Set 9.
CMB and Large Scale Structure



CMB Temperature Anisotropy

o WMAP measured the temperature anisotropy (first discovered by
COBE) from recombination:




CMB Temperature Anisotropy

e Power spectrum shows characteristic scales where the intensity c
variations peak - reveals geometry and contents of the universe:
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CMB Parameter Inferences

e Spectrum constrains the matter-energy contents of the universe

Parameter | First Year WMAPext Three Year Three Year Three Year+ALL
Mean Mean Mean (No SZ) Mean Mean
100,02 | 2.387015  2.32701% 2.234+0.08  2.229+0.073 | 2.186 %+ 0.068
Qnh? | 0.144730%  0.134739% | 0.126 +0.009  0.127775:5550 0.132410:0042
H, 7210 73+3 73.5 4+ 3.2 73.2+31 70.4+12
T 0177008 0.157097 0.0881392  0.089 + 0.030 0.07310 05
ng 0.99%957  0.98700% | 0.9614+0.017 0.958 +0.016 0.947 4 0.015
O 0.207397  0.2570%% | 0.234+0.035 0.2414+0.034 | 0.26840.018
o 092131 0.8475% | 0764005  0.76170%19 0.776700%
Parameter | First Year WMAPext | Three Year Three Year | Three Year + ALL
ML ML ML (No SZ) ML ML
10092, 72 2.30 2.21 2.23 2.22 2.19
Q,,h? 0.145 0.138 0.125 0.127 0.131
Hy 63 71 73.4 73.2 73.2
T 0.10 0.10 0.0904 0.091 0.0867
N 0.97 0.96 0.95 0.954 0.949
O, 0.32 0.27 0.232 0.236 0.259
o 0.88 0.82 0.737 0.756 0.783




alaxy Redshift Surveys

e Galaxy redshift surveys (e.g. 2dF and SDSS) measure the three
dimensional distribution of galaxies today:
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Galaxy Power Spectrum
e SDSS LRG and Main power spectrum:
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Structure Formation

e Small perturbations from inflation over the course of the 14Gyr life
of the universe are gravitationally enhanced into all of the structur
seen today

e Cosmic microwave background shows a snapshot at a few hundre
thousand years old at recombination

e Discovery in 1992 of cosmic microwave background anisotropy
provided the observational breakthrough - convincing support for
adiabatic initial density fluctuations of amplitude—

e Combine with galaxy clustering - large scale structure seen in
galaxy surveys - right amplitude given cold dark matter

e Following notes are at a slightly more advanced level than the
book and are provided here for completeness



Angular Power Spectrum

e Angular distribution of radiation is essentially the 3D temperature
field projected onto a shell at the distance from the observer to
recombination: called the last scattering surface

e Take the radiation distribution at last scattering to also be
described by an isotropic temperature fluctuation fi¢{e) and
recombination to be instantaneous

O(h) = /dD O(x)5(D — D,)

whereD is the comoving distance ardd, denotes recombination.

e Describe the temperature field by its Fourier moments




Angular Power Spectrum

Power spectrum
(O(k)'O(k)) = (27)°d(k — k') Pr(k)

ACQF = ]GSPT/QTFQ

Temperature field

o) = [ (500

Multipole moment®©(n) = >, G4, Yo

Expand out plane wave in spherical coordinates

R = 31 Gt RD )Y () Ya ()



Angular Power Spectrum

o Power spectrum

d’k e
Opm = / (27_‘_)3@(1()471'2 ]E(kD*)}/Em(k)

(OO = [ oz 40 kD)o (KDY, (1Yo (K) P (1)

= 5gg/5mm/47'(' / dIn k]?(/{D*)A%(/{)

with [ j(z)dInx = 1/(20(¢ + 1)), slowly varying A%,

o Angular power spectrum:

ATAZ(¢/D,)  2m

Ce= 26000+1)  (({+1)

A7(¢/D.)




