Astro 449

Linear Growth
 Wayne Hu

Metric Tensor

- Useful to think in a $3+1$ language since there are preferred spatial surfaces where the stress tensor is nearly homogeneous
- In general this is an Arnowitt-Deser-Misner (ADM) split
- Specialize to the case of a nearly FRW metric

$$
g_{00}=-a^{2}, \quad g_{i j}=a^{2} \gamma_{i j}
$$

where the " 0 " component is conformal time $\eta=d t / a$ and $\gamma_{i j}$ is a spatial metric of constant curvature $K=H_{0}^{2}\left(\Omega_{\mathrm{tot}}-1\right)$.

$$
{ }^{(3)} R=\frac{6 K}{a^{2}}
$$

Metric Tensor

- First define the slicing (lapse function A, shift function B^{i})

$$
\begin{aligned}
g^{00} & =-a^{-2}(1-2 A) \\
g^{0 i} & =-a^{-2} B^{i}
\end{aligned}
$$

A defines the lapse of proper time between 3-surfaces whereas B^{i} defines the threading or relationship between the 3-coordinates of the surfaces

- This absorbs $1+3=4$ free variables in the metric, remaining 6 is in the spatial surfaces which we parameterize as

$$
g^{i j}=a^{-2}\left(\gamma^{i j}-2 H_{L} \gamma^{i j}-2 H_{T}^{i j}\right)
$$

here (1) H_{L} a perturbation to the scale factor; (5) $H_{T}^{i j}$ a trace-free distortion to spatial metric (which combined perturb the curvature)

Curvature Perturbation

- Curvature perturbation on the 3D slice

$$
\delta\left[{ }^{(3)} R\right]=-\frac{4}{a^{2}}\left(\nabla^{2}+3 K\right) H_{L}+\frac{2}{a^{2}} \nabla_{i} \nabla_{j} H_{T}^{i j}
$$

- Note that we will often loosely refer to H_{L} as the "curvature perturbation"
- We will see that many representations have $H_{T}=0$
- It is easier to work with a dimensionless quantity
- First example of a 3-scalar - SVT decomposition

Matter Tensor

- Likewise expand the matter stress energy tensor around a homogeneous density ρ and pressure p :

$$
\begin{aligned}
T_{0}^{0} & =-\rho-\delta \rho \\
T_{i}^{0} & =(\rho+p)\left(v_{i}-B_{i}\right) \\
T_{0}^{i} & =-(\rho+p) v^{i} \\
T_{j}^{i} & =(p+\delta p) \delta_{j}^{i}+p \Pi_{j}^{i},
\end{aligned}
$$

- (1) $\delta \rho$ a density perturbation; (3) v_{i} a vector velocity, (1) δp a pressure perturbation; (5) $\Pi_{i j}$ an anisotropic stress perturbation
- So far this is fully general and applies to any type of matter or coordinate choice including non-linearities in the matter, e.g. scalar fields, cosmological defects, exotic dark energy.

Counting Variables

20 Variables (10 metric; 10 matter)
-10 Einstein equations
-4 Conservation equations
$+4 \quad$ Bianchi identities
-4 Gauge (coordinate choice 1 time, 3 space)
$6 \quad$ Free Variables

- Without loss of generality these can be taken to be the 6 components of the matter stress tensor
- For the background, specify $p(a)$ or equivalently $w(a) \equiv p(a) / \rho(a)$ the equation of state parameter.

Homogeneous Einstein Equations

- Einstein (Friedmann) equations:

$$
\begin{aligned}
\left(\frac{1}{a} \frac{d a}{d t}\right)^{2} & =-\frac{K}{a^{2}}+\frac{8 \pi G}{3} \rho \quad\left[=\left(\frac{1}{a} \frac{\dot{a}}{a}\right)^{2}\right] \\
\frac{1}{a} \frac{d^{2} a}{d t^{2}} & =-\frac{4 \pi G}{3}(\rho+3 p) \quad\left[=\frac{1}{a^{2}} \frac{d}{d \eta} \frac{\dot{a}}{a}\right]
\end{aligned}
$$

so that $w \equiv p / \rho<-1 / 3$ for acceleration

- Conservation equation $\nabla^{\mu} T_{\mu \nu}=0$ implies

$$
\frac{\dot{\rho}}{\rho}=-3(1+w) \frac{\dot{a}}{a}
$$

overdots are conformal time but equally true with coordinate time

Homogeneous Einstein Equations

- Counting exercise:

> | 20 | Variables (10 metric; 10 matter) |
| ---: | :--- |
| -17 | Homogeneity and Isotropy |
| -2 | Einstein equations |
| -1 | Conservation equations |
| +1 | Bianchi identities |
| 1 | Free Variables |

without loss of generality choose ratio of homogeneous \& isotropic component of the stress tensor to the density $w(a)=p(a) / \rho(a)$.

Acceleration Implies Negative Pressure

- Role of stresses in the background cosmology
- Homogeneous Einstein equations $G_{\mu \nu}=8 \pi G T_{\mu \nu}$ imply the two Friedmann equations (flat universe, or associating curvature $\left.\rho_{K}=-3 K / 8 \pi G a^{2}\right)$

$$
\begin{aligned}
\left(\frac{1}{a} \frac{d a}{d t}\right)^{2} & =\frac{8 \pi G}{3} \rho \\
\frac{1}{a} \frac{d^{2} a}{d t^{2}} & =-\frac{4 \pi G}{3}(\rho+3 p)
\end{aligned}
$$

so that the total equation of state $w \equiv p / \rho<-1 / 3$ for acceleration

- Conservation equation $\nabla^{\mu} T_{\mu \nu}=0$ implies

$$
\frac{\dot{\rho}}{\rho}=-3(1+w) \frac{\dot{a}}{a}
$$

so that ρ must scale more slowly than a^{-2}

Scalar, Vector, Tensor

- In linear perturbation theory, perturbations may be separated by their transformation properties under 3D rotation and translation.
- The eigenfunctions of the Laplacian operator form a complete set

$$
\begin{array}{rlr}
\nabla^{2} Q^{(0)} & =-k^{2} Q^{(0)} & \mathrm{S} \\
\nabla^{2} Q_{i}^{(\pm 1)} & =-k^{2} Q_{i}^{(\pm 1)} & \mathrm{V}, \\
\nabla^{2} Q_{i j}^{(\pm 2)} & =-k^{2} Q_{i j}^{(\pm 2)} & \mathrm{T},
\end{array}
$$

- Vector and tensor modes satisfy divergence-free and transverse-traceless conditions

$$
\begin{aligned}
\nabla^{i} Q_{i}^{(\pm 1)} & =0 \\
\nabla^{i} Q_{i j}^{(\pm 2)} & =0 \\
\gamma^{i j} Q_{i j}^{(\pm 2)} & =0
\end{aligned}
$$

