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Metric Tensor
• Useful to think in a 3 + 1 language since there are preferred spatial

surfaces where the stress tensor is nearly homogeneous

• In general this is an Arnowitt-Deser-Misner (ADM) split

• Specialize to the case of a nearly FRW metric

g00 = −a2, gij = a2γij .

where the “0” component is conformal time η = dt/a and γij is a
spatial metric of constant curvature K = H2

0 (Ωtot − 1).

(3)R =
6K

a2



Metric Tensor
• First define the slicing (lapse function A, shift function Bi)

g00 = −a−2(1− 2A) ,

g0i = −a−2Bi ,

A defines the lapse of proper time between 3-surfaces whereas Bi

defines the threading or relationship between the 3-coordinates of
the surfaces

• This absorbs 1+3=4 free variables in the metric, remaining 6 is in
the spatial surfaces which we parameterize as

gij = a−2(γij − 2HLγ
ij − 2H ij

T ) .

here (1) HL a perturbation to the scale factor; (5) H ij
T a trace-free

distortion to spatial metric (which combined perturb the curvature)



Curvature Perturbation
• Curvature perturbation on the 3D slice

δ[(3)R] = − 4

a2

(
∇2 + 3K

)
HL +

2

a2
∇i∇jH

ij
T

• Note that we will often loosely refer to HL as the “curvature
perturbation”

• We will see that many representations have HT = 0

• It is easier to work with a dimensionless quantity

• First example of a 3-scalar - SVT decomposition



Matter Tensor
• Likewise expand the matter stress energy tensor around a

homogeneous density ρ and pressure p:

T 0
0 = −ρ− δρ ,

T 0
i = (ρ+ p)(vi −Bi) ,

T i
0 = −(ρ+ p)vi ,

T ij = (p+ δp)δij + pΠi
j ,

• (1) δρ a density perturbation; (3) vi a vector velocity, (1) δp a
pressure perturbation; (5) Πij an anisotropic stress perturbation

• So far this is fully general and applies to any type of matter or
coordinate choice including non-linearities in the matter, e.g.
scalar fields, cosmological defects, exotic dark energy.



Counting Variables

20 Variables (10 metric; 10 matter)

−10 Einstein equations

−4 Conservation equations

+4 Bianchi identities

−4 Gauge (coordinate choice 1 time, 3 space)

——

6 Free Variables

• Without loss of generality these can be taken to be the 6
components of the matter stress tensor

• For the background, specify p(a) or equivalently
w(a) ≡ p(a)/ρ(a) the equation of state parameter.



Homogeneous Einstein Equations
• Einstein (Friedmann) equations:(

1

a

da

dt

)2

= −K
a2

+
8πG

3
ρ [=

(
1

a

ȧ

a

)2

]

1

a

d2a

dt2
= −4πG

3
(ρ+ 3p) [=

1

a2

d

dη

ȧ

a
]

so that w ≡ p/ρ < −1/3 for acceleration

• Conservation equation∇µTµν = 0 implies

ρ̇

ρ
= −3(1 + w)

ȧ

a

overdots are conformal time but equally true with coordinate time



Homogeneous Einstein Equations
• Counting exercise:

20 Variables (10 metric; 10 matter)

−17 Homogeneity and Isotropy

−2 Einstein equations

−1 Conservation equations

+1 Bianchi identities

——

1 Free Variables

without loss of generality choose ratio of homogeneous & isotropic
component of the stress tensor to the density w(a) = p(a)/ρ(a).



Acceleration Implies Negative Pressure
• Role of stresses in the background cosmology

• Homogeneous Einstein equations Gµν = 8πGTµν imply the two
Friedmann equations (flat universe, or associating curvature
ρK = −3K/8πGa2)(

1

a

da

dt

)2

=
8πG

3
ρ

1

a

d2a

dt2
= −4πG

3
(ρ+ 3p)

so that the total equation of state w ≡ p/ρ < −1/3 for acceleration

• Conservation equation∇µTµν = 0 implies

ρ̇

ρ
= −3(1 + w)

ȧ

a

so that ρ must scale more slowly than a−2



Scalar, Vector, Tensor
• In linear perturbation theory, perturbations may be separated by

their transformation properties under 3D rotation and translation.

