂µξν + ∂νξµ, which leads us uniquely to (4.4).
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where Θ
(2)
µν is the energy momentum tensor of the quadratic action. The stress tensor can be

constructed from the standard Noether procedure. The equations of motion following from this

action are

Eαβµν hαβ ∼ Θ(2)
µν . (4.9)

Now, the left hand side is identically divergence-less, but the right hand side is not conserved,

because Θ
(2)
µν is not the full energy-momentum tensor for the field h—the cubic piece we added to

the action also contributes! However, we may correct for this by adding a quartic piece to the

action

S ∼
∫

d4x
(
hµνEαβµν hαβ + hµνS(2)

µν + hµνS(3)
µν

)
, (4.10)

so that the equation of motion is

Eαβµν hαβ ∼ Θ(2)
µν + Θ(3)

µν , (4.11)

where Θ
(3)
µν is stress tensor of the cubic part of the action. However, this still doesn’t fully fix the

problem, because now the quartic piece we added contributes to the stress tensor. If we continue

to iterate the procedure, we will end up with an infinite number of terms in the action, and the

claim is that these re-sum to give Einstein gravity

SEH ∼
∫

d4x

(
hEh+ h

∞∑
n=2

S(n)

)
∼
∫

d4x
√
−gR . (4.12)

This iteration procedure was performed by a shortcut in [9]. There is also an equivalent, but

algebraically simpler, derivation of Deser [10].

4.2.2 Generalities

We saw above that relatively few assumptions lead us more or less directly to GR. In order to

move beyond Einstein gravity, we must therefore consider breaking one of these assumptions. We

like Lorentz invariance and locality, so we would like to keep these. The basic assumption we will

consider breaking is the (kind of implicit) assumption that the massless spin-2 field is the only

gravitational degree of freedom. Basically we will consider adding more degrees of freedom. For a

review of this approach, see [11].

First, to neutralize Λ to an accuracy of order ∼ H2
0M

2
Pl ∼ (meV)4, the scalars must have a mass

at most comparable to the present-day Hubble parameter,

mφ ∼< H0 . (4.13)

If they were much more massive, they could be integrated out and would be irrelevant to the low

energy dynamics.

Secondly, these scalars must couple to Standard Model fields since, as we saw in Section 2.1, SM

fields contribute a large amount to the vacuum energy. Another way of saying this is that the

tadpole diagram

(4.14)
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must be present in the theory. However, by unitarity, so must the exchange diagram

. (4.15)

This implies that φ mediates a force between Standard Model fields, with a range around ∼ m−1
φ .

Given (4.13), this is comparable to the present Hubble radius. Thus, the scalar mediates a fifth

force, both at cosmological distances and within the solar system. However, gravity is exquisitely

well tested within the solar system so there must necessarily be some mechanism which hides these

new fields from local observations. This can be achieved through screening mechanisms, which

suppress deviations from GR.

Screening: Let’s try to understand how screening can work in the context of a single scalar field

conformally coupled to matter

L = −1

2
Zµν(φ, ∂φ, . . .)∂µφ∂νφ− V (φ) + g(φ)Tµµ , (4.16)

where Zµν schematically encodes derivative self-interactions of the field, and Tµµ is the trace of the

matter stress-energy tensor. For non-relativistic sources, we can make the replacement Tµµ → −ρ.

In the presence of a point source, ρ =Mδ3(~x), we can then expand the field about its background

solution φ̄ as φ = φ̄+ ϕ to obtain the equation of motion for the perturbation:

Z(φ̄)
(
ϕ̈− c2

s(φ̄)∇2ϕ
)

+m2(φ̄)ϕ = g(φ̄)Mδ3(~x) , (4.17)

where cs is an effective sound speed. In general, we have in mind that the background value φ̄ is set

by other background quantities, such the local density ρ̄ or the Newtonian potential Φ. Neglecting

the spatial variation of φ̄ over the scales of interest, the resulting static potential is

V (r) = − g2(φ̄)

Z(φ̄)c2
s(φ̄)

e
− m(φ̄)√

Z(φ̄)cs(φ̄)
r

4πr
M . (4.18)

The corresponding force is therefore attractive, as it should be for scalar mediation.

For a light scalar, and with the other parameters O(1), we see that ϕ mediates a gravitational-

strength long range force Fϕ ∼ 1/r2. Local tests of GR forbid any such force to high precision.

However, the fact that the various parameters g, Z, cs and m appearing in (4.18) depend on the

background value of the field gives us some ways to suppress this force.

• Weak coupling: One possibility is to let the coupling to matter, g, depend on the environment.

In regions of high density—where local tests of gravity are performed—the coupling is very

small, and the fifth force sufficiently weak to satisfy all of the constraints.