Thomson Scattering

e Thomson scatteringf photons off of free electrons is the most
Important CMB process with a cross section (averaged over
polarization states) of

7

o = — 6.65 x 107 *°cm?

- 3m?
e Density of free electrons in a fully ionized = 1 universe
ne = (1-Y,/2)xzeny = 107°Qh%(1 + 2)’cm ™3,

whereY, ~ 0.24 is the Helium mass fraction, creates a high
(comoving) Thomsompacity

T = N.OTa

where dots are conformal time= [ dt/a derivatives and is the
optical depth.



Tight Coupling Approximation
e Nearrecombinatiorr ~ 10° andQ),h?* ~ 0.02, the (comoving)

mean free patiof a photon

1
Ao = — ~ 2.5Mpc
T

small by cosmological standards!

e On scales\ > )\ photons areightly coupledto the electrons by
Thomson scattering which in turn are tightly coupled to the
baryons by Coulomb interactions

e Specifically, their bulk velocities are defined bgiagle fluid
velocity v, = v, and the photons carrmyo anisotropyn the rest
frame of the baryons

e — No heat conductiomr viscosity(anisotropic stress) in fluid



Zeroth Order Approximation

e Momentum densityf a fluid is(p + p)v, wherep is the pressure

e Neglectthe momentum density of tH®ryons

(o +Dpo)ve — po+po  3pp

(Py + Dy)vy B P~y + Dy B 4py
0 2
~ 0.6 ph ( . )
0.02 103
sincep., « T* is fixed by the CMB temperaturE = 2.73(1 + 2)K
— OK substantiallyoefore recombination

R

e Neglectradiationin theexpansion

2
P _ 36 (Ll ( a )
Or 0.15 10—3

e Neglect gravity




Fluid Equations

e Densityp, o« T* so definemperature fluctuatio®

0T

e Real spaceontinuity equation

57 = —(1 +w,)kv,
1

@ = —gk?}7

e Euler equation (neglecting gravity)

. a kc?
U,y = —(1 — 3w7)av -+ m57

3
Vy = kciz% = 3c’k©



Osclllator: Take One

e Combine these to form th@mple harmonic oscillatogquation
O+ A2k =0
where the sound speed is adiabatic

2> _ P _ Dy
C0p Py

herec? = 1/3 since we are photon-dominated

C

e General solution:

O(0)
kc,

where thesound horizoris defined as = [ c.dn

O(n) = 6(0) cos(ks) + sin(ks)



Harmonic Extrema

e All modes ardrozenin at recombination (denoted with a subscript
x) yielding temperature perturbationsdifferent amplituddor
different modes. For the adiabatic (curvature mogé)) = 0

O(n.) = O(0) cos(ks.)

e Modes caught in thextremaof their oscillation will have
enhanced fluctuations

k.S, = nmw

yielding afundamental scaler frequency, related to the inverse
sound horizon

]{A:ﬂ'/s*

and aharmonic relationshipo the other extrema ds: 2 : 3...



Peak Location

e The fundmentaphysical scales translated into a fundamental
angular scalby simple projection according to the angular
diameter distanc® 4

0a = Aa/Day
la = FkaDy

e In a flat universe, the distance is simghy = D = ng — 1, = 1),
the horizon distance, and, = /s, = v/37/n, SO

(914%&
o

o In amatter-dominatedniversen o a'/? s00,4 ~ 1/30 ~ 2° or

gA ~ 200



Curvature

e |n acurved universgthe apparent aangular diameter distance
no longer the conformal distande, = Rsin(D/R) # D

e Objects in eclosed universarefurtherthan they appear!
gravitationallensingof the background...

e Curvature scale of the universe must be substantiiter than
current horizon

e Flat universandicates critical density and implies missing energy
given local measures of the matter denstfprk energy

e D also depends onark energy densit{2pr andequation of state
W = pDE/PDE-

e EXpansion rate at recombinationmatter-radiation rati@nters
Into calculation ofk 4.