• The eigenfunctions of the Laplacian operator form a complete set

∇2Q(0) = −k2Q(0) S ,

∇2Q
(±1)
i = −k2Q

(±1)
i V ,

∇2Q
(±2)
ij = −k2Q

(±2)
ij T ,

• Vector and tensor modes satisfy divergence-free and
transverse-traceless conditions

∇iQ
(±1)
i = 0

∇iQ
(±2)
ij = 0

γijQ
(±2)
ij = 0



Vector and Tensor Quantities
• A scalar mode carries with it associated vector (curl-free) and

tensor (longitudinal) quantities

• A vector mode carries and associated tensor (trace and divergence
free) quantities

• A tensor mode has only a tensor (trace and divergence free)

• These are built from the mode basis out of covariant derivatives
and the metric

Q
(0)
i = −k−1∇iQ

(0) ,

Q
(0)
ij = (k−2∇i∇j +

1

3
γij)Q

(0) ,

Q
(±1)
ij = − 1

2k
[∇iQ

(±1)
j +∇jQ

(±1)
i ] ,



Perturbation k-Modes
• For the kth eigenmode, the scalar components become

A(x) = A(k)Q(0) , HL(x) = HL(k)Q(0) ,

δρ(x) = δρ(k)Q(0) , δp(x) = δp(k)Q(0) ,

the vectors components become

Bi(x) =
1∑

m=−1

B(m)(k)Q
(m)
i , vi(x) =

1∑
m=−1

v(m)(k)Q
(m)
i ,

and the tensors components

HT ij(x) =
2∑

m=−2

H
(m)
T (k)Q

(m)
ij , Πij(x) =

2∑
m=−2

Π(m)(k)Q
(m)
ij ,

• Note that the curvature perturbation only involves scalars

δ[(3)R] =
4

a2
(k2 − 3K)(H

(0)
L +

1

3
H

(0)
T )Q(0)



Spatially Flat Case
• For a spatially flat background metric, harmonics are related to

plane waves:

Q(0) = exp(ik · x)

Q
(±1)
i =

−i√
2

(ê1 ± iê2)iexp(ik · x)

Q
(±2)
ij = −

√
3

8
(ê1 ± iê2)i(ê1 ± iê2)jexp(ik · x)

where ê3 ‖ k. Chosen as spin states, c.f. polarization.

• For vectors, the harmonic points in a direction orthogonal to k

suitable for the vortical component of a vector



Fourier Conventions
• Suppress volume terms by making Fourier representation

dimensionful

F (x) =

∫
d3k

(2π)3
F (k)e−ik·x, F (k) =

∫
d3xF (x)eik·x

(2π)3δ(k− k′) =

∫
d3xei(k−k

′)·x

• Reality of field

F ∗(x) =

∫
d3k

(2π)3
F ∗(k)eik·x =

∫
d3k

(2π)3
F ∗(−k)e−ik·x

= F (x) =

∫
d3k

(2π)3
F (k)e−ik·x

F ∗(−k) = F (k)



Statistical Homogeneity and Isotropy
• Statistical homogeneity of two point correlation function

〈F (x)F (x′)〉 = 〈
∫

d3k

(2π)3
F ∗(k)eik·x

∫
d3k′

(2π)3
F (k′)e−ik

′·x′〉

= 〈F (x + d)F (x′ + d)〉

=

∫
d3k

(2π)3

∫
d3k′

(2π)3
〈F ∗(k)F (k′)〉eik·xe−ik′·x′ei(k−k′)·d

• Requires 2pt is the Fourier transform of power spectrum

〈F ∗(k)F (k′)〉 = (2π)3δ(k− k′)PF (k)

〈F (x)F (x′)〉 =

∫
d3k

(2π)3
PF (k)eik·(x−x

′) = ξ(x− x′)

• Statistical isotropy requires PF (k) = PF (k) and
ξ(x− x′) = ξ(|x− x′|)



N -point function and Gaussianity
• Generalize to N-point correlation function, e.g. 3pt

〈F (x1)F (x2)F (x3)〉 =

[
3∏

i=1

∫
d3ki
(2π)3

e−iki·xi

]
〈F (k1)F (k2)F (k3)〉

• Statistical homogeneity requires the ki to sum to zero and isotropy
independence of orientation

〈F (k1)F (k2)F (k3)〉 = (2π)3δ(k1 + k2 + k3)BF (k1, k2, k3)

• Gaussian field: all N point correlation functions depend only on
disconnected products of 2 point function or power spectrum, e.g.
bispectrum is zero



Amplitude
• Variance

σ2
F ≡ 〈F (x)F (x)〉 =

∫
d3k

(2π)3
PF (k)

=

∫
k2dk

2π2

∫
dΩ

4π
PF (k)

=

∫
d ln k

k3

2π2
PF (k)

