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Metric Tensor

e Useful to think in a 3 4+ 1 language since there are preferred spatial
surfaces where the stress tensor 1s nearly homogeneous

e In general this i1s an Arnowitt-Deser-Misner (ADM) split

e Specialize to the case of a nearly FRW metric

o 2 9
Joo = —a-, Giz — @ 7ij -

where the “0” component is conformal time 1 = dt/a and ~;; is a
spatial metric of constant curvature K = H§(Qyor — 1).
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Metric Tensor

e First define the slicing (lapse function A, shift function B*)

g’ = —a?(1-2A4),
Q= —a2B
A defines the lapse of proper time between 3-surfaces whereas B®

defines the threading or relationship between the 3-coordinates of

the surfaces

e This absorbs 1+3=4 free variables in the metric, remaining 6 is in
the spatial surfaces which we parameterize as

g’ = a_z(fyij — 2H 4V — 2H§3)

here (1) H;, a perturbation to the scale factor; (5) H;J a trace-free
distortion to spatial metric (which combined perturb the curvature)



Curvature Perturbation

e Curvature perturbation on the 3D slice

4
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0[P R = —= (V*+3K) Hy, + — ViV, Hy

e Note that we will often loosely refer to H;, as the “curvature
perturbation”

e We will see that many representations have Hy = 0

e It 1s easier to work with a dimensionless quantity

e First example of a 3-scalar - SVT decomposition



Matter Tensor

e Likewise expand the matter stress energy tensor around a
homogeneous density p and pressure p:

TOO — —pP— 5p7
7% = (p+p)(vi—By),
Ty = —(p+pr',

1% = (p+op)d’; +pll',,
e (1) 0p a density perturbation; (3) v; a vector velocity, (1) op a
pressure perturbation; (5) 11;; an anisotropic stress perturbation

e So far this 1s fully general and applies to any type of matter or
coordinate choice including non-linearities in the matter, e.g.
scalar fields, cosmological defects, exotic dark energy.



Counting Variables

20  Vanables (10 metric; 10 matter)
—10  Einstein equations

—4  Conservation equations

+4  Bianchi identities

—4  Gauge (coordinate choice 1 time, 3 space)

6 Free Variables

e Without loss of generality these can be taken to be the 6
components of the matter stress tensor

e For the background, specify p(a) or equivalently
w(a) = p(a)/p(a) the equation of state parameter.



Homogeneous Einstein Equations

e Einstein (Friedmann) equations:

lda\" _ K _ 81G | (1&)°
a dt a2 3 ¥ T\

1 d*a ArGG 1 da
daz = 3 ) B

so that w = p/p < —1/3 for acceleration
e Conservation equation V#1,,,, = 0 implies

P 301+ w)l
0 a

overdots are conformal time but equally true with coordinate time



Homogeneous Einstein Equations

e Counting exercise:

20  Variables (10 metric; 10 matter)
—17  Homogeneity and Isotropy

—2  Einstein equations

—1  Conservation equations

+1  Bianchi identities

1 Free Variables

without loss of generality choose ratio of homogeneous & i1sotropic
component of the stress tensor to the density w(a) = p(a)/p(a).



Acceleration Implies Negative Pressure

e Role of stresses in the background cosmology

e Homogeneous Einstein equations G, = 8wG1),,, imply the two
Friedmann equations (flat universe, or associating curvature

pr = —3K/8nGa?)

1da\’ 8
a dt 3 7
1 d*a At
- - = 3
so that the total equation of state w = p/p < —1/3 for acceleration

e Conservation equation V#T,,,, = 0 implies

P o 301+ w)”
P a

so that p must scale more slowly than a2



Scalar, Vector, Tensor

e In linear perturbation theory, perturbations may be separated by
their transformation properties under 3D rotation and translation.

e The eigenfunctions of the Laplacian operator form a complete set

V2Q(0) — _k2Q(0) S,
VQQ(il) _ _kZQ(il) V
VY = -kQyY T,

e Vector and tensor modes satisty divergence-free and
transverse-traceless conditions

viQr =0
ViQ; " =0

17QiY =0



Vector and Tensor Quantities

e A scalar mode carries with 1t associated vector (curl-free) and
tensor (longitudinal) quantities

e A vector mode carries and associated tensor (trace and divergence
free) quantities

e A tensor mode has only a tensor (trace and divergence free)

e These are built from the mode basis out of covariant derivatives
and the metric