Doppler Effect

e Bulk motionof fluid changes the observed temperature via

Doppler shifts
(AT) -
— —f.-v
1 dop !

e Averaged over directions
(AT> Uy
T rms \/§

D —ﬁ@ = —3ch O(0)sin(ks)

V3 k k
= O(0)sin(ks)

e Acoustic solution



Doppler Peaks?

e Doppler effectfor the photon dominated system isaxfual
amplitudeandr /2 out of phaseextrema of temperature are
turning points of velocity

e Effects add imquadrature

T

e No peakan k spectrum! However the Doppler effect carries an
angular dependence that changegitgectionon the sky
n-v,xn-k

<£> = 07(0)[cos*(ks) + sin®(ks)] = ©%(0)

o Coordinates wherg || k

Y10Y£0 — YEilO

recouplingj;Y,o: no peaks in Doppler effect



Restoring Gravity

e Take a simplehoton dominategystemwith gravity

e Continuityaltered since a gravitational potential represents a
stretchingof the spatial fabridhat dilutes number densities —
formally a spatiaturvature perturbation

e Think of this as a perturbation to tlseale facton — a(1 + &) so
that the cosmogical redshift is generalized to
a a

a a

so that thecontinuity equatiorbecomes

. 1 .
@: —gkvv—q)



Restoring Gravity

e Gravitational forcan momentum conservatidll = —mVV
generalized to momentum density modifies Eheer equationo

0 = k(O + 0)

e General relativity says that and\W are the relativistic analogues
of the Newtonian potentiaand thatd ~ —W.

e |n our matter-dominated approximatioh represents matter
density fluctuations through the cosmologiPalisson equation

k*® = 4nGa’p,\,,

where the difference comes from the useofmoving coordinates
for k (a* factor), the removal of thbackground densitinto the
background expansigpA,,) and finally acoordinate subtletthat
enters into the definition af,,



Constant Potentials

e |In the matter dominated epoglotentials are constabecause
Infall generates velocitiegsv,,, ~ kn¥

e \elocity divergence generates dengagrturbations as
A, ~ —knu,, ~ —(kn)*¥
e And density perturbations generate poterflia¢tuations as
d ~ A,,/(kn)* ~ —¥, keeping them constant. Note that because
of the expansion, density perturbations myistw to keep
potentials constant.

e Here we have used tli&iedman equatioil? = 87Gp,, /3 and
n= [dlna/(aH)~1/(aH)

e More generally, ifstress perturbatiorare negligible compared
with density perturbationGdp < dp ) then potential will remain

roughly constant — more specifically a variant calledBlaedeen
or comoving curvaturé Is constant



Oscillator: Take Two

e Combine these to form thr@mple harmonic oscillatcgquation

. L2 .
@+éﬁ@:—§m—¢

e In aCDM dominatedexpansiond = ¥ = (. Also for photon
dominationc? = 1/3 so the oscillator equation becomes

O+ U+ Ak2(O + W) =0
e Solution is just arpffset versiorof the original
O+ VUl(n) =[O + V](0) cos(ks)

e O + VU is also theobserved temperature fluctuatisimce photons
lose energy climbing out afravitational potentialat
recombination



Effective Temperature

e Photons climb out of potential wells at last scattering
e Lose energy to gravitational redshifts

e Observed oeffective temperature

O+ WV
o Effective temperature oscillates aroursrowith amplitude given
by theinitial conditions

e Note: initial conditions are set when the perturbationusside of
horizon need inflation or other modification to matter-radiation
FRW universe.

e GR says thamitial temperaturas given byinitial potential



Sachs-Wolfe Effect and the Magic 1/3

e A gravitational potentiails a perturbation to the temporal
coordinate [formally ayjauge transformatign