• Define power per logarithmic interval

∆2
F (k) ≡ k3PF (k)

2π2

• This quantity is dimensionless in all representations. Serves as a
definition of the linear regime k’s where ∆2

F � 1



Linearity
• Fields related by a linear equation obey equation independent

equations

F (x) = AG(x) +B → F (k) = AG(k) (k > 0)

includes linear differential equation

F (x) = A∇G(k) +B

F (k) = A

∫
d3xeik·x∇

∫
d3k′

(2π)3
e−ik

′·xG(k′)

= A

∫
d3k′

(2π)3

∫
d3xei(k−k

′)·x(−ik′)G(k′) = A(−ik)G(k)

converts differential equations to algebraic relations



Convolution
• Convolution in real space often occurs – smoothing of field by

finite resolution and normalization
∫
d3xW (x) = 1

FW (x) =

∫
d3yW (x− y)F (y)

=

∫
d3y

∫
d3k

(2π)3
W (k)e−ik·(x−y)

∫
d3k′

(2π)3
F (k′)e−ik

′·y

=

∫
d3k

(2π)3

∫
d3k′

(2π)3
e−ik·xW (k)F (k′)

∫
d3yei(k−k

′)·y

=

∫
d3k

(2π)3
W (k)F (k)e−ik·x

FW (k) = W (k)F (k)

• Smoothing acts as a low pass filter: if W (x) is a broad function of
width L, W (k) suppressed for k > 2π/L



Convolution
• Filtered Variance

〈FW (x)FW (x)〉 =

∫
d3k

(2π)3

∫
d3k′

(2π)3
ei(k−k

′)·x〈F ∗(k)F (k′)〉W ∗(k)W (k′)

=

∫
d3k

(2π)3
PF (k)|W (k)|2

• Common filter is the spherical tophat:

WR(x) = V −1
R x < R

WR(x) = 0 x > R

• Fourier transform

WR(k) =
3

y3
(sin y − y cos y) , (y = kR)



Normalization
• Normalization is often quoted as the top hat rms of the density field

σ2
R =

∫
d ln k∆2

δ(k)|WR(k)|2

where observationally σ8h−1Mpc ≡ σ8 ≈ 1

• Note that ∆2
δ(k) itself can be thought of as the variance of the field

with a filter that has sharp high and low pass filters in k-space

• Convention is that σR is defined against the linear density field, not
the true non-linear density field



Spatially Flat Case
• Tensor harmonics are the transverse traceless gauge representation

• Tensor amplitude related to the more traditional

h+[(e1)i(e1)j − (e2)i(e2)j] , h×[(e1)i(e2)j + (e2)i(e1)j]

as

h+ ± ih× = −
√

6H
(∓2)
T

• H(±2)
T proportional to the right and left circularly polarized

amplitudes of gravitational waves with a normalization that is
convenient to match the scalar and vector definitions



Covariant Scalar Equations
• DOF counting exercise

8 Variables (4 metric; 4 matter)

−4 Einstein equations

−2 Conservation equations

+2 Bianchi identities

−2 Gauge (coordinate choice 1 time, 1 space)

——

2 Free Variables

without loss of generality choose scalar components of the stress
tensor δp, Π .



Covariant Scalar Equations
• Einstein equations (suppressing 0) superscripts

(k2 − 3K)[HL +
1

3
HT ]− 3(

ȧ

a
)2A+ 3

ȧ

a
ḢL +

ȧ

a
kB =

= 4πGa2δρ , 00 Poisson Equation

k2(A+HL +
1

3
HT ) +

(
d

dη
+ 2

ȧ

a

)
(kB − ḢT )

= −8πGa2pΠ , ij Anisotropy Equation
ȧ

a
A− ḢL −

1

3
ḢT −

K

k2
(kB − ḢT )

= 4πGa2(ρ+ p)(v −B)/k , 0i Momentum Equation[
2
ä

a
− 2

(
ȧ

a

)2

+
ȧ

a

d

dη
− k2

3

]
A−

[
d

dη
+
ȧ

a

]
(ḢL +

1

3
kB)

= 4πGa2(δp+
1

3
δρ) , ii Acceleration Equation



Covariant Scalar Equations
• Conservation equations: continuity and Navier Stokes[

d

dη
+ 3

ȧ

a

]
δρ+ 3

ȧ

a
δp = −(ρ+ p)(kv + 3ḢL) ,[

d

dη
+ 4

ȧ

a

] [
(ρ+ p)

(v −B)

k

]
= δp− 2

3
(1− 3

K

k2
)pΠ + (ρ+ p)A ,

• Equations are not independent since∇µG
µν = 0 via the Bianchi

identities.