• Large mass: Another option is to let the mass of fluctuations, m(φ̄), depend on the ambient

matter density. In regions of high density, such as on Earth, the field acquires a large mass,

making its effects short range and hence unobservable. Deep in space, where the mass density

is low, the scalar is light and mediates a fifth force of gravitational strength. This idea leads

quite naturally to screening of the chameleon type.
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• Large inertia: We may also imagine making the kinetic function, Z(φ̄), large environmentally.

This leads us to screening of the kinetic type.

Dark Energy vs. Modified Gravity: Often with modifications of this type, people assume

that some other unknown physics (or symmetry principle) resolves the “old” cosmological constant

problem (the contribution from SM fields), and then seek to explain the observed cosmological

acceleration through some new stress energy component (dark energy) or additional degrees of

freedom (modified gravity). These two approaches are notoriously intertwined—consider adding

some new term, Gµν , to Einstein’s equations which is built out of the metric and derivatives in

some nontrivial way

Gµν + Gµν =
1

M2
Pl

Tµν . (4.19)

We would then call this modified gravity, however, nothing stops us from putting Gµν on the right

hand side and considering it as a new stress energy component and thinking of it as dark energy.

Therefore we see that the boundary between these two approaches is somewhat fuzzy. In [12], we

proposed that a boundary can be drawn such that anything which obeys the strong equivalence

principle is dark energy while things which obey the weak equivalence principle but not the strong

should be thought of as modified gravity.

4.2.3 f(R)

A modification to gravity, which can exhibit chameleon screening, that has received a lot of attention

is so-called f(R) gravity; in these models, the Ricci scalar in the Einstein–Hilbert action is replaced

by an arbitrary function of the Ricci scalar. In [13–15], this idea was adapted to explain the

late-time acceleration of the universe, without invoking a cosmological constant.

The action for this modification to Einstein gravity is of the form

S =
M2

Pl

2

∫
d4x
√
−g
(
R+ f(R)

)
+ Smatter[gµν , ψ] , (4.20)

where we have assumed that the matter fields, ψ, couple minimally to the metric gµν , which has

Ricci scalar R. In fact this theory is classically equivalent to a scalar-tensor theory. To see this,

consider the alternate action

S =
M2

Pl

2

∫
d4x
√
−g
(
R+ f(Φ) +

df

dΦ
(R− Φ)

)
+ Smatter[gµν , ψ] , (4.21)

with equations of motion8

(1 + fR)Rµν −
1

2
(R+ f − 2�fR) gµν −∇µ∇νfR =

1

M2
Pl

Tmatter
µν (4.22)

Φ = R , (4.23)

8Note that we have assumed that f,ΦΦ 6= 0 in the Φ equation of motion.
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where fR ≡ df/dR = df/dΦ. From equation (4.23), we see that Φ is an auxiliary field—its

equation of motion is non-dynamical (it does not involve time derivatives of Φ). At the classical

level, we may therefore use this equation to eliminate Φ from the action and reproduce the f(R)

action (4.20).9

In fact the action (4.21) is nothing more than Einstein gravity plus a canonical scalar non-

minimally coupled, albeit in disguise. To make this explicit, we simultaneously make a conformal

transformation and a field redefinition

g̃µν =

(
1 +

df

dΦ

)
gµν , φ = −

√
3

2
MPl log

(
1 +

df

dΦ

)
. (4.24)

This leads to the action

S =

∫
d4x
√
−g̃
(
M2

Pl

2
R̃− 1

2
g̃µν∂µφ∂νφ− V (φ)

)
+ Smatter[e

√
2/3φ/MPl g̃µν , ψ] , (4.25)

where we have defined

V (φ) =
M2

Pl

2

(
φdf

dφ − f(φ)
)

(
1 + df

dφ

)2 . (4.26)

For a suitable choice of V (φ) will exhibit chameleon screening. The potential for the scalar field

is set by our choice of the function f , and an important thing to note is that theories that look

extremely complicated in one description may be simple from the other perspective. For example,

simple functions of R often correspond to non-analytic potentials for the scalar φ, and vice versa.

The function f(R) in (4.20) is not a completely free function. There are various constraints on its

form coming both from theoretical consistency and phenomenological viability. One well-studied

choice for the form of the function f(R) is the Hu–Sawicki model [16]

f(R) = − aM2

1 +
(
R
M2

)−α . (4.27)

4.2.4 Galileons and beyond

A particularly interesting version of a scalar tensor theory known as the galileon [17] has recently

been in vogue. The novelty of these theories is that they are derivatively coupled and can become

classically nonlinear; they are in some sense a scalar analogue of Einstein gravity. The defining

features of the galileon are invariance under the shift symmetry

φ 7−→ φ+ c+ bµx
µ, (4.28)

and second-order equations of motion. This second property is nontrivial: something like (�φ)2 will

certainly have the required symmetry, but will generically have higher-order equations of motion.