0t
=V
t

e Convert this to a perturbation in tlseale factar

A 3(1-+w)/2
a ap1/2

wherew = p/p so that duringnatter domination

oa 20t
a 3t
o CMB temperature isoolingas? o a™! so

5T 5 1
O+l="qv=—240=_1
A a 3



Baryon Loading

e Baryons add extrenassto the photon-baryon fluid
e Controlling parameter is th@omentum density ratio
R = Py =+ Py %SOQth( a3>
D~y + Pry 10—
of orderunity at recombination

e Momentum density of th@int systemis conserved

(py + Py) vy + (o6 + Do) vs = (Py + Dy + po + py) 0y
— (1 + R)(pv -|—p7)?f7b

where the controlling parameter is theomentum density ratio

R = pb+;0b QSOQth( a )
Py + Py 10-3

of orderunity at recombination




New Euler Equation

e Momentum density ratio enters as

(14 R)vyp] =kO + (1 4+ R)kEV
e Photon continuityremains the same

. I |
© = —g?},yb—q)

e Modification ofoscillator equation

[(1+ R)O] + %/@2@ = —%/8(1 + R — [(1 4 R)D]



Oscillator: Take Three

e Combine these to form the not-quite-sople harmonic oscillator
equation

d : k? d :
ng—n(cs_Q@) -+ C?kz@ — —g\p — ng—n(cs_zq))

wherec? = p.y/p

, 101
C, = ———
* T 31+R

e In aCDM dominatedexpansiond = ¥ = 0 and theadiabatic
approximation?/R < w = ke,

O+ (1+ R)V|(n) =04+ (14 R)¥](0)cos(ks)



Baryon Peak Phenomenology

e Photon-baryon ratio enters three ways

e Overall largeramplitude

0 + (14 R)T)(0) = %(1 +3R)T(0)

e Even-odd peaknodulationof effective temperature

O + Vlpears = [£(1 +3R) — 3R] é‘If(O)

© 4+ 0]y~ [0+ W], = [-6R)3¥(0)

e Shifting of thesound horizordown or/ 4 up

lyxV1I+ R

e Actual effectssmallersince? evolves



Photon Baryon Ratio Evolution

e Oscillator equation has tim®volving mass

d
2 —2@ 2]€2@:O
2 (670) ¢

o Effective massisisi.; = 3c.? = (1+ R)

e Adiabatic invariant

E 1 1
— = §meﬁwA2 = 5308_2/@(33142 o A*(1 + R)1/2 = const.
W

o Amplitude of oscillation4 (1 + R)~'/* decays adiabaticallgs
the photon-baryon ratio changes



Osclllator: Take Three and a Half

e The not-quite-s@imple harmonic oscillatogquation is dorced
harmonic oscillator
d : k2 d
2 —2 27.2 2 _9
o © kO = —— WU — ¢ — o

CS dn (CS ) _I_ CS 3 CS dn (CS )
changes in thgravitational potentialalter the form of the
acoustic oscillations

e |f the forcing term has &mporal structuréhat is related to the
frequencyof the oscillation, this becomestaiven harmonic
oscillator

e Term involvingV is the ordinarygravitational force

e Term involving® involves thed term in thecontinuity equatioras
a (curvature) perturbation to tiseale factor



Potential Decay

e Matter-to-radiation ratio

P 24th2( a )
Pr 103

of orderunity at recombination in a low,,, universe

e Radiation is not stress free andisgpedeghe growth of structure

20 = 4nGa’p, A\,

A, ~ 40 oscillatesaround a constant valug, o« a~* so the
Netwoniancurvature decays

e General rule: potential decays if the dominant energy component
has substantial stress fluctuations, i.e. below the generalized sou
horizon or Jeans scale



Radiation Driving

e Decay is timed precisely torive the oscillator - close to fully
coherent

0+ W](n) = [© + U)(0) + AT — AD
_ %xp(@) _20(0) = gxp(())

e 5x the amplitude of the Sachs-Wolfe effect!