• Related to the ability to choose a coordinate system or “gauge” to
represent the perturbations.



Gauge
• Metric and matter fluctuations take on different values in different

coordinate system

• No such thing as a “gauge invariant” density perturbation!

• General coordinate transformation:

η̃ = η + T

x̃i = xi + Li

free to choose (T, Li) to simplify equations or physics -
corresponds to a choice of slicing and threading in ADM.

• Decompose these into scalar T , L(0) and vector harmonics L(±1).



Gauge
• gµν and Tµν transform as tensors, so components in different

frames can be related

g̃µν(η̃, x̃
i) =

∂xα

∂x̃µ
∂xβ

∂x̃ν
gαβ(η, xi)

=
∂xα

∂x̃µ
∂xβ

∂x̃ν
gαβ(η̃ − TQ, x̃i − LQi)

• Fluctuations are compared at the same coordinate positions (not
same space time positions) between the two gauges

• For example with a TQ perturbation, an event labeled with
η̃ =const. and x̃ =const. represents a different time with respect to
the underlying homogeneous and isotropic background



Gauge Transformation
• Scalar Metric:

Ã = A− Ṫ − ȧ

a
T ,

B̃ = B + L̇+ kT ,

H̃L = HL −
k

3
L− ȧ

a
T ,

H̃T = HT + kL , H̃L +
1

3
H̃T = HL +

1

3
HT −

ȧ

a
T

curvature perturbation depends on slicing not threading

• Scalar Matter (J th component):

δρ̃J = δρJ − ρ̇JT ,
δp̃J = δpJ − ṗJT ,
ṽJ = vJ + L̇,

density and pressure likewise depend on slicing only



Gauge Transformation
• Vector:

B̃(±1) = B(±1) + L̇(±1),

H̃
(±1)
T = H

(±1)
T + kL(±1),

ṽ
(±1)
J = v

(±1)
J + L̇(±1),

• Spatial vector has no background component hence no dependence
on slicing at first order

Tensor: no dependence on slicing or threading at first order

• Gauge transformations and covariant representation can be
extended to higher orders

• A coordinate system is fully specified if there is an explicit
prescription for (T, Li) or for scalars (T, L)



Slicing
Common choices for slicing T : set something geometric to zero

• Proper time slicing A = 0: proper time between slices
corresponds to coordinate time – T allows c/a freedom

• Comoving (velocity orthogonal) slicing: v −B = 0, matter 4
velocity is related to N ν and orthogonal to slicing - T fixed

• Newtonian (shear free) slicing: ḢT − kB = 0, expansion rate is
isotropic, shear free, T fixed

• Uniform expansion slicing: −(ȧ/a)A+ ḢL + kB/3 = 0,
perturbation to the volume expansion rate θ vanishes, T fixed

• Flat (constant curvature) slicing, δ(3)R = 0, (HL +HT/3 = 0),
T fixed

• Constant density slicing, δρI = 0, T fixed



Threading
• Threading specifies the relationship between constant spatial

coordinates between slices and is determined by L

Typically involves a condition on v, B, HT

• Orthogonal threading B = 0, constant spatial coordinates
orthogonal to slicing (zero shift), allows δL = c translational
freedom

• Comoving threading v = 0, allows δL = c translational
freedom.

• Isotropic threading HT = 0, fully fixes L



Newtonian (Longitudinal) Gauge
• Newtonian (shear free slicing, isotropic threading):

B̃ = H̃T = 0

Ψ ≡ Ã (Newtonian potential)

Φ ≡ H̃L (Newtonian curvature)

L = −HT /k

T = −B/k + ḢT /k
2

Good: intuitive Newtonian like gravity; matter and metric
algebraically related; commonly chosen for analytic CMB and
lensing work

Bad: numerically unstable



Newtonian (Longitudinal) Gauge
• Newtonian (shear free) slicing, isotropic threading B = HT = 0 :

(k2 − 3K)Φ = 4πGa2

[
δρ+ 3

ȧ

a
(ρ+ p)v/k

]
Poisson + Momentum

k2(Ψ + Φ) = −8πGa2pΠ Anisotropy

so Ψ = −Φ if anisotropic stress Π = 0 and[
d

dη
+ 3

ȧ

a

]
δρ+ 3

ȧ

a
δp = −(ρ+ p)(kv + 3Φ̇) ,[

d

dη
+ 4

ȧ

a

]
(ρ+ p)v = kδp− 2

3
(1− 3

K

k2
)p kΠ + (ρ+ p) kΨ ,

• Newtonian competition between stress (pressure and viscosity)
and potential gradients