Vector and Tensor Quantities

- A scalar mode carries with it associated vector (curl-free) and tensor (longitudinal) quantities
- A vector mode carries and associated tensor (trace and divergence free) quantities
- A tensor mode has only a tensor (trace and divergence free)
- These are built from the mode basis out of covariant derivatives and the metric

$$
\begin{aligned}
Q_{i}^{(0)} & =-k^{-1} \nabla_{i} Q^{(0)} \\
Q_{i j}^{(0)} & =\left(k^{-2} \nabla_{i} \nabla_{j}+\frac{1}{3} \gamma_{i j}\right) Q^{(0)} \\
Q_{i j}^{(\pm 1)} & =-\frac{1}{2 k}\left[\nabla_{i} Q_{j}^{(\pm 1)}+\nabla_{j} Q_{i}^{(\pm 1)}\right],
\end{aligned}
$$

Perturbation k-Modes

- For the k th eigenmode, the scalar components become

$$
\begin{aligned}
A(\mathbf{x}) & =A(k) Q^{(0)}, & H_{L}(\mathbf{x}) & =H_{L}(k) Q^{(0)} \\
\delta \rho(\mathbf{x}) & =\delta \rho(k) Q^{(0)}, & \delta p(\mathbf{x}) & =\delta p(k) Q^{(0)}
\end{aligned}
$$

the vectors components become

$$
B_{i}(\mathbf{x})=\sum_{m=-1}^{1} B^{(m)}(k) Q_{i}^{(m)}, \quad v_{i}(\mathbf{x})=\sum_{m=-1}^{1} v^{(m)}(k) Q_{i}^{(m)}
$$

and the tensors components

$$
H_{T i j}(\mathbf{x})=\sum_{m=-2}^{2} H_{T}^{(m)}(k) Q_{i j}^{(m)}, \quad \Pi_{i j}(\mathbf{x})=\sum_{m=-2}^{2} \Pi^{(m)}(k) Q_{i j}^{(m)}
$$

- Note that the curvature perturbation only involves scalars

$$
\delta\left[{ }^{(3)} R\right]=\frac{4}{a^{2}}\left(k^{2}-3 K\right)\left(H_{L}^{(0)}+\frac{1}{3} H_{T}^{(0)}\right) Q^{(0)}
$$

Spatially Flat Case

- For a spatially flat background metric, harmonics are related to plane waves:

$$
\begin{aligned}
Q^{(0)} & =\exp (i \mathbf{k} \cdot \mathbf{x}) \\
Q_{i}^{(\pm 1)} & =\frac{-i}{\sqrt{2}}\left(\hat{\mathbf{e}}_{1} \pm i \hat{\mathbf{e}}_{2}\right)_{i} \exp (i \mathbf{k} \cdot \mathbf{x}) \\
Q_{i j}^{(\pm 2)} & =-\sqrt{\frac{3}{8}}\left(\hat{\mathbf{e}}_{1} \pm i \hat{\mathbf{e}}_{2}\right)_{i}\left(\hat{\mathbf{e}}_{1} \pm i \hat{\mathbf{e}}_{2}\right)_{j} \exp (i \mathbf{k} \cdot \mathbf{x})
\end{aligned}
$$

where $\hat{\mathbf{e}}_{3} \| \mathbf{k}$. Chosen as spin states, c.f. polarization.

- For vectors, the harmonic points in a direction orthogonal to \mathbf{k} suitable for the vortical component of a vector

Fourier Conventions

- Suppress volume terms by making Fourier representation dimensionful

$$
\begin{aligned}
F(\mathbf{x}) & =\int \frac{d^{3} k}{(2 \pi)^{3}} F(\mathbf{k}) e^{-i \mathbf{k} \cdot \mathbf{x}}, \quad F(\mathbf{k})=\int d^{3} x F(\mathbf{x}) e^{i \mathbf{k} \cdot \mathbf{x}} \\
(2 \pi)^{3} \delta\left(\mathbf{k}-\mathbf{k}^{\prime}\right) & =\int d^{3} x e^{i\left(\mathbf{k}-\mathbf{k}^{\prime}\right) \cdot \mathbf{x}}
\end{aligned}
$$

- Reality of field

$$
\begin{aligned}
F^{*}(\mathbf{x}) & =\int \frac{d^{3} k}{(2 \pi)^{3}} F^{*}(\mathbf{k}) e^{i \mathbf{k} \cdot \mathbf{x}}=\int \frac{d^{3} k}{(2 \pi)^{3}} F^{*}(-\mathbf{k}) e^{-i \mathbf{k} \cdot \mathbf{x}} \\
& =F(\mathbf{x})=\int \frac{d^{3} k}{(2 \pi)^{3}} F(\mathbf{k}) e^{-i \mathbf{k} \cdot \mathbf{x}} \\
F^{*}(-\mathbf{k}) & =F(\mathbf{k})
\end{aligned}
$$

Statistical Homogeneity and Isotropy

- Statistical homogeneity of two point correlation function

$$
\begin{aligned}
\left\langle F(\mathbf{x}) F\left(\mathbf{x}^{\prime}\right)\right\rangle & =\left\langle\int \frac{d^{3} k}{(2 \pi)^{3}} F^{*}(\mathbf{k}) e^{i \mathbf{k} \cdot \mathbf{x}} \int \frac{d^{3} k^{\prime}}{(2 \pi)^{3}} F\left(\mathbf{k}^{\prime}\right) e^{-i \mathbf{k}^{\prime} \cdot \mathbf{x}^{\prime}}\right\rangle \\
& =\left\langle F(\mathbf{x}+\mathbf{d}) F\left(\mathbf{x}^{\prime}+\mathbf{d}\right)\right\rangle \\
& =\int \frac{d^{3} k}{(2 \pi)^{3}} \int \frac{d^{3} k^{\prime}}{(2 \pi)^{3}}\left\langle F^{*}(\mathbf{k}) F\left(\mathbf{k}^{\prime}\right)\right\rangle e^{i \mathbf{k} \cdot \mathbf{x}} e^{-i \mathbf{k}^{\prime} \cdot \mathbf{x}^{\prime}} e^{i\left(\mathbf{k}-\mathbf{k}^{\prime}\right) \cdot \mathbf{d}}
\end{aligned}
$$

- Requires 2 pt is the Fourier transform of power spectrum

$$
\begin{aligned}
\left\langle F^{*}(\mathbf{k}) F\left(\mathbf{k}^{\prime}\right)\right\rangle & =(2 \pi)^{3} \delta\left(\mathbf{k}-\mathbf{k}^{\prime}\right) P_{F}(\mathbf{k}) \\
\left\langle F(\mathbf{x}) F\left(\mathbf{x}^{\prime}\right)\right\rangle & =\int \frac{d^{3} k}{(2 \pi)^{3}} P_{F}(\mathbf{k}) e^{i \mathbf{k} \cdot\left(\mathbf{x}-\mathbf{x}^{\prime}\right)}=\xi\left(\mathbf{x}-\mathbf{x}^{\prime}\right)
\end{aligned}
$$

- Statistical isotropy requires $P_{F}(\mathbf{k})=P_{F}(k)$ and

$$
\xi\left(\mathbf{x}-\mathbf{x}^{\prime}\right)=\xi\left(\left|\mathbf{x}-\mathbf{x}^{\prime}\right|\right)
$$