e Coherent approximation sxactfor a photon-baryon fluid but
reality is reduced te- 4 x because oheutrino contributiorto
radiation

e Actualinitial conditionsare® + ¥ = ¥ /2 for radiation
domination but comparison to matter dominated SW correct



Damping
e Tight coupling equations assum@arfect fluid noviscosity, no

heat conduction

e Fluid imperfections are related to theean free path of the
photons in the baryons

' where 7 =n.ora

Ao =T
IS the conformal opacity tdthomson scattering

e Dissipation is related to thaiffusion length random walk
approximation

Ap = VNI o = 1/ e Ao = V1o

thegeometric meabetween the horizon and mean free path

e \p/n. ~ few %, so expect thpeaks > 3 to be affected by
dissipation



Equations of Motion

e Continuity

@:—§U7—®, 5[):—/62}5—3(1)

where the photon equation remains unchanged and the baryons
follow number conservation with, = myn,

e Euler
. k .
v, = k(@4 V) — 6™~ T(vy — Vp)
vy = —gvb—kk\lf#—%(vv — )/ R

where the photons gain an anisotropic stress terfnom radiation
viscosityand amomentum exchangerm with the baryons and
are compensated by tla@posite termn the baryon Euler equation



Viscosity

e Viscosityis generated from radiatisgtreamingrom hot to cold
regions

e EXxpect

k
T~ N~ U~ —
Y 77_

generated by streaming, suppresseddaiteringn a wavelength
of the fluctuation Radiative transfesays
k

whereA, = 16/15

k k
’l.}fy — k(@ —|— \If) — §AU—,U7

T



Oscillator: Penultimate Take

e Adiabatic approximatiolfw > a/a)
k

@ ~ —g’Ufy
e Oscillator equation contains@ damping term
d : ket . k* d :
(%0 SA,0 + K20 = —— U — EA— (¢ 2D
CS d,r] (CS ) _I_ 7_ —I_ CS 3 CS dT] (CS )

o Heat conductioterm similar in that it is proportional to, and is
suppressed by scattering7. Expansion otuler equation$o
leading order in:7 gives

R2
T 14+R

since the effects are only significant if the baryons are dynamicall
Important

Ap



Oscillator: Final Take

e Final oscillator equation

d : k2 c? : k? d :
—(c;%0 (A, + A0 + k2O = —— T — 2—(c?D
g (€70) + AL+ A6 + KGO =~ — o ()

e Solve in theadiabatic approximation
O x exp(i/wdn)
k?c?
—w® A 2 (A, + Ap)iw + ke =0 (1)




Dispersion Relation

e Solve
U= k2 [1 + z‘f,(A,,, + Ah)}

1 W
— d+ke, |[1+=-—(A, + A
W C _ —|—27_( + h)]

= Fke, |1+ %k,CS (A, + Ah)]

+

e EXxponentiate

1 2
exp(i/wdn) = T ex Xp —kQ/dU§CT.S(Av + Ap)]

= " exp[—(k/kp)] (2)

e Damping isexponentiaunder the scalé,



Diffusion Scale

e Diffusion wavenumber

k2]/d 11 16 R
b= s T R\ T 1+ R)

e Limiting forms

116 [ 1

lim k) = = — [ di~

A N
1 [ 1

lim kp2 == [ di-

R D 60/ e

e Geometric mean between horizon and mean free path as expecte
from arandom walk

2T 2T
Ap = =5~ ()2

kp /6



Thomson Scattering

e Polarization state of radiation in directiandescribed by the
intensity matrix( £;(n) £ (n)), wherekE is the electric field vector
and the brackets denote time averaging.

e Differential cross section

do B
aa
whereo; = 87a?/3m, is the Thomson cross sectidi, andE

denote the incoming and outgoing directions of the electric field o
polarization vector.