QY = -k 'v,QO,
1
0 _
Q,fj) = (k ZVz'VjJrg%j)Q(o),
1
QFY = ——v,Q\ + v,

* 2k



Perturbation k-Modes

e For the kth eigenmode, the scalar components become
Ax) = A(R)QY,  Hi(x)
op(k)Q®,  dp(x)

the vectors components become

Bix) = Y B™®HQ™,

op(x) =

m=—1

and the tensors components

Hi (k) QW
op(k) QY

2
(k) QE;%)a I1;;(x) = Z H(””(/f) an)a

m=—2

e Note that the curvature perturbation only involves scalars

319 R] -
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4 1
(k* — 3K)(H" +
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Spatially Flat Case

e For a spatially flat background metric, harmonics are related to
plane waves:

QY = exp(ik-x)

Q= _—Z(él + 765);exp(ik - x)

Z V2
3. A\ n .
QE;EQ) —\/g(el + zeg)i(el + zeg)jexp(zk . X)

where €3 || k. Chosen as spin states, c.f. polarization.

e For vectors, the harmonic points in a direction orthogonal to k
suitable for the vortical component of a vector



Fourier Conventions

e Suppress volume terms by making Fourier representation
dimensionful

F(x) = / (;iﬂl;SF(k)eik'x, F(k) = /d3xF(X)eik-x

/ deei(k—k’)-x

P = [ Gt (0 = [ e

= F(x) = / (;ZW];?)F(k)eik‘x

(2m)%6(k — k')

e Reality of field




Statistical Homogeneity and Isotropy

e Statistical homogeneity of two point correlation function

(F(x)F(x')) = ( / (%3 P (k) / (szgng(k,)eik/.x,>
= (F(x+d)F(x'+d))

d*k A’k * ik-x —ik/-x' _i(k—k’)-
_/(27r)3/(2w>3<F (R (e )eme e e

e Requires 2pt 1s the Fourier transform of power spectrum

(F*(k)F(K')) = (2m) 0 (k — k') P (k)

FROF)) = [ G Prlle ) — gx —x)

e Statistical isotropy requires Pr(k) = Pr(k) and
§(x —x') = &(jx —xI)



N -point function and Gaussianity

e Generalize to N-point correlation function, e.g. 3pt

(F(x1)F(x2)F(x3)) = [H/ (C;:;g e

e Statistical homogeneity requires the k; to sum to zero and isotropy

Zkz X3

(F(k1) F (ko) F(ks))

independence of orientation

(F(ki)F(ky)F(ks)) = (2m)36(ky + ko + k3)Brp(k1, ks, k3)

e Gaussian field: all /V point correlation functions depend only on
disconnected products of 2 point function or power spectrum, e.g.
bispectrum 1s zero



Amplitude

e Variance

ot = (FOF() = | (;i’;PFw)
- [ [

/dlnk—PF(k)

7T

e Define power per logarithmic interval

k3 Pr(k)
272

e This quantity 1s dimensionless 1n all representations. Serves as a

Ap(k) =

definition of the linear regime k’s where A% < 1



Linearity

e Fields related by a linear equation obey equation independent
equations

F(x) = AG(x)+ B — F(k)=AGK) (k> 0)

includes linear differential equation

F(x)=AVG(k)+ B

- d°k'
F(k)=A etk v /
(k) /d e (2m)3

B k' 3 ot (k—K')x(__ -1/ N = A(—1

converts differential equations to algebraic relations

e—ik’-xG(k/)




Convolution

e Convolution 1n real space often occurs — smoothing of field by
finite resolution and normalization [ d*zW (x) =1

Fyw (x) = / dgyvvx— y)F(y)

d3

g /éi’;’ i jon

_ / (Zﬂ?SW(k)F(k)eik'X

Fy (k) = W(k)F(k)

e Smoothing acts as a low pass filter: if 1/ (x) is a broad function of
width L, W (k) suppressed for & > 27/ L



Convolution

e Filtered Variance

(Fw(x)Fw(x)) = / (;ZW]; / (Zf);e“k—k’)'xw*(k)F(k’)>W*(k)W(k’)

- [ P

e Common filter is the spherical tophat:

We(x)=Vs! <R
WR(X) =0 x> R

e Fourier transform

3
Wr(k) = g(smy —ycosy),  (y=kR)



Normalization

e Normalization 1s often quoted as the top hat rms of the density field

R—/dlnkAQ( )|Wr(k)|?