N-point function and Gaussianity

- Generalize to N-point correlation function, e.g. 3pt

$$
\left\langle F\left(\mathbf{x}_{1}\right) F\left(\mathbf{x}_{2}\right) F\left(\mathbf{x}_{3}\right)\right\rangle=\left[\prod_{i=1}^{3} \int \frac{d^{3} k_{i}}{(2 \pi)^{3}} e^{-i \mathbf{k}_{i} \cdot \mathbf{x}_{i}}\right]\left\langle F\left(\mathbf{k}_{1}\right) F\left(\mathbf{k}_{2}\right) F\left(\mathbf{k}_{3}\right)\right\rangle
$$

- Statistical homogeneity requires the \mathbf{k}_{i} to sum to zero and isotropy independence of orientation

$$
\left\langle F\left(\mathbf{k}_{1}\right) F\left(\mathbf{k}_{2}\right) F\left(\mathbf{k}_{3}\right)\right\rangle=(2 \pi)^{3} \delta\left(\mathbf{k}_{1}+\mathbf{k}_{2}+\mathbf{k}_{3}\right) B_{F}\left(k_{1}, k_{2}, k_{3}\right)
$$

- Gaussian field: all N point correlation functions depend only on disconnected products of 2 point function or power spectrum, e.g. bispectrum is zero

Amplitude

- Variance

$$
\begin{aligned}
\sigma_{F}^{2} & \equiv\langle F(\mathbf{x}) F(\mathbf{x})\rangle=\int \frac{d^{3} k}{(2 \pi)^{3}} P_{F}(k) \\
& =\int \frac{k^{2} d k}{2 \pi^{2}} \int \frac{d \Omega}{4 \pi} P_{F}(k) \\
& =\int d \ln k \frac{k^{3}}{2 \pi^{2}} P_{F}(k)
\end{aligned}
$$

- Define power per logarithmic interval

$$
\Delta_{F}^{2}(k) \equiv \frac{k^{3} P_{F}(k)}{2 \pi^{2}}
$$

- This quantity is dimensionless in all representations. Serves as a definition of the linear regime k 's where $\Delta_{F}^{2} \ll 1$

Linearity

- Fields related by a linear equation obey equation independent equations

$$
F(\mathbf{x})=A G(\mathbf{x})+B \quad \rightarrow \quad F(\mathbf{k})=A G(\mathbf{k}) \quad(k>0)
$$

includes linear differential equation

$$
\begin{aligned}
F(\mathbf{x}) & =A \nabla G(\mathbf{k})+B \\
F(\mathbf{k}) & =A \int d^{3} x e^{i \mathbf{k} \cdot \mathbf{x}} \nabla \int \frac{d^{3} k^{\prime}}{(2 \pi)^{3}} e^{-i \mathbf{k}^{\prime} \cdot \mathbf{x}} G\left(\mathbf{k}^{\prime}\right) \\
& =A \int \frac{d^{3} k^{\prime}}{(2 \pi)^{3}} \int d^{3} x e^{i\left(\mathbf{k}-\mathbf{k}^{\prime}\right) \cdot \mathbf{x}}\left(-i \mathbf{k}^{\prime}\right) G\left(\mathbf{k}^{\prime}\right)=A(-i \mathbf{k}) G(\mathbf{k})
\end{aligned}
$$

converts differential equations to algebraic relations

Convolution

- Convolution in real space often occurs - smoothing of field by finite resolution and normalization $\int d^{3} x W(\mathbf{x})=1$

$$
\begin{aligned}
F_{W}(\mathbf{x}) & =\int d^{3} y W(\mathbf{x}-\mathbf{y}) F(\mathbf{y}) \\
& =\int d^{3} y \int \frac{d^{3} k}{(2 \pi)^{3}} W(\mathbf{k}) e^{-i \mathbf{k} \cdot(\mathbf{x}-\mathbf{y})} \int \frac{d^{3} k^{\prime}}{(2 \pi)^{3}} F\left(\mathbf{k}^{\prime}\right) e^{-i \mathbf{k}^{\prime} \cdot \mathbf{y}} \\
& =\int \frac{d^{3} k}{(2 \pi)^{3}} \int \frac{d^{3} k^{\prime}}{(2 \pi)^{3}} e^{-i \mathbf{k} \cdot \mathbf{x}} W(\mathbf{k}) F\left(\mathbf{k}^{\prime}\right) \int d^{3} y e^{i\left(\mathbf{k}-\mathbf{k}^{\prime}\right) \cdot \mathbf{y}} \\
& =\int \frac{d^{3} k}{(2 \pi)^{3}} W(\mathbf{k}) F(\mathbf{k}) e^{-i \mathbf{k} \cdot \mathbf{x}} \\
F_{W}(\mathbf{k}) & =W(\mathbf{k}) F(\mathbf{k})
\end{aligned}
$$

- Smoothing acts as a low pass filter: if $W(\mathbf{x})$ is a broad function of width $L, W(\mathbf{k})$ suppressed for $k>2 \pi / L$

Convolution

- Filtered Variance

$$
\begin{aligned}
\left\langle F_{W}(\mathbf{x}) F_{W}(\mathbf{x})\right\rangle & =\int \frac{d^{3} k}{(2 \pi)^{3}} \int \frac{d^{3} k^{\prime}}{(2 \pi)^{3}} e^{i\left(\mathbf{k}-\mathbf{k}^{\prime}\right) \cdot \mathbf{x}}\left\langle F^{*}(\mathbf{k}) F\left(\mathbf{k}^{\prime}\right)\right\rangle W^{*}(\mathbf{k}) W\left(\mathbf{k}^{\prime}\right) \\
& =\int \frac{d^{3} k}{(2 \pi)^{3}} P_{F}(k)|W(\mathbf{k})|^{2}
\end{aligned}
$$

- Common filter is the spherical tophat:

$$
\begin{array}{rl}
W_{R}(\mathbf{x})=V_{R}^{-1} & x<R \\
W_{R}(\mathbf{x})=0 & x>R
\end{array}
$$

- Fourier transform

$$
W_{R}(\mathbf{k})=\frac{3}{y^{3}}(\sin y-y \cos y), \quad(y=k R)
$$

Normalization

- Normalization is often quoted as the top hat rms of the density field

$$
\sigma_{R}^{2}=\int d \ln k \Delta_{\delta}^{2}(k)\left|W_{R}(k)\right|^{2}
$$

where observationally $\sigma_{8 h^{-1} \mathrm{Mpc}} \equiv \sigma_{8} \approx 1$

- Note that $\Delta_{\delta}^{2}(k)$ itself can be thought of as the variance of the field with a filter that has sharp high and low pass filters in k-space
- Convention is that σ_{R} is defined against the linear density field, not the true non-linear density field

Spatially Flat Case

- Tensor harmonics are the transverse traceless gauge representation
- Tensor amplitude related to the more traditional

$$
h_{+}\left[\left(\mathbf{e}_{1}\right)_{i}\left(\mathbf{e}_{1}\right)_{j}-\left(\mathbf{e}_{2}\right)_{i}\left(\mathbf{e}_{2}\right)_{j}\right], \quad h_{\times}\left[\left(\mathbf{e}_{1}\right)_{i}\left(\mathbf{e}_{2}\right)_{j}+\left(\mathbf{e}_{2}\right)_{i}\left(\mathbf{e}_{1}\right)_{j}\right]
$$

as

$$
h_{+} \pm i h_{\times}=-\sqrt{6} H_{T}^{(\mp 2)}
$$

- $H_{T}^{(\pm 2)}$ proportional to the right and left circularly polarized amplitudes of gravitational waves with a normalization that is convenient to match the scalar and vector definitions