3 . .
S—W]E’ -E%or,

e Summed over angle and incoming polarization

d
Z /dﬁ,d—g — OT

i=1,2



Polarization Generation

Heuristic: incoming radiation shakes an electron in direction of
electric field vectoi’

Radiates photon with polarization also in directigh

But photon cannot be longitudinally polarized so that scattering
Into 90° can only pass one polarization

Linearly polarized radiation like polarization by reflection
Unlike reflection of sunlight, incoming radiation is nearly isotropic

Missing linear polarization supplied by scattering from direction
orthogonal to original incoming direction

Only quadrupole anisotropy generates polarization by Thomson
scattering



Acoustic Polarization

e Break down of tight-coupling leads to quadrupole anisotropy of

K

Ty = Uy

e Scalingkp = (7/n.)Y? — 7 = k%,
e Know: kps, ~ kpn, =~ 10

e SO:



Acoustic Polarization

e Gradient of velocity is along direction of wavevector, so
polarization Is puréZ-mode

e Velocity is90° out of phase with temperature — turning points of
oscillator are zero points of velocity:

© + VU  cos(ks); v, o sin(ks)

e Polarization peaks are at troughs of temperature power



Cross Correlation

Cross correlation of temperature and polarization

(© 4+ ¥)(v,) x cos(ks)sin(ks) o sin(2ks)
Oscillation at twice the frequency

Correlation: radial or tangential around hot spots

Partial correlation: easier to measure if polarization data is noisy,
harder to measure if polarization data is highV or if bands do
not resolve oscillations

Good check for systematics and foregrounds

Comparison of temperature and polarization is proof against
features in initial conditions mimicking acoustic features



CMB Normalization

e Normalization of potential, hence inflationary power spectrum, sef
by CMB observations, aka COBE or WMAP normalization

e Angular power spectrum:

C4xAZ(¢/D,)  2m
Ce= 200 + 1) _€(€+1)AT(€/D*)

o /(L +1)Cy/2m = A% is commonly used log power
o Sachs-Wolfe effect say&?. = A% /9, & = 2( initial
e Observed number at recombination

2
A2 _ 28K
T 6
2.725 x 10°uK

A3 ~ (3 x 107°)?
Az~ (5 x 107°)°




COBE vs WMAP Normalization

Given that the temperature response to an inflationary initial
perturbation is known for akt through the Boltzmann solution of
the acoustic physics, one can translateto A? at the best
measured ~ ¢/ D,.

The CMB normalization was first extracted from COBE at 10
or k ~ Hy. Alow / normalization point suffers from cosmic
variance: onh2/ 4+ 1 samples of a giveAmode.

WMAP measures very precisely the first acoustic peak~at200.
This is the current best place to normalize the spectrum (.02
Mpc1).

To account for future improvements, WMAP chdse- 0.05
Mpc—! as the normalization point. Taking out the CMB transfer

function AZ(k = 0.05) = (5.07 x 107°)* consistent with a scale
invariant spectrum from.0002 — 0.05 Mpc™!



Transfer Function

e Transfer functiortransfers the initial Newtonian curvature to its
value today (linear response theory)

®(k,a=1) P(knorm, Ginit)

S(k, ainit) P(knorm,a = 1)

e Conservation of Bardeen curvature: Newtonian curvature is a
constantwhenstress perturbations are negligibébove the

horizon during radiation and dark energy domination, on all scale:
during matter domination

T(k) =

e When stress fluctuations dominate, perturbations are stabilized b
theJeans mechanism

e Hybrid Poisson equatiarNewtonian curvature, comoving density
perturbationA = (0p/p)com iMmplies® decays

(k* — 3K)® = 47GpA ~ n A



Transfer Function
e Freezingof A stops at).,

D~ (ENeq) *Apr ~ (ENeq) > Pinit
o Transfer function has &2 fall-off beyondk., ~ 7

T \?2
Neq = 15.7(th2)_1 (—2 7K) Mpc

e Small correction since growth with a smooth radiation component
IS logarithmic not frozen

e Transfer function is a direct output of an Einstein-Boltzmann code



Fitting Function

e Alternately accurate fitting formula exist, e.g. pure CDM form:

B L(q)
Tik(g) = L(q) + C(q)¢*

L(q) = In(e + 1.84q)
325
1+ 60.5¢*11
q = k/Qnh*Mpce ™ (Toms/2.7K)?