• Note: Poisson source is the density perturbation on comoving
slicing



Total Matter Gauge
• Total matter: (comoving slicing, isotropic threading)

B̃ = ṽ (T 0
i = 0)

HT = 0

ξ = Ã

R = H̃L (comoving curvature)

∆ = δ̃ (total density pert)

T = (v −B)/k

L = −HT /k

Good: Algebraic relations between matter and metric;
comoving curvature perturbation obeys conservation law

Bad: Non-intuitive threading involving v



Total Matter Gauge
• Euler equation becomes an algebraic relation between stress and

potential

(ρ+ p)ξ = −δp+
2

3

(
1− 3K

k2

)
pΠ

• Einstein equation lacks momentum density source

ȧ

a
ξ − Ṙ − K

k2
kv = 0

Combine: R is conserved if stress fluctuations negligible, e.g.
above the horizon if |K| � H2

Ṙ+Kv/k =
ȧ

a

[
− δp

ρ+ p
+

2

3

(
1− 3K

k2

)
p

ρ+ p
Π

]
→ 0



“Gauge Invariant” Approach
• Gauge transformation rules allow variables which take on a

geometric meaning in one choice of slicing and threading to be
accessed from variables on another choice

• Functional form of the relationship between the variables is gauge
invariant (not the variable values themselves! – i.e. equation is
covariant)

• E.g. comoving curvature and density perturbations

R = HL +
1

3
HT −

ȧ

a
(v −B)/k

∆ρ = δρ+ 3(ρ+ p)
ȧ

a
(v −B)/k



Newtonian-Total Matter Hybrid
• With the gauge in(or co)variant approach, express variables of one

gauge in terms of those in another – allows a mixture in the
equations of motion

• Example: Newtonian curvature and comoving density

(k2 − 3K)Φ = 4πGa2ρ∆

ordinary Poisson equation then implies Φ approximately constant
if stresses negligible.

• Example: Exact Newtonian curvature above the horizon derived
through comoving curvature conservation

Gauge transformation

Φ = R+
ȧ

a

v

k



Hybrid “Gauge Invariant” Approach
Einstein equation to eliminate velocity

ȧ

a
Ψ− Φ̇ = 4πGa2(ρ+ p)v/k

Friedmann equation with no spatial curvature(
ȧ

a

)2

=
8πG

3
a2ρ

With Φ̇ = 0 and Ψ ≈ −Φ

ȧ

a

v

k
= − 2

3(1 + w)
Φ



Newtonian-Total Matter Hybrid
Combining gauge transformation with velocity relation

Φ =
3 + 3w

5 + 3w
R

Usage: calculateR from inflation determines Φ for any choice of
matter content or causal evolution.

• Example: Scalar field (“quintessence” dark energy) equations in
total matter gauge imply a sound speed δp/δρ = 1 independent of
potential V (φ). Solve in synchronous gauge.



Synchronous Gauge
• Synchronous: (proper time slicing, orthogonal threading )

Ã = B̃ = 0

ηT ≡ −H̃L −
1

3
H̃T

hL ≡ 6HL

T = a−1

∫
dηaA+ c1a

−1

L = −
∫
dη(B + kT ) + c2

Good: stable, the choice of numerical codes

Bad: residual gauge freedom in constants c1, c2 must be
specified as an initial condition, intrinsically relativistic,
threading conditions breaks down beyond linear regime if c1 is
fixed to CDM comoving.



Synchronous Gauge
• The Einstein equations give

η̇T −
K

2k2
(ḣL + 6η̇T ) = 4πGa2(ρ+ p)

v

k
,

ḧL +
ȧ

a
ḣL = −8πGa2(δρ+ 3δp) ,

−(k2 − 3K)ηT +
1

2

ȧ

a
ḣL = 4πGa2δρ

[choose (1 & 2) or (1 & 3)] while the conservation equations give[
d

dη
+ 3

ȧ

a

]
δρJ + 3

ȧ

a
δpJ = −(ρJ + pJ)(kvJ +

1

2
ḣL) ,[

d

dη
+ 4

ȧ

a

]
(ρJ + pJ)

vJ
k

= δpJ −
2

3
(1− 3

K

k2
)pJΠJ .



Synchronous Gauge
• Lack of a lapse A implies no gravitational forces in Navier-Stokes

equation. Hence for stress free matter like cold dark matter, zero
velocity initially implies zero velocity always.