where observationally ogj,-1ppc = 03 =~ 1

e Note that A%(k) itself can be thought of as the variance of the field
with a filter that has sharp high and low pass filters in k-space

e Convention 1s that oy 1s defined against the linear density field, not
the true non-linear density field



Spatially Flat Case

e Tensor harmonics are the transverse traceless gauge representation

e Tensor amplitude related to the more traditional

hil(er)i(er); — (e2)i(ea);],  hx[(ei)i(ez); + (e2)i(e1);]

as

hy +ihy = —V/6HT?

o ;ﬂ) proportional to the right and left circularly polarized
amplitudes of gravitational waves with a normalization that 1s

convenient to match the scalar and vector definitions



Covariant Scalar Equations

e DOF counting exercise

8  Variables (4 metric; 4 matter)
—4  Einstein equations
—2  Conservation equations
+2  Bianchi identities

—2  Gauge (coordinate choice 1 time, 1 space)

2 Free Variables

without loss of generality choose scalar components of the stress
tensor op, II .



Covariant Scalar Equations

e Einstein equations (suppressing 0) superscripts

1
(k* = 3K)[H}, + 3HT] —3(= )2A + 3— HL + kB =
= A7rGa*Sp, 00 Poisson Equatlon

1 d :
KA+ Hy + Hp) + (dn ; 2a> (kB — Iir)

3
= —81Ga?pll, ij Anisotropy Equation
1. K
—A H;, —-Hy — —=(kB—-—H
L= ghr k2( T)
= 41Ga’*(p+ p)(v — B)/k, 0i Momentum Equation

. e\ 2 . 2
lza_g(a) Lad K
a a adn 3

1
= 47Ga*(6p + §5 p), i1 Acceleration Equation

d a : 1
A—|—+—-| (H —kB
[d77+a]( L—l—3 )



Covariant Scalar Equations

e Conservation equations: continuity and Navier Stokes

d

= 432 6p+356p = —(p+p)(kv+3HL),

dn a a
d  a (v — B) 2 K
@ .l = dp— =(1—=3=)plIl A
[d?7+ a] [(p+p) ; ] L

e Equations are not independent since V,,G*” = 0 via the Bianchi
1dentities.

e Related to the ability to choose a coordinate system or “gauge” to
represent the perturbations.



Gauge

e Metric and matter fluctuations take on different values in different
coordinate system

e No such thing as a “gauge invariant” density perturbation!

e General coordinate transformation:

n = n+7T
P o= 4+ I

free to choose (7, L") to simplify equations or physics -
corresponds to a choice of slicing and threading in ADM.

e Decompose these into scalar 7', L(®) and vector harmonics L(*1).



Gauge

e g, and 1, transtorm as tensors, so components 1n different
frames can be related

SR Oz* Ox” Z.
g,ul/(nax ) — 8:%” @f’/ gaﬁ(n7$ )
Ox® Oz | .
— w3(m—T0, 7" — L)'
57 Az Jes(l — 1Q, 1" — LQ')

e Fluctuations are compared at the same coordinate positions (not
same space time positions) between the two gauges

e For example with a 7'C) perturbation, an event labeled with
1 =const. and & =const. represents a different time with respect to
the underlying homogeneous and 1sotropic background



Gauge Transformation

e Scalar Metric:

A= A-17-%7,
a
B = B+ L+kT,
~ k .
H, = H,—~r-%1
3 a
) 1. 1 a
Hy = Hp+kL,  Hy+ Hp=Hp+  Hp—-T
a

curvature perturbation depends on slicing not threading

e Scalar Matter (Jth component):

opy = opy—pjT,
opg = opy;—pjT,
{}J = Uyt La

density and pressure likewise depend on slicing only



Gauge Transformation

e Vector:
B(il) _ B(il) —I—L(il),
ﬁ;il) _ H;il) —I—kL(il),
@Sil) _ vgil) —|—L(i1),

e Spatial vector has no background component hence no dependence
on slicing at first order

Tensor: no dependence on slicing or threading at first order

e Gauge transformations and covariant representation can be
extended to higher orders

e A coordinate system 1s fully specified if there 1s an explicit
prescription for (7', L") or for scalars (7', L)