Covariant Scalar Equations

- DOF counting exercise

8 Variables (4 metric; 4 matter)
-4 Einstein equations
-2 Conservation equations
+2 Bianchi identities
-2 Gauge (coordinate choice 1 time, 1 space)

2 Free Variables
without loss of generality choose scalar components of the stress tensor $\delta p, \Pi$.

Covariant Scalar Equations

- Einstein equations (suppressing 0) superscripts

$$
\begin{aligned}
& \left(k^{2}-3 K\right)\left[H_{L}+\frac{1}{3} H_{T}\right]-3\left(\frac{\dot{a}}{a}\right)^{2} A+3 \frac{\dot{a}}{a} \dot{H}_{L}+\frac{\dot{a}}{a} k B= \\
& =4 \pi G a^{2} \delta \rho, \quad 00 \text { Poisson Equation } \\
& k^{2}\left(A+H_{L}+\frac{1}{3} H_{T}\right)+\left(\frac{d}{d \eta}+2 \frac{\dot{a}}{a}\right)\left(k B-\dot{H}_{T}\right) \\
& =-8 \pi G a^{2} p \Pi, \quad i j \text { Anisotropy Equation } \\
& \frac{\dot{a}}{a} A-\dot{H}_{L}-\frac{1}{3} \dot{H}_{T}-\frac{K}{k^{2}}\left(k B-\dot{H}_{T}\right) \\
& =4 \pi G a^{2}(\rho+p)(v-B) / k, \quad 0 i \text { Momentum Equation } \\
& {\left[2 \frac{\ddot{a}}{a}-2\left(\frac{\dot{a}}{a}\right)^{2}+\frac{\dot{a}}{a} \frac{d}{d \eta}-\frac{k^{2}}{3}\right] A-\left[\frac{d}{d \eta}+\frac{\dot{a}}{a}\right]\left(\dot{H}_{L}+\frac{1}{3} k B\right)} \\
& =4 \pi G a^{2}\left(\delta p+\frac{1}{3} \delta \rho\right), \quad \text { ii Acceleration Equation }
\end{aligned}
$$

Covariant Scalar Equations

- Conservation equations: continuity and Navier Stokes

$$
\begin{aligned}
{\left[\frac{d}{d \eta}+3 \frac{\dot{a}}{a}\right] \delta \rho+3 \frac{\dot{a}}{a} \delta p } & =-(\rho+p)\left(k v+3 \dot{H}_{L}\right), \\
{\left[\frac{d}{d \eta}+4 \frac{\dot{a}}{a}\right]\left[(\rho+p) \frac{(v-B)}{k}\right] } & =\delta p-\frac{2}{3}\left(1-3 \frac{K}{k^{2}}\right) p \Pi+(\rho+p) A,
\end{aligned}
$$

- Equations are not independent since $\nabla_{\mu} G^{\mu \nu}=0$ via the Bianchi identities.
- Related to the ability to choose a coordinate system or "gauge" to represent the perturbations.

Gauge

- Metric and matter fluctuations take on different values in different coordinate system
- No such thing as a "gauge invariant" density perturbation!
- General coordinate transformation:

$$
\begin{aligned}
\tilde{\eta} & =\eta+T \\
\tilde{x}^{i} & =x^{i}+L^{i}
\end{aligned}
$$

free to choose $\left(T, L^{i}\right)$ to simplify equations or physics corresponds to a choice of slicing and threading in ADM.

- Decompose these into scalar $T, L^{(0)}$ and vector harmonics $L^{(\pm 1)}$.

Gauge

- $g_{\mu \nu}$ and $T_{\mu \nu}$ transform as tensors, so components in different frames can be related

$$
\begin{aligned}
\tilde{g}_{\mu \nu}\left(\tilde{\eta}, \tilde{x}^{i}\right) & =\frac{\partial x^{\alpha}}{\partial \tilde{x}^{\mu}} \frac{\partial x^{\beta}}{\partial \tilde{x}^{\nu}} g_{\alpha \beta}\left(\eta, x^{i}\right) \\
& =\frac{\partial x^{\alpha}}{\partial \tilde{x}^{\mu}} \frac{\partial x^{\beta}}{\partial \tilde{x}^{\nu}} g_{\alpha \beta}\left(\tilde{\eta}-T Q, \tilde{x}^{i}-L Q^{i}\right)
\end{aligned}
$$

- Fluctuations are compared at the same coordinate positions (not same space time positions) between the two gauges
- For example with a $T Q$ perturbation, an event labeled with $\tilde{\eta}=$ const. and $\tilde{x}=$ const. represents a different time with respect to the underlying homogeneous and isotropic background

Gauge Transformation

- Scalar Metric:

$$
\begin{aligned}
\tilde{A} & =A-\dot{T}-\frac{\dot{a}}{a} T, \\
\tilde{B} & =B+\dot{L}+k T, \\
\tilde{H}_{L} & =H_{L}-\frac{k}{3} L-\frac{\dot{a}}{a} T, \\
\tilde{H}_{T} & =H_{T}+k L, \quad \tilde{H}_{L}+\frac{1}{3} \tilde{H}_{T}=H_{L}+\frac{1}{3} H_{T}-\frac{\dot{a}}{a} T
\end{aligned}
$$

curvature perturbation depends on slicing not threading

- Scalar Matter (Jth component):

$$
\begin{aligned}
\delta \tilde{\rho}_{J} & =\delta \rho_{J}-\dot{\rho}_{J} T, \\
\delta \tilde{p}_{J} & =\delta p_{J}-\dot{p}_{J} T, \\
\tilde{v}_{J} & =v_{J}+\dot{L},
\end{aligned}
$$

density and pressure likewise depend on slicing only

Gauge Transformation

- Vector:

$$
\begin{aligned}
\tilde{B}^{(\pm 1)} & =B^{(\pm 1)}+\dot{L}^{(\pm 1)} \\
\tilde{H}_{T}^{(\pm 1)} & =H_{T}^{(\pm 1)}+k L^{(\pm 1)} \\
\tilde{v}_{J}^{(\pm 1)} & =v_{J}^{(\pm 1)}+\dot{L}^{(\pm 1)},
\end{aligned}
$$

- Spatial vector has no background component hence no dependence on slicing at first order

Tensor: no dependence on slicing or threading at first order

- Gauge transformations and covariant representation can be extended to higher orders
- A coordinate system is fully specified if there is an explicit prescription for $\left(T, L^{i}\right)$ or for scalars (T, L)

