
Set 9:

CMB and Large Scale Structure



CMB Temperature Anisotropy
• WMAP measured the temperature anisotropy (first discovered by

COBE) from recombination:



CMB Temperature Anisotropy
• Power spectrum shows characteristic scales where the intensity of

variations peak - reveals geometry and contents of the universe:
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CMB Parameter Inferences
• Spectrum constrains the matter-energy contents of the universe
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Table 2: Power Law ΛCDM Model Parameters and 68% Confidence Intervals. The Three

Year fits in the columns labeled “No SZ” use the likelihood formalism of the first year paper

and assume no SZ contribution, ASZ = 0, to allow direct comparison with the First Year

results. Fits that include SZ marginalization are given in the last two columns of the upper

and lower tables and represent our best estimate of these parameters. The last column

includes all data sets.

Parameter First Year WMAPext Three Year Three Year Three Year+ALL

Mean Mean Mean (No SZ) Mean Mean

100Ωbh
2 2.38+0.13

−0.12 2.32+0.12
−0.11 2.23 ± 0.08 2.229 ± 0.073 2.186 ± 0.068

Ωmh
2 0.144+0.016

−0.016 0.134+0.006
−0.006 0.126 ± 0.009 0.1277+0.0080

−0.0079 0.1324+0.0042
−0.0041

H0 72+5
−5 73+3

−3 73.5 ± 3.2 73.2+3.1
−3.2 70.4+1.5

−1.6

τ 0.17+0.08
−0.07 0.15+0.07

−0.07 0.088+0.029
−0.030 0.089 ± 0.030 0.073+0.027

−0.028

ns 0.99+0.04
−0.04 0.98+0.03

−0.03 0.961 ± 0.017 0.958 ± 0.016 0.947 ± 0.015

Ωm 0.29+0.07
−0.07 0.25+0.03

−0.03 0.234 ± 0.035 0.241 ± 0.034 0.268 ± 0.018

σ8 0.92+0.1
−0.1 0.84+0.06

−0.06 0.76 ± 0.05 0.761+0.049
−0.048 0.776+0.031

−0.032

Parameter First Year WMAPext Three Year Three Year Three Year + ALL

ML ML ML (No SZ) ML ML

100Ωbh
2 2.30 2.21 2.23 2.22 2.19

Ωmh
2 0.145 0.138 0.125 0.127 0.131

H0 68 71 73.4 73.2 73.2

τ 0.10 0.10 0.0904 0.091 0.0867

ns 0.97 0.96 0.95 0.954 0.949

Ωm 0.32 0.27 0.232 0.236 0.259

σ8 0.88 0.82 0.737 0.756 0.783



Galaxy Redshift Surveys
• Galaxy redshift surveys (e.g. 2dF and SDSS) measure the three

dimensional distribution of galaxies today:
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FIG. 2: The distribution of the 6,476 LRGs (black) and 32,417 main galaxies (green/grey) that are within 1.25◦ of the Equatorial plane.
The solid circles indicate the boundaries of our NEAR, MID and FAR subsamples. The “safe13” main galaxy sample analyzed here and
in [28] is more local, extending out only to 600h−1 Mpc (dashed circle).

III. POWER SPECTRUM MEASUREMENTS

We measure the power spectrum of our various samples
using the PKL method described in [28]. We follow the
procedure of [28] exactly, with some additional numeri-
cal improvements described in Appendix A, so we merely
summarize the process very briefly here. The first step
is to adjust the galaxy redshifts slightly to compress so-

called fingers-of-god (FOGs), virialized galaxy clusters
that appear elongated along the line-of-sight in redshift
space; we do this with several different thresholds and
return to how this affects the results in Section IV F2.
The LRGs are not just brightest cluster galaxies; about
20% of them appear to reside in a dark matter halo with
one or more other LRG’s. The second step is to expand
the three-dimensional galaxy density field in N three-



Galaxy Power Spectrum
• SDSS LRG and Main power spectrum:
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FIG. 4: Measured power spectra for the full LRG and main galaxy samples. Errors are uncorrelated and full window functions are shown
in Figure 5. The solid curves correspond to the linear theory ΛCDM fits to WMAP3 alone from Table 5 of [7], normalized to galaxy bias
b = 1.9 (top) and b = 1.1 (bottom) relative to the z = 0 matter power. The dashed curves include the nonlinear correction of [29] for
A = 1.4, with Qnl = 30 for the LRGs and Qnl = 4.6 for the main galaxies; see equation (4). The onset of nonlinear corrections is clearly
visible for k ∼

> 0.09h/Mpc (vertical line).

Our Fourier convention is such that the dimensionless
power ∆2 of [77] is given by ∆2(k) = 4π(k/2π)3P (k).