Slicing
Common choices for slicing 1": set something geometric to zero

e Proper time slicing A = 0: proper time between slices
corresponds to coordinate time — 1" allows ¢/a freedom

e Comoving (velocity orthogonal) slicing: v — B = 0, matter 4
velocity 1s related to N and orthogonal to slicing - 1" fixed

e Newtonian (shear free) slicing: Hy — kB =0, expansion rate 1s
1sotropic, shear free, 7' fixed

e Uniform expansion slicing: —(a/a)A + H, + kB/3 =0,
perturbation to the volume expansion rate 6 vanishes, 7' fixed

e Flat (constant curvature) slicing, o R =0,(H; + Hr /3 =0),
1" fixed

e Constant density slicing, 0p; = 0, T' fixed



Threading

e Threading specifies the relationship between constant spatial
coordinates between slices and 1s determined by L
Typically involves a condition on v, 5, Hrp

e Orthogonal threading B = 0, constant spatial coordinates
orthogonal to slicing (zero shift), allows 0 L. = c translational
freedom

e Comoving threading v = 0, allows 0 L. = c translational
freedom.

e [sotropic threading Hp = 0, fully fixes L



Newtonian (Longitudinal) Gauge

e Newtonian (shear free slicing, 1sotropic threading):

N N &

Hr =0

A (Newtonian potential)
H; (Newtonian curvature)
—Hr/k

~B/k+ Hyp/K?

Good: intuitive Newtonian like gravity; matter and metric
algebraically related; commonly chosen for analytic CMB and

lensing work

Bad: numerically unstable



Newtonian (Longitudinal) Gauge

e Newtonian (shear free) slicing, 1sotropic threading 5 = Hy =0 :

(k* —=3K)® = 4nGa* [5,0 + 3 (p+ p)v/k] Poisson + Momentum
a
(U 4+ ®) = —8rGa’pll Anisotropy
so W = —& 1f anisotropic stress 11 = 0 and
d a a :
[— + 3—] op+3=0p = —(p+p)(kv+3D),
dn a a
d a 2 K
— 44— = kop— =(1—-3-—=5)pkll kW
2] e = ko= BRI+ (o )k

e Newtonian competition between stress (pressure and viscosity)
and potential gradients

e Note: Poisson source 1s the density perturbation on comoving
slicing



Total Matter Gauge

e Total matter: (comoving slicing, isotropic threading)

B = o (I} =0
Hr = 0

¢ = A

R = H; (comoving curvature)
A = § (total density pert)

T = (v—B)/k

L = —Hp/k

Good: Algebraic relations between matter and metric;
comoving curvature perturbation obeys conservation law

Bad: Non-intuitive threading involving v



Total Matter Gauge

e Euler equation becomes an algebraic relation between stress and

potential
2 K
(p+p)é=—-dp+5(1——5|pll
3 k
e Einstein equation lacks momentum density source
a . K
55 — R — ﬁkv =0

Combine: R 1s conserved if stress fluctuations negligible, e.g.
above the horizon if |K| < H*

. [ o 2 3K
R+Kv//c:9[——p+—(1— ) P H]%O
al p+p 3 k2 ) p+p




“Gauge Invariant” Approach

e Gauge transformation rules allow variables which take on a
geometric meaning in one choice of slicing and threading to be
accessed from variables on another choice

e Functional form of the relationship between the variables 1s gauge
invariant (not the variable values themselves! — 1.e. equation is

covariant)

e E.g. comoving curvature and density perturbations

| .
R = HL+§HT—9(v—B)/k
a

Ap = 0p+ 3(p+p)g(v — B)/k



Newtonian-Total Matter Hybrid

e With the gauge in(or co)variant approach, express variables of one
gauge 1n terms of those in another — allows a mixture in the
equations of motion

e Example: Newtonian curvature and comoving density

(k* — 3K)® = 4nGa’pA
ordinary Poisson equation then implies ¢ approximately constant
if stresses negligible.

e Example: Exact Newtonian curvature above the horizon derived
through comoving curvature conservation

Gauge transformation

a v
O =R+ ——
_l_a,k



Hybrid “Gauge Invariant” Approach

Einstein equation to eliminate velocity

¢ = ArGa’(p + p)v/k
a

Friedmann equation with no spatial curvature

(d>2 &G
a 3

With® = 0and ¥ ~ —®

@w___ 2 4
ak 3(1 4+ w)




Newtonian-Total Matter Hybrid

Combining gauge transformation with velocity relation

_S—I—Sw
543w

o

Usage: calculate ‘R from inflation determines ¢ for any choice of
matter content or causal evolution.

e Example: Scalar field (*quintessence” dark energy) equations in
total matter gauge imply a sound speed dp/dp = 1 independent of
potential V' (¢). Solve in synchronous gauge.