Slicing

Common choices for slicing T : set something geometric to zero

- Proper time slicing $A=0$: proper time between slices corresponds to coordinate time $-T$ allows c / a freedom
- Comoving (velocity orthogonal) slicing: $v-B=0$, matter 4 velocity is related to N^{ν} and orthogonal to slicing - T fixed
- Newtonian (shear free) slicing: $\dot{H}_{T}-k B=0$, expansion rate is isotropic, shear free, T fixed
- Uniform expansion slicing: $-(\dot{a} / a) A+\dot{H}_{L}+k B / 3=0$, perturbation to the volume expansion rate θ vanishes, T fixed
- Flat (constant curvature) slicing, $\delta^{(3)} R=0,\left(H_{L}+H_{T} / 3=0\right)$, T fixed
- Constant density slicing, $\delta \rho_{I}=0, T$ fixed

Threading

- Threading specifies the relationship between constant spatial coordinates between slices and is determined by L

Typically involves a condition on v, B, H_{T}

- Orthogonal threading $B=0$, constant spatial coordinates orthogonal to slicing (zero shift), allows $\delta L=c$ translational freedom
- Comoving threading $v=0$, allows $\delta L=c$ translational freedom.
- Isotropic threading $H_{T}=0$, fully fixes L

Newtonian (Longitudinal) Gauge

- Newtonian (shear free slicing, isotropic threading):

$$
\begin{aligned}
\tilde{B} & =\tilde{H}_{T}=0 \\
\Psi & \equiv \tilde{A} \quad \text { (Newtonian potential) } \\
\Phi & \equiv \tilde{H}_{L} \quad \text { (Newtonian curvature) } \\
L & =-H_{T} / k \\
T & =-B / k+\dot{H}_{T} / k^{2}
\end{aligned}
$$

Good: intuitive Newtonian like gravity; matter and metric algebraically related; commonly chosen for analytic CMB and lensing work
Bad: numerically unstable

Newtonian (Longitudinal) Gauge

- Newtonian (shear free) slicing, isotropic threading $B=H_{T}=0$:

$$
\begin{aligned}
\left(k^{2}-3 K\right) \Phi & =4 \pi G a^{2}\left[\delta \rho+3 \frac{\dot{a}}{a}(\rho+p) v / k\right] \quad \text { Poisson }+ \text { Momentum } \\
k^{2}(\Psi+\Phi) & =-8 \pi G a^{2} p \Pi \quad \text { Anisotropy }
\end{aligned}
$$

so $\Psi=-\Phi$ if anisotropic stress $\Pi=0$ and

$$
\begin{aligned}
{\left[\frac{d}{d \eta}+3 \frac{\dot{a}}{a}\right] \delta \rho+3 \frac{\dot{a}}{a} \delta p } & =-(\rho+p)(k v+3 \dot{\Phi}), \\
{\left[\frac{d}{d \eta}+4 \frac{\dot{a}}{a}\right](\rho+p) v } & =k \delta p-\frac{2}{3}\left(1-3 \frac{K}{k^{2}}\right) p k \Pi+(\rho+p) k \Psi,
\end{aligned}
$$

- Newtonian competition between stress (pressure and viscosity) and potential gradients
- Note: Poisson source is the density perturbation on comoving slicing

Total Matter Gauge

- Total matter: (comoving slicing, isotropic threading)

$$
\begin{aligned}
\tilde{B} & =\tilde{v} \quad\left(T_{i}^{0}=0\right) \\
H_{T} & =0 \\
\xi & =\tilde{A} \\
\mathcal{R} & =\tilde{H}_{L} \quad \text { (comoving curvature) } \\
\Delta & =\tilde{\delta} \quad \text { (total density pert) } \\
T & =(v-B) / k \\
L & =-H_{T} / k
\end{aligned}
$$

Good: Algebraic relations between matter and metric; comoving curvature perturbation obeys conservation law

Bad: Non-intuitive threading involving v

Total Matter Gauge

- Euler equation becomes an algebraic relation between stress and potential

$$
(\rho+p) \xi=-\delta p+\frac{2}{3}\left(1-\frac{3 K}{k^{2}}\right) p \Pi
$$

- Einstein equation lacks momentum density source

$$
\frac{\dot{a}}{a} \xi-\dot{\mathcal{R}}-\frac{K}{k^{2}} k v=0
$$

Combine: \mathcal{R} is conserved if stress fluctuations negligible, e.g. above the horizon if $|K| \ll H^{2}$

$$
\dot{\mathcal{R}}+K v / k=\frac{\dot{a}}{a}\left[-\frac{\delta p}{\rho+p}+\frac{2}{3}\left(1-\frac{3 K}{k^{2}}\right) \frac{p}{\rho+p} \Pi\right] \rightarrow 0
$$

"Gauge Invariant" Approach

- Gauge transformation rules allow variables which take on a geometric meaning in one choice of slicing and threading to be accessed from variables on another choice
- Functional form of the relationship between the variables is gauge invariant (not the variable values themselves! - i.e. equation is covariant)
- E.g. comoving curvature and density perturbations

$$
\begin{aligned}
\mathcal{R} & =H_{L}+\frac{1}{3} H_{T}-\frac{\dot{a}}{a}(v-B) / k \\
\Delta \rho & =\delta \rho+3(\rho+p) \frac{\dot{a}}{a}(v-B) / k
\end{aligned}
$$

Newtonian-Total Matter Hybrid

- With the gauge in (or co) variant approach, express variables of one gauge in terms of those in another - allows a mixture in the equations of motion
- Example: Newtonian curvature and comoving density

$$
\left(k^{2}-3 K\right) \Phi=4 \pi G a^{2} \rho \Delta
$$

ordinary Poisson equation then implies Φ approximately constant if stresses negligible.

- Example: Exact Newtonian curvature above the horizon derived through comoving curvature conservation
Gauge transformation

$$
\Phi=\mathcal{R}+\frac{\dot{a}}{a} \frac{v}{k}
$$

Hybrid "Gauge Invariant" Approach

Einstein equation to eliminate velocity

$$
\frac{\dot{a}}{a} \Psi-\dot{\Phi}=4 \pi G a^{2}(\rho+p) v / k
$$

Friedmann equation with no spatial curvature

$$
\left(\frac{\dot{a}}{a}\right)^{2}=\frac{8 \pi G}{3} a^{2} \rho
$$

With $\dot{\Phi}=0$ and $\Psi \approx-\Phi$

$$
\frac{\dot{a}}{a} \frac{v}{k}=-\frac{2}{3(1+w)} \Phi
$$

Newtonian-Total Matter Hybrid

Combining gauge transformation with velocity relation

$$
\Phi=\frac{3+3 w}{5+3 w} \mathcal{R}
$$

Usage: calculate \mathcal{R} from inflation determines Φ for any choice of matter content or causal evolution.

- Example: Scalar field ("quintessence" dark energy) equations in total matter gauge imply a sound speed $\delta p / \delta \rho=1$ independent of potential $V(\phi)$. Solve in synchronous gauge.

Synchronous Gauge

- Synchronous: (proper time slicing, orthogonal threading)

$$
\begin{aligned}
\tilde{A} & =\tilde{B}=0 \\
\eta_{T} & \equiv-\tilde{H}_{L}-\frac{1}{3} \tilde{H}_{T} \\
h_{L} & \equiv 6 H_{L} \\
T & =a^{-1} \int d \eta a A+c_{1} a^{-1} \\
L & =-\int d \eta(B+k T)+c_{2}
\end{aligned}
$$

Good: stable, the choice of numerical codes
Bad: residual gauge freedom in constants c_{1}, c_{2} must be specified as an initial condition, intrinsically relativistic, threading conditions breaks down beyond linear regime if c_{1} is fixed to CDM comoving.