C(q) =144+

e In h Mpc™!, the critical scale depends dh= 2,/ also known as
the shape parameter



Transfer Function

e Numerical calculation

. :_.

(k)

wiggles

0.01 E

il
k (h—1 Mpc)



Baryon Wiggles

e Baryons caught up in the acoustic oscillations of the CMB and
Impart acoustic wiggles to the transfer function. Density
enhancements are produced kinematically through the continuity
equationd, ~ (kn)v, and hence are out of phase with CMB
temperature peaks

e Dissipation of the acoustic oscillations eliminates both the CMB
and baryon perturbations — known as Silk damping for the
baryons. This suppression and the general fact that baryons are
caught up with photons was one of the main arguments for CDM

e Detected first (so far only) in the SDSS LRG survey.

e An excellent standard ruler for angular diameter distagéz)
since it does not evolve in redshift in linear theory

e Radial extent of wiggles giveH (z) (not yet seen in data)



Massive Neutrinos

e Neutrino dark matter suffers similar effects and hence cannot be
the main component of dark matter in the universe

e Relativisticstressesf a light neutrinaslow the growth of structure

e Neutrino species withosmological abundan@®ntribute to
matter af),h* = > m, /94eV, suppressing power as
AP/P ~ —8Q,/Q,,

e Current data from SDSS galaxy survey and CMB indicate
> m, < 1.7eV (95% CL) and with Ly forest< 0.42 eV.



Growth Function

e Same physics applies to the dark energy dominated universe

e Under the dark energy sound horizon or Jeans scale, dark energy
density frozen. Potential decays at the same rate for all scales

(I)(knorma CL) / d
(I)(knorma ainit) d hl a
e Continuity + Euler + Poisson
/! 1 / 1 / / /!
G" + (1—p—,+—&> G' + (—pc+p —p—>G:0
P 2pc 2 P p
wherep is the Jeans unstable matter ands the critical density

G(a) =




Dark Energy Growth Suppression

e Pressurgrowth suppressian = dp,,/pm x aG

d*GG 5 3 dG 3
d1n a? i 2 Qw(Z)QDE(Z> dlna * 5[1 —w(z)[op(2)G =0,

wherew = pDE//ODE andQDE — PDE/(Pm —+ PDE) with initial
conditionsG = 1, dG/dIna = 0

e AsQpr — 0 g =const. Is a solution. The other solution is the
decaying mode, elimated by initial conditions

e AsQpr — 1 g x a!isasolution. Corresponds to a frozen
density field.



Power Spectrum Normalization

e Present (or matter dominated) vs inflationary initial conditions
(normalized by CMB):

%Agi(kHOrm)GQ(a)TQ(k)( I )n1

knorm

Az (k,a) ~
e Density field

o = 477Ga2A,0m
3 A m 1
_ —H2Q /0
2 pm a

9 HO
AQ _ 92 2A2

T A2 _2 2,2 2 L3
Am — 25A Z(knorm)ﬂm a“G*(a)T*(k) ( ) (H())

knorm



Antiquated Normalization Conventions

e Current density field on the horizon scéle- H,

4
07 = 2—5Aa(knorm)Q;12a2G2(a) = (2G(1) /8, x 107°)

e 05, RMS of density field filtered by tophat of:8'Mpc



Power Spectrum
e SDSS data

104 |

P(k) [(h™* Mpc)?]