Synchronous Gauge

e Synchronous: (proper time slicing, orthogonal threading )

~

A = B=0

- 1 -~
nr = _HL_gHT
hL = 6HL

T = a_1/dnaA—|—cla_1
L = —/dn(B—l—kT)+02

Good: stable, the choice of numerical codes

Bad: residual gauge freedom in constants c;, co must be
specified as an initial condition, intrinsically relativistic,
threading conditions breaks down beyond linear regime if c; 1s
fixed to CDM comoving.



Synchronous Gauge

e The Einstein equations give

nr — @(hL + 6nr) = 4rGa*(p + p)

v
k Y,
hi + ghL = —81Ga’*(dp + 30p) ,

la.
—(k2 — 3K)77T + ighlj = 47TGCL25,0

[choose (1 & 2) or (1 & 3)] while the conservation equations give

d a a 1.
L 3% 50, +3%6p, = - kvy + =
[dﬁ +3a] PJ+3a DJ (ps+py)(kvy + 5 L),

Vg 2 K

d a
=gl L= Spy— 21— 3 )pyTly .
[dn+ a] (ps +pJ) I pJ 3( Skg)pJ J



Synchronous Gauge

e Lack of a lapse A implies no gravitational forces in Navier-Stokes
equation. Hence for stress free matter like cold dark matter, zero
velocity initially implies zero velocity always.

e Choosing the momentum and acceleration Einstein equations 1s
good since for CDM domination, curvature 7 is conserved and /.
1s simple to solve for.

e Choosing the momentum and Poisson equations 1s good when the
equation of state of the matter is complicated since op is not

involved. This 1s the choice of CAMB.

Caution: since the curvature np appears and it has zero CDM
source, subtle effects like dark energy perturbations are important
everywhere



Spatially Flat Gauge

e Spatially Flat (flat slicing, 1sotropic threading):

H, = Hr=0
L = —Hrp/k
A,B = metric perturbations
a\ 1
e (o) (megm)
a 3

Good: eliminates spatial metric in evolution equations; useful in
inflationary calculations ( )

Bad: non-intuitive slicing (no curvature!) and threading
e Caution: perturbation evolution is governed by the behavior of

stress fluctuations and an isotropic stress fluctuation op is gauge
dependent.



Uniform Density Gauge

e Uniform density: (constant density slicing, 1sotropic threading)

HT:()a

¢r =Hp

B[EB

A[EA

T %P1
PI1

L=—Hp/k

Good: Curvature conserved involves only stress energy
conservation; simplifies 1socurvature treatment

Bad: non intuitive slicing (no density pert! problems beyond
linear regime) and threading



Uniform Density Gauge

e Einstein equations with / as the total or dominant species

. 2 . .
(k2—3kﬁg~—3(9) Ar+3%¢ 4+ 2kB; =0,
a a a

) . K v — By
—A; — (; — —B; = 41Gd?
A C1 D1 mGa”(p + p) o

e The conservation equations (if J = [ then 0p; = 0)

d a a '
[d— —+ 3—] 5,0J + 3—5pj = _(,OJ +pJ>(kUJ + 3CI)7
i a ¢
d vy — Br 2

a K
=4 4= = 0py — =(1 — 3= )pyII A
[d?7+ a] (ps +DpJ) I pJ 3( 3k2)PJ g+ (ps+ps)As




Uniform Density Gauge

e Conservation of curvature - single component /

e Since dp;y = 0, dpy is the non-adiabatic stress and curvature is
constant as k — 0 for internally adiabatic stresses pr(pr).

e Note that this conservation law does not involve the Einstein
equations at all: just local energy momentum conservation so it 1s
valid for alternate theories of gravity

e Curvature on comoving slices ‘R and (; related by

1 prAg
— R4+ =
= 3 (o1 + 1)

and coincide above the horizon for adiabatic fluctuations

comoving



Uniform Density Gauge

e Simple relationship to density fluctuations in the spatially flat

gauge
C_} 0p1
! 3 (pr +pr)

e For each particle species 6p/(p + p) = dn/n, the number density

flat .

fluctuation

e Multiple {; carry information about number density fluctuations
between species

e (; constant component by component outside horizon if each
component is adiabatic p;(p;).