Synchronous Gauge

- The Einstein equations give

$$
\begin{aligned}
\dot{\eta}_{T}-\frac{K}{2 k^{2}}\left(\dot{h}_{L}+6 \dot{\eta}_{T}\right) & =4 \pi G a^{2}(\rho+p) \frac{v}{k}, \\
\ddot{h}_{L}+\frac{\dot{a}}{a} \dot{h}_{L} & =-8 \pi G a^{2}(\delta \rho+3 \delta p), \\
-\left(k^{2}-3 K\right) \eta_{T}+\frac{1}{2} \frac{\dot{a}}{a} \dot{h}_{L} & =4 \pi G a^{2} \delta \rho
\end{aligned}
$$

[choose (1\&2) or (1 \& 3)] while the conservation equations give

$$
\begin{aligned}
& {\left[\frac{d}{d \eta}+3 \frac{\dot{a}}{a}\right] \delta \rho_{J}+3 \frac{\dot{a}}{a} \delta p_{J}=-\left(\rho_{J}+p_{J}\right)\left(k v_{J}+\frac{1}{2} \dot{h}_{L}\right),} \\
& {\left[\frac{d}{d \eta}+4 \frac{\dot{a}}{a}\right]\left(\rho_{J}+p_{J}\right) \frac{v_{J}}{k}=\delta p_{J}-\frac{2}{3}\left(1-3 \frac{K}{k^{2}}\right) p_{J} \Pi_{J} .}
\end{aligned}
$$

Synchronous Gauge

- Lack of a lapse A implies no gravitational forces in Navier-Stokes equation. Hence for stress free matter like cold dark matter, zero velocity initially implies zero velocity always.
- Choosing the momentum and acceleration Einstein equations is good since for CDM domination, curvature η_{T} is conserved and \dot{h}_{L} is simple to solve for.
- Choosing the momentum and Poisson equations is good when the equation of state of the matter is complicated since δp is not involved. This is the choice of CAMB.

Caution: since the curvature η_{T} appears and it has zero CDM source, subtle effects like dark energy perturbations are important everywhere

Spatially Flat Gauge

- Spatially Flat (flat slicing, isotropic threading):

$$
\begin{aligned}
\tilde{H}_{L} & =\tilde{H}_{T}=0 \\
L & =-H_{T} / k \\
\tilde{A}, \tilde{B} & =\text { metric perturbations } \\
T & =\left(\frac{\dot{a}}{a}\right)^{-1}\left(H_{L}+\frac{1}{3} H_{T}\right)
\end{aligned}
$$

Good: eliminates spatial metric in evolution equations; useful in inflationary calculations (Mukhanov et al)
Bad: non-intuitive slicing (no curvature!) and threading

- Caution: perturbation evolution is governed by the behavior of stress fluctuations and an isotropic stress fluctuation δp is gauge dependent.

Uniform Density Gauge

- Uniform density: (constant density slicing, isotropic threading)

$$
\begin{aligned}
H_{T} & =0, \\
\zeta_{I} & \equiv H_{L} \\
B_{I} & \equiv B \\
A_{I} & \equiv A \\
T & =\frac{\delta \rho_{I}}{\dot{\rho}_{I}} \\
L & =-H_{T} / k
\end{aligned}
$$

Good: Curvature conserved involves only stress energy conservation; simplifies isocurvature treatment

Bad: non intuitive slicing (no density pert! problems beyond linear regime) and threading

Uniform Density Gauge

- Einstein equations with I as the total or dominant species

$$
\begin{aligned}
\left(k^{2}-3 K\right) \zeta_{I}-3\left(\frac{\dot{a}}{a}\right)^{2} A_{I}+3 \frac{\dot{a}}{a} \dot{\zeta}_{I}+\frac{\dot{a}}{a} k B_{I} & =0, \\
& \frac{\dot{a}}{a} A_{I}-\dot{\zeta}_{I}-\frac{K}{k} B_{I}
\end{aligned}=4 \pi G a^{2}(\rho+p) \frac{v-B_{I}}{k}, ~ l
$$

- The conservation equations (if $J=I$ then $\delta \rho_{J}=0$)

$$
\begin{aligned}
{\left[\frac{d}{d \eta}+3 \frac{\dot{a}}{a}\right] \delta \rho_{J}+3 \frac{\dot{a}}{a} \delta p_{J} } & =-\left(\rho_{J}+p_{J}\right)\left(k v_{J}+3 \dot{\zeta}_{I}\right), \\
{\left[\frac{d}{d \eta}+4 \frac{\dot{a}}{a}\right]\left(\rho_{J}+p_{J}\right) \frac{v_{J}-B_{I}}{k} } & =\delta p_{J}-\frac{2}{3}\left(1-3 \frac{K}{k^{2}}\right) p_{J} \Pi_{J}+\left(\rho_{J}+p_{J}\right) A_{I} .
\end{aligned}
$$

Uniform Density Gauge

- Conservation of curvature - single component I

$$
\dot{\zeta}_{I}=-\frac{\dot{a}}{a} \frac{\delta p_{I}}{\rho_{I}+p_{I}}-\frac{1}{3} k v_{I} .
$$

- Since $\delta \rho_{I}=0, \delta p_{I}$ is the non-adiabatic stress and curvature is constant as $k \rightarrow 0$ for internally adiabatic stresses $p_{I}\left(\rho_{I}\right)$.
- Note that this conservation law does not involve the Einstein equations at all: just local energy momentum conservation so it is valid for alternate theories of gravity
- Curvature on comoving slices \mathcal{R} and ζ_{I} related by

$$
\zeta_{I}=\mathcal{R}+\left.\frac{1}{3} \frac{\rho_{I} \Delta_{I}}{\left(\rho_{I}+p_{I}\right)}\right|_{\text {comoving }} .
$$

and coincide above the horizon for adiabatic fluctuations

Uniform Density Gauge

- Simple relationship to density fluctuations in the spatially flat gauge

$$
\zeta_{I}=\left.\frac{1}{3} \frac{\delta \tilde{\rho}_{I}}{\left(\rho_{I}+p_{I}\right)}\right|_{\text {flat }} .
$$

- For each particle species $\delta \rho /(\rho+p)=\delta n / n$, the number density fluctuation
- Multiple ζ_{J} carry information about number density fluctuations between species
- ζ_{J} constant component by component outside horizon if each component is adiabatic $p_{J}\left(\rho_{J}\right)$.