1000

|

0.01 0.1
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e Power spectrum defines large scale structure observables: galax
clustering, velocity field, Ly forest clustering, cosmic shear



Velocity field

e Continuity gives the velocity from the density field as

, aH dA
:—A —_— —
v L k dlna
_ _aHAdln(aG)
k dlna

e In aACDM model or open modelIn(aG)/dIn a ~ QY%°

e Measuring both the density field and the velocity field (through
distance determination and redshift) allows a measuremenyg, of

e Practically one measures= Q):° /b whereb is a bias factor for
the tracer of the density field, i.e. with galaxy numb@&tgn = bA

e Can also measure this factor from the redshift space power
spectrum - the Kaiser effect where clustering in the radial directiol
IS apparently enhanced by gravitational infall



Redshift Space Power Spectrum

e Kaiser effect is separable from the real space clustering if one
measures modes parallel and transverse to the line of sight.
Redshift space distortions only modify the former

e 2D power spectrum in “s” or redshift space

2

k)

P,(ky, k) = 1+ﬁ<z>2— v2P(k)

wherek? = kﬁ + k% andk is a 2D vector transverse to the line of
sight



Power Spectrum Errors

e The precision with which the power spectrum can be measured IS
ultimately limited by sample variance from having a finite survey
volumeV = L3. This is basically a mode counting argument. The
errors on the power spectrum are given by

APN\? 2
P, ) N
whereN;, is the number of modes in a rangedk , Ak). This is

determined by thé-space volume and the fundamental mode of
the boxk, = 27/ L which sets the cell size in the volume

(APS)2 B 2
P, ) Z5a2mky Ak Ak

(2)?



Lyman-« Forest

e QSO spectra absorbed by neutral hydrogen through the Ly
transition.

e The optical depth to absorption is (witls in physical scale)

T(v) = /dsamebaa ~ /dsamengb(u))\z

wherezy; is the neutral fraction = 6.25 x 103s~! is the
transition rate and = 1216A is the Lya wavelength and(v) is
the Lorentz profile. For radiation at a given emitted frequency
above the transition, it will redshift through the transition

e Resonant transition: lack of complete absorption, known as the
lack of a Gunn-Peterson trough indicates that the universe is near
fully ionized x; < 1 out to the highest redshift quasar- 6;
Indications that this is near the end of the reionization epoch



Lyman-« Forest

e In ionization equilibrium, the Gunn-Peterson optical depth is a
tracer of the underlying baryon density which itself is a tracer of
the dark mattergp o< p; 77 with T'(py).

d(l —x 4rJ,
( pr HI) — —:CHI/dV h O, + (1 —CCHI)2TL5R

whereo, Is the photoionization cross section (sharp edge at
threshold and falling in frequency meais~ J,;) and R oc 7797
IS the recombination coefficient.

e Given an equation of state from simulationspak p”

o R N oy T—07 pz—0-7(7—1)
JH1

LHI X —/— ,  Tgp X
Jo1 Jo1

e Clustering in the Ly forest reflects the underlying power

spectrum modulo an overall ionization intensity




Gravitational Lensing

e Gravitational potentials along the line of sighto some source at
comoving distancé), lens the images according to (flat universe)

o(f) = 2 / dD DBZ)SD & (D, n(D))

remapping image positions as

n' = n® 4+ Vao(n)

e Since absolute source position is unknown, use image distortion
defined by the Jacobian matrix

on;
S Oij + iy

J




Weak Lensing

e Small image distortions described by the convergenarad shear
component$y;, vs)

R —"7 —72
- )
—Y2 Kt m

whereV,; = DV and

Vij = 2/GZDD(DZS)_ D)Vz'vjq)(Dflﬂ?(D))

e In particular, through the Poisson equation the convergence
(measured from shear) is simply the projected mass

D(D,— D)A(Dn.,n(D
&:§QmH§/dD ( S ) ( nﬂ?( ))
2 D, a