Poisson Equation
e Naive expectation: ® = —V and
V20 = —4nGa*dp
k*® = 4rGa?pd

where a* comes from physical — comoving and dp since
background density goes into scale factor evolution

e Einstein equations put in a relativistic correction (flat universe)

°® = 4nGa’pd + 39(1 + w)v/k]
a
(D + V) = —8rGa’pr

convenient to call combination

A=6+321+w/k
a



Constancy of Potential & Growth Rate

e Given the Poisson equation relates a redshifting total density p and
the comoving derivative factor a the density perturbation must

1

grow as A o (a?p)~! oc '™ to maintain a constant potential.

e Density perturbations are stabilized by the expanding universe
(expansion drag) and do not grow exponentially. Presents a new
version of the horizon problem.

e Naive (Newtonian) argument: in the absence of stress
perturbations the Euler equation takes the form v ~ kW

e Given an initial potential perturbation W, a velocity perturbation

e Given a velocity perturbation continuity grows a density
fluctuation as A ~ —kv or A = —(kn)*¥;,.



Constancy of Potential & Growth Rate

e The growing density perturbation 1s exactly that required to
maintain the potential constant

47TGa2pA _4wGa*p

U =~ e e

(kn)*¥,

14+3w)/2

n o Cl( , CL2,0 X a—(l—l—?)w)

e Under gravity alone, the density fluctuations grow just fast enough

to maintain constant potentials

e Stress fluctuations only decrease the rate of growth of the
potential. Starting from an unperturbed V,; = 0 universe, where do
the fluctuations that form large scale structure come from



Bardeen Curvature

e A proper relativistic generalization involves the (a/a)v/k
corrections, called the Bardeen (or comoving) curvature

R=®— “v/k.
a

e Geometric meaning: space curvature fluctuation on comoving
(velocity-orthogonal-isotropic) time slicing

e Same time slicing gives A as the density perturbation



Bardeen Curvature

e Continuity equation becomes

A=-32(C2—w) A~ (1+w)(kv+3R),
a

where the transformed sound speed

(2 = %
s T Ap
Ap = op — pv/k
e Euler equation becomes
R =—¢
¢ C? +2 w
= — — .
1 +w 31+ w



Bardeen Curvature

e So that the Bardeen curvature only changes in the presence of
stress fluctuations — scales below the horizon

e Extremely useful result (proven in problem set) says that calculated
‘R once and for all — e.g. during formation in an inflationary epoch

e Relationship to gravitational potential: (from Poisson &
conservation equations)

Yo = 4rGa*(p +p)v/k
a

so that if ® constant and ¥V = —® then
a\’ a
— <—> ® = 4rGa’p(l +w)—v/k
a

_ g <9>2 (1 +w)gv/k

a



Bardeen Curvature

e Relationship between the curvature ¢ and v

. i
3(1+ w) 3(1 —I—w)]

e Matter dominated & = 3R /5, radiation dominated & = 2R /3, A
dominated & — 0.

gv//c:— P —>R:[1+
a

e So: put these pieces together assuming dark energy 1s smooth
k3 O\ kS
—— Pa(k) = —— P (k
272 A (F) (47TGa2pm> 272 »(k)
kQ 2 ]{3
= — Ps (K
(47TGCL2,Om> 272 o(F)

4 a’k* K
= — Py (k
002 i 2707 )




Bardeen Curvature

e Assume initial curvature power spectrum

k_gPR(k):AS( i >n31

27T2 knorm

and a transfer function 7'(%) that defines the subhorizon evolution
which 1s influenced by pressure effects during radiation domination

e Finally normalize to the matter dominated expectation and take
¢ = [3G(a)/5] R where G(a) is the modification to the growth
rate of @ due to the dark energy and curvature

(a, k) = gG(a)T(k)R(O, k)




Transfer Function

e Transfer function transfers the initial Newtonian curvature to its
value today (linear response theory)

(I)(]f, a = 1) (I)(knorma ainit)
(I)(]C, ainit) (I)<knorm7 a — 1)

e Conservation of Bardeen curvature: Newtonian curvature 1s a

T(k) =

constant when stress perturbations are negligible: above the
horizon during radiation and dark energy domination, on all scales
during matter domination

e When stress fluctuations dominate, perturbations are stabilized by
the Jeans mechanism

e Hybrid Poisson equation: Newtonian curvature, comoving density
perturbation A = (dp/p)com implies @ decays

(k* — 3K)® = 47GpA ~ n A



Transfer Function

Freezing of A stops at 7

O~ (Fneq) A ~ (F1eq) ™ Pinie

Transfer function has a &~ fall-off beyond k., ~ ne—ql

Small correction since growth with a smooth radiation component
1s logarithmic not frozen

Transfer function 1s a direct output of an Einstein-Boltzmann code



Fitting Function

e Alternately accurate fitting formula exist, e.g. pure CDM form:

B L(q)
T = T T ce

L(q) = In(e + 1.84q)
325
1+ 60.5¢*11
q = k/Qnh*Mpce ™ (Toms/2.7K)?