Poisson Equation

- Naive expectation: $\Phi=-\Psi$ and

$$
\begin{aligned}
\nabla^{2} \Phi & =-4 \pi G a^{2} \delta \rho \\
k^{2} \Phi & =4 \pi G a^{2} \rho \delta
\end{aligned}
$$

where a^{2} comes from physical \rightarrow comoving and $\delta \rho$ since background density goes into scale factor evolution

- Einstein equations put in a relativistic correction (flat universe)

$$
\begin{aligned}
k^{2} \Phi & =4 \pi G a^{2} \rho\left[\delta+3 \frac{\dot{a}}{a}(1+w) v / k\right] \\
k^{2}(\Phi+\Psi) & =-8 \pi G a^{2} p \pi
\end{aligned}
$$

convenient to call combination

$$
\Delta \equiv \delta+3 \frac{\dot{a}}{a}(1+w) v / k
$$

Constancy of Potential \& Growth Rate

- Given the Poisson equation relates a redshifting total density ρ and the comoving derivative factor a the density perturbation must grow as $\Delta \propto\left(a^{2} \rho\right)^{-1} \propto a^{1-3 w}$ to maintain a constant potential.
- Density perturbations are stabilized by the expanding universe (expansion drag) and do not grow exponentially. Presents a new version of the horizon problem.
- Naive (Newtonian) argument: in the absence of stress perturbations the Euler equation takes the form $\dot{v} \sim k \Psi$
- Given an initial potential perturbation Ψ_{i} a velocity perturbation $v \sim(k \eta) \Psi_{i}$
- Given a velocity perturbation continuity grows a density fluctuation as $\dot{\Delta} \sim-k v$ or $\Delta=-(k \eta)^{2} \Psi_{i}$.

Constancy of Potential \& Growth Rate

- The growing density perturbation is exactly that required to maintain the potential constant

$$
\Psi \approx-\frac{4 \pi G a^{2} \rho}{k^{2}} \Delta \approx \frac{4 \pi G a^{2} \rho}{k^{2}}(k \eta)^{2} \Psi_{i}
$$

$\eta \propto a^{(1+3 w) / 2}, a^{2} \rho \propto a^{-(1+3 w)}$

- Under gravity alone, the density fluctuations grow just fast enough to maintain constant potentials
- Stress fluctuations only decrease the rate of growth of the potential. Starting from an unperturbed $\Psi_{i}=0$ universe, where do the fluctuations that form large scale structure come from

Bardeen Curvature

- A proper relativistic generalization involves the $(\dot{a} / a) v / k$ corrections, called the Bardeen (or comoving) curvature

$$
\mathcal{R} \equiv \Phi-\frac{\dot{a}}{a} v / k .
$$

- Geometric meaning: space curvature fluctuation on comoving (velocity-orthogonal-isotropic) time slicing
- Same time slicing gives Δ as the density perturbation

Bardeen Curvature

- Continuity equation becomes

$$
\dot{\Delta}=-3 \frac{\dot{a}}{a}\left(C_{s}^{2}-w\right) \Delta-(1+w)(k v+3 \dot{\mathcal{R}}),
$$

where the transformed sound speed

$$
\begin{aligned}
C_{s}^{2} & \equiv \frac{\Delta p}{\Delta \rho} \\
\Delta p & \equiv \delta p-\dot{p} v / k
\end{aligned}
$$

- Euler equation becomes

$$
\begin{aligned}
\dot{\mathcal{R}} & =\frac{\dot{a}}{a} \xi \\
\xi & =-\frac{C_{s}^{2}}{1+w} \Delta+\frac{2}{3} \frac{w}{1+w} \pi
\end{aligned}
$$

Bardeen Curvature

- So that the Bardeen curvature only changes in the presence of stress fluctuations - scales below the horizon
- Extremely useful result (proven in problem set) says that calculated \mathcal{R} once and for all - e.g. during formation in an inflationary epoch
- Relationship to gravitational potential: (from Poisson \& conservation equations)

$$
\frac{\dot{a}}{a} \Psi-\dot{\Phi}=4 \pi G a^{2}(\rho+p) v / k
$$

so that if Φ constant and $\Psi=-\Phi$ then

$$
\begin{aligned}
-\left(\frac{\dot{a}}{a}\right)^{2} \Phi & =4 \pi G a^{2} \rho(1+w) \frac{\dot{a}}{a} v / k \\
& =\frac{3}{2}\left(\frac{\dot{a}}{a}\right)^{2}(1+w) \frac{\dot{a}}{a} v / k
\end{aligned}
$$

Bardeen Curvature

- Relationship between the curvature Φ and v

$$
\frac{\dot{a}}{a} v / k=-\frac{2}{3(1+w)} \Phi \quad \rightarrow \mathcal{R}=\left[1+\frac{2}{3(1+w)}\right] \Phi
$$

- Matter dominated $\Phi=3 \mathcal{R} / 5$, radiation dominated $\Phi=2 \mathcal{R} / 3, \Lambda$ dominated $\Phi \rightarrow 0$.
- So: put these pieces together assuming dark energy is smooth

$$
\begin{aligned}
\frac{k^{3}}{2 \pi^{2}} P_{\Delta}(k) & =\left(\frac{k^{2}}{4 \pi G a^{2} \rho_{m}}\right)^{2} \frac{k^{3}}{2 \pi^{2}} P_{\Phi}(k) \\
& =\left(\frac{k^{2}}{4 \pi G a^{2} \rho_{m}}\right)^{2} \frac{k^{3}}{2 \pi^{2}} P_{\Phi}(k) \\
& =\frac{4}{9} \frac{a^{2} k^{4}}{\Omega_{m}^{2} H_{0}^{4}} \frac{k^{3}}{2 \pi^{2}} P_{\Phi}(k)
\end{aligned}
$$

Bardeen Curvature

- Assume initial curvature power spectrum

$$
\frac{k^{3}}{2 \pi^{2}} P_{\mathcal{R}}(k)=A_{S}\left(\frac{k}{k_{\text {norm }}}\right)^{n_{S}-1}
$$

and a transfer function $T(k)$ that defines the subhorizon evolution which is influenced by pressure effects during radiation domination

- Finally normalize to the matter dominated expectation and take $\Phi=[3 G(a) / 5] \mathcal{R}$ where $G(a)$ is the modification to the growth rate of Φ due to the dark energy and curvature

$$
\begin{gathered}
\Phi(a, k)=\frac{3}{5} G(a) T(k) \mathcal{R}(0, k) \\
\frac{k^{3}}{2 \pi^{2}} P_{\Delta}(k)=\frac{4}{25} A_{S}\left(\frac{G(a) a}{\Omega_{m}}\right)^{2}\left(\frac{k}{H_{0}}\right)^{4}\left(\frac{k}{k_{\text {norm }}}\right)^{n_{S}-1} T^{2}(k)
\end{gathered}
$$

Transfer Function

- Transfer function transfers the initial Newtonian curvature to its value today (linear response theory)

$$
T(k)=\frac{\Phi(k, a=1)}{\Phi\left(k, a_{\text {init }}\right)} \frac{\Phi\left(k_{\mathrm{norm}}, a_{\mathrm{init}}\right)}{\Phi\left(k_{\mathrm{norm}}, a=1\right)}
$$