• Choosing the momentum and acceleration Einstein equations is
good since for CDM domination, curvature ηT is conserved and ḣL
is simple to solve for.

• Choosing the momentum and Poisson equations is good when the
equation of state of the matter is complicated since δp is not
involved. This is the choice of CAMB.

Caution: since the curvature ηT appears and it has zero CDM
source, subtle effects like dark energy perturbations are important
everywhere



Spatially Flat Gauge
• Spatially Flat (flat slicing, isotropic threading):

H̃L = H̃T = 0

L = −HT /k

Ã , B̃ = metric perturbations

T =

(
ȧ

a

)−1(
HL +

1

3
HT

)
Good: eliminates spatial metric in evolution equations; useful in
inflationary calculations (Mukhanov et al)

Bad: non-intuitive slicing (no curvature!) and threading

• Caution: perturbation evolution is governed by the behavior of
stress fluctuations and an isotropic stress fluctuation δp is gauge
dependent.



Uniform Density Gauge
• Uniform density: (constant density slicing, isotropic threading)

HT = 0 ,

ζI ≡ HL

BI ≡ B

AI ≡ A

T =
δρI
ρ̇I

L = −HT /k

Good: Curvature conserved involves only stress energy
conservation; simplifies isocurvature treatment

Bad: non intuitive slicing (no density pert! problems beyond
linear regime) and threading



Uniform Density Gauge
• Einstein equations with I as the total or dominant species

(k2 − 3K)ζI − 3

(
ȧ

a

)2

AI + 3
ȧ

a
ζ̇I +

ȧ

a
kBI = 0 ,

ȧ

a
AI − ζ̇I −

K

k
BI = 4πGa2(ρ+ p)

v −BI

k
,

• The conservation equations (if J = I then δρJ = 0)[
d

dη
+ 3

ȧ

a

]
δρJ + 3

ȧ

a
δpJ = −(ρJ + pJ)(kvJ + 3ζ̇I) ,[

d

dη
+ 4

ȧ

a

]
(ρJ + pJ)

vJ −BI

k
= δpJ −

2

3
(1− 3

K

k2
)pJΠJ + (ρJ + pJ)AI .



Uniform Density Gauge
• Conservation of curvature - single component I

ζ̇I = − ȧ
a

δpI
ρI + pI

− 1

3
kvI .

• Since δρI = 0, δpI is the non-adiabatic stress and curvature is
constant as k → 0 for internally adiabatic stresses pI(ρI).

• Note that this conservation law does not involve the Einstein
equations at all: just local energy momentum conservation so it is
valid for alternate theories of gravity

• Curvature on comoving slicesR and ζI related by

ζI = R+
1

3

ρI∆I

(ρI + pI)

∣∣∣
comoving

.

and coincide above the horizon for adiabatic fluctuations



Uniform Density Gauge
• Simple relationship to density fluctuations in the spatially flat

gauge

ζI =
1

3

δρ̃I
(ρI + pI)

∣∣∣
flat

.

• For each particle species δρ/(ρ+ p) = δn/n, the number density
fluctuation

• Multiple ζJ carry information about number density fluctuations
between species

• ζJ constant component by component outside horizon if each
component is adiabatic pJ(ρJ).



Poisson Equation
• Naive expectation: Φ = −Ψ and

∇2Φ = −4πGa2δρ

k2Φ = 4πGa2ρδ

where a2 comes from physical→ comoving and δρ since
background density goes into scale factor evolution

• Einstein equations put in a relativistic correction (flat universe)

k2Φ = 4πGa2ρ[δ + 3
ȧ

a
(1 + w)v/k]

k2(Φ + Ψ) = −8πGa2pπ

convenient to call combination

∆ ≡ δ + 3
ȧ

a
(1 + w)v/k



Constancy of Potential & Growth Rate
• Given the Poisson equation relates a redshifting total density ρ and

the comoving derivative factor a the density perturbation must
grow as ∆ ∝ (a2ρ)−1 ∝ a1−3w to maintain a constant potential.

• Density perturbations are stabilized by the expanding universe
(expansion drag) and do not grow exponentially. Presents a new
version of the horizon problem.

• Naive (Newtonian) argument: in the absence of stress
perturbations the Euler equation takes the form v̇ ∼ kΨ

• Given an initial potential perturbation Ψi a velocity perturbation
v ∼ (kη)Ψi

• Given a velocity perturbation continuity grows a density
fluctuation as ∆̇ ∼ −kv or ∆ = −(kη)2Ψi.