The second-order equations of motion are desirable in order to ensure that the theory is free from

9In field theory language, we are integrating out Φ at tree level.
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what is known as the Ostrogradsky instability. It turns out that there are only a finite number of

terms in any given dimension (5 in D = 4) which satisfy both of these requirements. The simplest

nontrivial galileon theory is described by

L = −c2

2
(∂φ)2 − c3

Λ3
�φ(∂φ)2. (4.29)

Though it may not look it, both of these terms are invariant under the symmetry (4.28)—up to a

total derivative.

The galileons have a number of interesting properties. Maybe the most intriguing is that they

obey a non-renormalization theorem: the coefficient of the cubic term above receives no quan-

tum corrections at any order in perturbation theory (even from external fields, provided that the

couplings respect the galileon symmetry). Therefore, if the galileon can be made to drive cosmic

acceleration, its stress energy contribution will be radiatively stable.10

In fact, the galileon can act like an effective cosmological constant, to see this couple the theory

minimally to gravity. The Friedmann equations then read:

3M2
PlH

2 =
c2

2
φ̇2 − 6Hc3

Λ3
φ̇3 (4.30)

3M2
PlH

2 + 2M2
PlḢ = −c2

2
φ̇2 − 2c3

3Λ3

d

dt
φ̇3 , (4.31)

For simplicity, let’s first look for exact de Sitter solutions, for which we expect that

φ̇ = αH0MPl and H = H0 (4.32)

Plugging this ansatz into (4.31), we obtain

α2 = − 6

c2
. (4.33)

In order for α to be real, we have to take c2 = −1, indicating that the galileon is a ghost around

Minkowski space. We can then plug this into (4.30) to find H0 in terms of Λ:

Λ3 = −α3c3H
2
0MPl (4.34)

This particular model seems to be in tension with experimental data but people have generalized

the above construction significantly. One of the slogans which was abstracted from the galileon is

that scalar-tensor theories which have second-order equations of motion are interesting. This led

to a search for the most general scalar tensor theory with this property—in fact the answer had

been derived long ago by Horndeski, but had gone mostly unnoticed in the literature. Horndeski’s

theory provides a very general framework (perhaps too general to be useful) to investigate a variety

of cosmological questions.

10Note that this by itself does not solve the CC problem—it does not explain why the large contributions from the

SM fields we saw above are canceled to exquisite precision.
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More recently, it has been appreciated that second-order equations of motion are not the only way

to ensure the absence of ghost-like instabilities in theories with more than one degree of freedom

(of which scalar-tensor theories are a special case). Instead, there can be complicated relations

between the fields which enforce constraints that remove the dangerous modes. This has led to the

investigation of “beyond Horndeski” theories, which are an even more general theory of a scalar

degree of freedom interacting with a spin-2.

4.2.5 Partially massless gravity

Massive higher spin fields on de Sitter space possess gauge symmetries at certain values of their

masses. The first example of a field with more than one distinguished mass value is a massive

spin-2, hµν , on a D dimensional de Sitter space of radius H−1, which has the action

S =

∫
dDx
√
−g
[
−1

2
∇λhµν∇λhµν +∇λhµν∇νhµλ −∇µh∇νhµν +

1

2
∇µh∇µh

+ (D − 1)H2

(
hµνhµν −

1

2
h2

)
− 1

2
m2(hµνh

µν − h2)

]
. (4.35)

When the mass takes the value

m2 = (D − 2)H2 , (4.36)

the theory develops a scalar gauge symmetry

δhµν =
(
∇µ∇ν +H2gµν

)
φ , (4.37)

where φ(x) is a scalar gauge parameter. This is the partially massless (PM) graviton. There is

of course another distinguished value of the mass, m = 0, corresponding to the ordinary massless

graviton, which is invariant under linear diffeomorphism invariance. These are the only two values

of the mass of a spin-2 for which a gauge symmetry appears. In four dimensions, a generic massive

spin-2 field propagates five degrees of freedom, a massless spin-2 field propagates two degrees of

freedom, and a partially massless spin-2 lies in-between, propagating 4 degrees of freedom.11

This partially massless theory has been of interest as a possible theory of gravity because the

symmetry-enforced relation (4.36) links the value of the cosmological constant to the graviton

mass. A small graviton mass is in turn technically natural due to the enhanced diffeomorphism

invariance of general relativity at the value m = 0. This offers a tantalizing possible avenue towards

solving the cosmological constant problem (see [18] and references therein). Unfortunately, there

are obstructions to realizing a complete two-derivative non-linear theory that maintains the gauge

symmetry and propagates the same number of degrees of freedom as the linear theory.
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