- Conservation of Bardeen curvature: Newtonian curvature is a constant when stress perturbations are negligible: above the horizon during radiation and dark energy domination, on all scales during matter domination
- When stress fluctuations dominate, perturbations are stabilized by the Jeans mechanism
- Hybrid Poisson equation: Newtonian curvature, comoving density perturbation $\Delta \equiv(\delta \rho / \rho)_{\text {com }}$ implies Φ decays

$$
\left(k^{2}-3 K\right) \Phi=4 \pi G \rho \Delta \sim \eta^{-2} \Delta
$$

Transfer Function

- Freezing of Δ stops at $\eta_{\text {eq }}$

$$
\Phi \sim\left(k \eta_{\mathrm{eq}}\right)^{-2} \Delta_{H} \sim\left(k \eta_{\mathrm{eq}}\right)^{-2} \Phi_{\mathrm{init}}
$$

- Transfer function has a k^{-2} fall-off beyond $k_{\text {eq }} \sim \eta_{\text {eq }}^{-1}$
- Small correction since growth with a smooth radiation component is logarithmic not frozen
- Transfer function is a direct output of an Einstein-Boltzmann code

Fitting Function

- Alternately accurate fitting formula exist, e.g. pure CDM form:

$$
\begin{aligned}
T(k(q)) & =\frac{L(q)}{L(q)+C(q) q^{2}} \\
L(q) & =\ln (e+1.84 q) \\
C(q) & =14.4+\frac{325}{1+60.5 q^{1.11}} \\
q & =k / \Omega_{m} h^{2} \mathrm{Mpc}^{-1}\left(T_{\mathrm{CMB}} / 2.7 K\right)^{2}
\end{aligned}
$$

- In $h \mathrm{Mpc}^{-1}$, the critical scale depends on $\Gamma \equiv \Omega_{m} h$ also known as the shape parameter

Transfer Function

- Numerical calculation

Dark Matter and the Transfer Function

- Baryons caught up in the acoustic oscillations of the CMB and impart acoustic wiggles to the transfer function. Density enhancements are produced kinematically through the continuity equation $\delta_{b} \sim(k \eta) v_{b}$ and hence are out of phase with CMB temperature peaks
- Dissipation of the acoustic oscillations eliminates both the CMB and baryon perturbations - known as Silk damping for the baryons. This suppression and the general fact that baryons are caught up with photons was one of the main arguments for CDM
- Neutrino dark matter suffers similar effects and hence cannot be the main component of dark matter in the universe

Massive Neutrinos

- Relativistic stresses of a light neutrino slow the growth of structure
- Neutrino species with cosmological abundance contribute to matter as $\Omega_{\nu} h^{2}=\sum m_{\nu} / 94 \mathrm{eV}$, suppressing power as $\Delta P / P \approx-8 \Omega_{\nu} / \Omega_{m}$
- Current data from 2dF galaxy survey and CMB indicate $\sum m_{\nu}<0.9 \mathrm{eV}$ assuming a $\Lambda \mathrm{CDM}$ model with constant tilt based on the shape of the transfer function.

Growth Function

- Same physics applies to the dark energy dominated universe
- Under the dark energy sound horizon or Jeans scale, dark energy density frozen. Potential decays at the same rate for all scales

$$
G(a)=\frac{\Phi\left(k_{\text {norm }}, a\right)}{\Phi\left(k_{\text {norm }}, a_{\text {init }}\right)} \quad \prime \equiv \frac{d}{d \ln a}
$$

- Continuity + Euler + Poisson

$$
G^{\prime \prime}+\left(1-\frac{\rho^{\prime \prime}}{\rho^{\prime}}+\frac{1}{2} \frac{\rho_{c}^{\prime}}{\rho_{c}}\right) G^{\prime}+\left(\frac{1}{2} \frac{\rho_{c}^{\prime}+\rho^{\prime}}{\rho_{c}}-\frac{\rho^{\prime \prime}}{\rho^{\prime}}\right) G=0
$$

where ρ is the Jeans unstable matter and ρ_{c} is the critical density

Dark Energy Growth Suppression

- Pressure growth suppression: $\delta \equiv \delta \rho_{m} / \rho_{m} \propto a G$
$\frac{d^{2} G}{d \ln a^{2}}+\left[\frac{5}{2}-\frac{3}{2} w(z) \Omega_{D E}(z)\right] \frac{d G}{d \ln a}+\frac{3}{2}[1-w(z)] \Omega_{D E}(z) G=0$,
where $w \equiv p_{D E} / \rho_{D E}$ and $\Omega_{D E} \equiv \rho_{D E} /\left(\rho_{m}+\rho_{D E}\right)$ with initial conditions $G=1, d g / d \ln a=0$
- As $\Omega_{D E} \rightarrow 0 G=$ const. is a solution. The other solution is the decaying mode, elimated by initial conditions
- As $\Omega_{D E} \rightarrow 1 G \propto a^{-1}$ is a solution. Corresponds to a frozen density field.

Velocity field

- Continuity gives the velocity from the density field as

$$
\begin{aligned}
v & =-\dot{\Delta} / k=-\frac{a H}{k} \frac{d \Delta}{d \ln a} \\
& =-\frac{a H}{k} \Delta \frac{d \ln (a g)}{d \ln a}
\end{aligned}
$$

- In a Λ CDM model or open model $d \ln (a g) / d \ln a \approx \Omega_{m}^{0.6}$
- Measuring both the density field and the velocity field (through distance determination and redshift) allows a measurement of Ω_{m}
- Practically one measures $\beta=\Omega_{m}^{0.6} / b$ where b is a bias factor for the tracer of the density field, i.e. with galaxy numbers $\delta n / n=b \Delta$
- Can also measure this factor from the redshift space power spectrum - the Kaiser effect where clustering in the radial direction is apparently enhanced by gravitational infall

Gravitational Lensing

- Gravitational potentials along the line of sight $\hat{\mathbf{n}}$ to some source at comoving distance D_{s} lens the images according to (flat universe)

$$
\phi(\hat{\mathbf{n}})=2 \int d D \frac{D_{s}-D}{D D_{s}} \Phi(D \hat{\mathbf{n}}, \eta(D))
$$

remapping image positions as

$$
\hat{\mathbf{n}}^{I}=\hat{\mathbf{n}}^{S}+\nabla_{\hat{\mathbf{n}}} \phi(\hat{\mathbf{n}})
$$

- Since absolute source position is unknown, use image distortion defined by the Jacobian matrix

$$
\frac{\partial n_{i}^{I}}{\partial n_{j}^{S}}=\delta_{i j}+\psi_{i j}
$$

Weak Lensing

- Small image distortions described by the convergence κ and shear components $\left(\gamma_{1}, \gamma_{2}\right)$

$$
\psi_{i j}=\left(\begin{array}{cc}
\kappa-\gamma_{1} & -\gamma_{2} \\
-\gamma_{2} & \kappa+\gamma_{1}
\end{array}\right)
$$

where $\nabla_{\hat{\mathbf{n}}}=D \nabla$ and

$$
\psi_{i j}=2 \int d D \frac{D\left(D_{s}-D\right)}{D_{s}} \nabla_{i} \nabla_{j} \Phi(D \hat{\mathbf{n}}, \eta(D))
$$

- In particular, through the Poisson equation the convergence (measured from shear) is simply the projected mass

$$
\kappa=\frac{3}{2} \Omega_{m} H_{0}^{2} \int d D \frac{D\left(D_{s}-D\right)}{D_{s}} \frac{\Delta(D \hat{\mathbf{n}}, \eta(D))}{a}
$$