Constancy of Potential & Growth Rate
• The growing density perturbation is exactly that required to

maintain the potential constant

Ψ ≈ −4πGa2ρ

k2
∆ ≈ 4πGa2ρ

k2
(kη)2Ψi

η ∝ a(1+3w)/2, a2ρ ∝ a−(1+3w)

• Under gravity alone, the density fluctuations grow just fast enough
to maintain constant potentials

• Stress fluctuations only decrease the rate of growth of the
potential. Starting from an unperturbed Ψi = 0 universe, where do
the fluctuations that form large scale structure come from



Bardeen Curvature
• A proper relativistic generalization involves the (ȧ/a)v/k

corrections, called the Bardeen (or comoving) curvature

R ≡ Φ− ȧ

a
v/k .

• Geometric meaning: space curvature fluctuation on comoving
(velocity-orthogonal-isotropic) time slicing

• Same time slicing gives ∆ as the density perturbation



Bardeen Curvature
• Continuity equation becomes

∆̇ = −3
ȧ

a

(
C2
s − w

)
∆− (1 + w)(kv + 3Ṙ) ,

where the transformed sound speed

C2
s ≡

∆p

∆ρ

∆p ≡ δp− ṗv/k

• Euler equation becomes

Ṙ =
ȧ

a
ξ

ξ = − C2
s

1 + w
∆ +

2

3

w

1 + w
π .



Bardeen Curvature
• So that the Bardeen curvature only changes in the presence of

stress fluctuations – scales below the horizon

• Extremely useful result (proven in problem set) says that calculated
R once and for all – e.g. during formation in an inflationary epoch

• Relationship to gravitational potential: (from Poisson &
conservation equations)

ȧ

a
Ψ− Φ̇ = 4πGa2(ρ+ p)v/k

so that if Φ constant and Ψ = −Φ then

−
(
ȧ

a

)2

Φ = 4πGa2ρ(1 + w)
ȧ

a
v/k

=
3

2

(
ȧ

a

)2

(1 + w)
ȧ

a
v/k



Bardeen Curvature
• Relationship between the curvature Φ and v

ȧ

a
v/k = − 2

3(1 + w)
Φ → R =

[
1 +

2

3(1 + w)

]
Φ

• Matter dominated Φ = 3R/5, radiation dominated Φ = 2R/3, Λ

dominated Φ→ 0.

• So: put these pieces together assuming dark energy is smooth

k3

2π2
P∆(k) =

(
k2

4πGa2ρm

)2
k3

2π2
PΦ(k)

=

(
k2

4πGa2ρm

)2
k3

2π2
PΦ(k)

=
4

9

a2k4

Ω2
mH

4
0

k3

2π2
PΦ(k)



Bardeen Curvature
• Assume initial curvature power spectrum

k3

2π2
PR(k) = AS

(
k

knorm

)nS−1

and a transfer function T (k) that defines the subhorizon evolution
which is influenced by pressure effects during radiation domination

• Finally normalize to the matter dominated expectation and take
Φ = [3G(a)/5]R where G(a) is the modification to the growth
rate of Φ due to the dark energy and curvature

Φ(a, k) =
3

5
G(a)T (k)R(0, k)

k3

2π2
P∆(k) =

4

25
AS

(
G(a)a

Ωm

)2(
k

H0

)4(
k

knorm

)nS−1

T 2(k)



Transfer Function
• Transfer function transfers the initial Newtonian curvature to its

value today (linear response theory)

T (k) =
Φ(k, a = 1)

Φ(k, ainit)

Φ(knorm, ainit)

Φ(knorm, a = 1)

• Conservation of Bardeen curvature: Newtonian curvature is a
constant when stress perturbations are negligible: above the
horizon during radiation and dark energy domination, on all scales
during matter domination

• When stress fluctuations dominate, perturbations are stabilized by
the Jeans mechanism

• Hybrid Poisson equation: Newtonian curvature, comoving density
perturbation ∆ ≡ (δρ/ρ)com implies Φ decays

(k2 − 3K)Φ = 4πGρ∆ ∼ η−2∆



Transfer Function
• Freezing of ∆ stops at ηeq

Φ ∼ (kηeq)−2∆H ∼ (kηeq)−2Φinit

• Transfer function has a k−2 fall-off beyond keq ∼ η−1
eq

• Small correction since growth with a smooth radiation component
is logarithmic not frozen

• Transfer function is a direct output of an Einstein-Boltzmann code



Fitting Function
• Alternately accurate fitting formula exist, e.g. pure CDM form:

T (k(q)) =
L(q)

L(q) + C(q)q2

L(q) = ln(e+ 1.84q)

C(q) = 14.4 +
325

1 + 60.5q1.11

q = k/Ωmh
2Mpc−1(TCMB/2.7K)2

• In h Mpc−1, the critical scale depends on Γ ≡ Ωmh also known as
the shape parameter



Transfer Function
• Numerical calculation

1

0.1

0.0001 0.001 0.01 0.1 1
0.01

T(
k)

k (h–1 Mpc)

BAO

k–2



Dark Matter and the Transfer Function
• Baryons caught up in the acoustic oscillations of the CMB and

impart acoustic wiggles to the transfer function. Density
enhancements are produced kinematically through the continuity
equation δb ∼ (kη)vb and hence are out of phase with CMB
temperature peaks

• Dissipation of the acoustic oscillations eliminates both the CMB
and baryon perturbations – known as Silk damping for the
baryons. This suppression and the general fact that baryons are
caught up with photons was one of the main arguments for CDM

• Neutrino dark matter suffers similar effects and hence cannot be
the main component of dark matter in the universe



Massive Neutrinos
• Relativistic stresses of a light neutrino slow the growth of structure

• Neutrino species with cosmological abundance contribute to
matter as Ωνh

2 =
∑
mν/94eV, suppressing power as

∆P/P ≈ −8Ων/Ωm

• Current data from 2dF galaxy survey and CMB indicate∑
mν < 0.9eV assuming a ΛCDM model with constant tilt based

on the shape of the transfer function.



Growth Function
• Same physics applies to the dark energy dominated universe

• Under the dark energy sound horizon or Jeans scale, dark energy
density frozen. Potential decays at the same rate for all scales

G(a) =
Φ(knorm, a)

Φ(knorm, ainit)
′ ≡ d

d ln a

• Continuity + Euler + Poisson

G′′ +

(
1− ρ′′

ρ′
+

1

2

ρ′c
ρc

)
G′ +

(
1

2

ρ′c + ρ′

ρc
− ρ′′

ρ′

)
G = 0

where ρ is the Jeans unstable matter and ρc is the critical density



Dark Energy Growth Suppression
• Pressure growth suppression: δ ≡ δρm/ρm ∝ aG

d2G

d ln a2
+

[
5

2
− 3

2
w(z)ΩDE(z)

]
dG

d ln a
+

3

2
[1− w(z)]ΩDE(z)G = 0 ,

where w ≡ pDE/ρDE and ΩDE ≡ ρDE/(ρm + ρDE) with initial
conditions G = 1, dg/d ln a = 0

• As ΩDE → 0 G =const. is a solution. The other solution is the
decaying mode, elimated by initial conditions

• As ΩDE → 1 G ∝ a−1 is a solution. Corresponds to a frozen
density field.



Velocity field
• Continuity gives the velocity from the density field as

v = −∆̇/k = −aH
k

d∆

d ln a

= −aH
k

∆
d ln(ag)

d ln a

• In a ΛCDM model or open model d ln(ag)/d ln a ≈ Ω0.6
m

• Measuring both the density field and the velocity field (through
distance determination and redshift) allows a measurement of Ωm

• Practically one measures β = Ω0.6
m /b where b is a bias factor for

the tracer of the density field, i.e. with galaxy numbers δn/n = b∆

• Can also measure this factor from the redshift space power
spectrum - the Kaiser effect where clustering in the radial direction
is apparently enhanced by gravitational infall



Gravitational Lensing
• Gravitational potentials along the line of sight n̂ to some source at

comoving distance Ds lens the images according to (flat universe)

φ(n̂) = 2

∫
dD

Ds −D
DDs

Φ(Dn̂, η(D))

remapping image positions as

n̂I = n̂S +∇n̂φ(n̂)

• Since absolute source position is unknown, use image distortion
defined by the Jacobian matrix

∂nIi
∂nSj

= δij + ψij



Weak Lensing
• Small image distortions described by the convergence κ and shear

components (γ1, γ2)

ψij =

(
κ− γ1 −γ2

−γ2 κ+ γ1

)
where∇n̂ = D∇ and

ψij = 2

∫
dD

D(Ds −D)

Ds

∇i∇jΦ(Dn̂, η(D))

• In particular, through the Poisson equation the convergence
(measured from shear) is simply the projected mass

κ =
3

2
ΩmH

2
0

∫
dD

D(Ds −D)

Ds

∆(Dn̂, η(D))

a