C(q) =144+

e In h Mpc!, the critical scale depends on I = ,,,h also known as
the shape parameter



Transfer Function

e Numerical calculation

(k)

0.01 E

. :_.

k (h—1 Mpc)

0.0001 0.001 0.01 0.1

[E—



Dark Matter and the Transfer Function

e Baryons caught up in the acoustic oscillations of the CMB and
impart acoustic wiggles to the transfer function. Density
enhancements are produced kinematically through the continuity
equation d, ~ (kn)v, and hence are out of phase with CMB
temperature peaks

e Dissipation of the acoustic oscillations eliminates both the CMB
and baryon perturbations — known as Silk damping for the
baryons. This suppression and the general fact that baryons are
caught up with photons was one of the main arguments for CDM

e Neutrino dark matter suffers similar effects and hence cannot be
the main component of dark matter in the universe



Massive Neutrinos

e Relativistic stresses of a light neutrino slow the growth of structure

e Neutrino species with cosmological abundance contribute to

matter as 2,h* = > m, /94eV, suppressing power as
AP/P ~ —8Q,/Q,,

e Current data from 2dF galaxy survey and CMB indicate
> m, < 0.9eV assuming a ACDM model with constant tilt based
on the shape of the transfer function.



Growth Function

e Same physics applies to the dark energy dominated universe

e Under the dark energy sound horizon or Jeans scale, dark energy
density frozen. Potential decays at the same rate for all scales

P (knorma CL) / d
o (knormp ainit) dlna

Gla) =

e Continuity + Euler + Poisson

/! 1 / 1 / / /!
G”+<1—p—,+—&>G’+<—pC+p —p—,>G:0
P 2pc 2 pe p

where p 1s the Jeans unstable matter and p. is the critical density




Dark Energy Growth Suppression

e Pressure growth suppression: 6 = dp,,/pm x aG

d*GG 5 3 dG 3
d1n a? i 2 Qw(Z)QDE(Z> dlna * 5[1 —w(z)[op(2)G =0,

where w = ppr/ppr and Qpr = ppr/(pm + ppr) With initial
conditions G = 1, dg/dIna = 0

e As (2pr — 0 G =const. 1s a solution. The other solution is the
decaying mode, elimated by initial conditions

o AsQpr — 1 G o< a!is asolution. Corresponds to a frozen
density field.



Velocity field

e Continuity gives the velocity from the density field as

, aH dA
v / k dlna
_ _aHAdln(ag)
k dlna

e In a ACDM model or open model d1n(ag)/dIna ~ Q%°

e Measuring both the density field and the velocity field (through
distance determination and redshift) allows a measurement of €2,,,

e Practically one measures S = Q2°/b where b is a bias factor for
the tracer of the density field, i.e. with galaxy numbers on/n = bA

e Can also measure this factor from the redshift space power
spectrum - the Kaiser effect where clustering in the radial direction
1s apparently enhanced by gravitational infall



Gravitational Lensing

e Gravitational potentials along the line of sight n to some source at
comoving distance D, lens the images according to (flat universe)

o(f) = 2 / dD DBZ)SD & (D, n(D))

remapping image positions as

n' = n® 4+ Vao(n)

e Since absolute source position 1s unknown, use image distortion
defined by the Jacobian matrix

on!
L= §. .
87153 i+




Weak Lensing

Small 1image distortions described by the convergence x and shear
components (71, V2)

R —" —72
- )
—Y2 Kt M

where V; = DV and

Vij = 2/GZDD(D;)_ D)V,L-Vj@(Dﬂ,n(D))

e In particular, through the Poisson equation the convergence
(measured from shear) 1s simply the projected mass

D(D,— D)A(Dn.,n(D
KJ:%QmHg/dD ( s ) ( nﬂ?( ))
2 D, a