Before using these measurements to constrain cosmo-
logical models, one faces important issues regarding their
interpretation, related to evolution, nonlinearities and
systematics.

B. Clustering evolution

The standard theoretical expectation is for matter
clustering to grow over time and for bias (the rela-
tive clustering of galaxies and matter) to decrease over
time [78–80] for a given class of galaxies. Bias is also



Structure Formation
• Small perturbations from inflation over the course of the 14Gyr life

of the universe are gravitationally enhanced into all of the structure
seen today

• Cosmic microwave background shows a snapshot at a few hundred
thousand years old at recombination

• Discovery in 1992 of cosmic microwave background anisotropy
provided the observational breakthrough - convincing support for
adiabatic initial density fluctuations of amplitude10−5

• Combine with galaxy clustering - large scale structure seen in
galaxy surveys - right amplitude given cold dark matter

• Following notes are at a slightly more advanced level than the
book and are provided here for completeness



Angular Power Spectrum
• Angular distribution of radiation is essentially the 3D temperature

field projected onto a shell at the distance from the observer to
recombination: called the last scattering surface

• Take the radiation distribution at last scattering to also be
described by an isotropic temperature fluctuation fieldΘ(x) and
recombination to be instantaneous

Θ(n̂) =

∫
dDΘ(x)δ(D −D∗)

whereD is the comoving distance andD∗ denotes recombination.

• Describe the temperature field by its Fourier moments

Θ(x) =

∫
d3k

(2π)3
Θ(k)eik·x



Angular Power Spectrum
• Power spectrum

〈Θ(k)∗Θ(k′)〉 = (2π)3δ(k− k′)PT (k)

∆2
T = k3PT/2π

2

• Temperature field

Θ(n̂) =

∫
d3k

(2π)3
Θ(k)eik·D∗n̂

• Multipole momentsΘ(n̂) =
∑

`m Θ`mY`m

• Expand out plane wave in spherical coordinates

eikD∗·n̂ = 4π
∑
`m

i`j`(kD∗)Y
∗
`m(k)Y`m(n̂)



Angular Power Spectrum
• Power spectrum

Θ`m =

∫
d3k

(2π)3
Θ(k)4πi`j`(kD∗)Y`m(k)

〈Θ∗
`mΘ`′m′〉 =

∫
d3k

(2π)3
(4π)2(i)`−`′j`(kD∗)j`′(kD∗)Y

∗
`m(k)Y`′m′(k)PT (k)

= δ``′δmm′4π

∫
d ln k j2

` (kD∗)∆
2
T (k)

with
∫∞

0
j2
` (x)d lnx = 1/(2`(`+ 1)), slowly varying∆2

T

• Angular power spectrum:

C` =
4π∆2

T (`/D∗)

2`(`+ 1)
=

2π

`(`+ 1)
∆2

T (`/D∗)



Thomson Scattering
• Thomson scatteringof photons off of free electrons is the most

important CMB process with a cross section (averaged over
polarization states) of

σT =
8πα2

3m2
e

= 6.65× 10−25cm2

• Density of free electrons in a fully ionizedxe = 1 universe

ne = (1− Yp/2)xenb ≈ 10−5Ωbh
2(1 + z)3cm−3 ,

whereYp ≈ 0.24 is the Helium mass fraction, creates a high
(comoving) Thomsonopacity

τ̇ ≡ neσTa

where dots are conformal timeη ≡
∫
dt/a derivatives andτ is the

optical depth.



Tight Coupling Approximation
• Nearrecombinationz ≈ 103 andΩbh

2 ≈ 0.02, the (comoving)
mean free pathof a photon

λC ≡
1

τ̇
∼ 2.5Mpc

small by cosmological standards!

• On scalesλ� λC photons aretightly coupledto the electrons by
Thomson scattering which in turn are tightly coupled to the
baryons by Coulomb interactions

• Specifically, their bulk velocities are defined by asingle fluid
velocityvγ = vb and the photons carryno anisotropyin the rest
frame of the baryons

• → No heat conductionor viscosity(anisotropic stress) in fluid



Zeroth Order Approximation
• Momentum densityof a fluid is(ρ+ p)v, wherep is the pressure

• Neglectthe momentum density of thebaryons

R ≡ (ρb + pb)vb

(ργ + pγ)vγ

=
ρb + pb

ργ + pγ

=
3ρb

4ργ

≈ 0.6

(
Ωbh

2

0.02

)( a

10−3

)
sinceργ ∝ T 4 is fixed by the CMB temperatureT = 2.73(1 + z)K
– OK substantiallybefore recombination

• Neglectradiationin theexpansion

ρm

ρr

= 3.6

(
Ωmh

2

0.15

)( a

10−3

)
• Neglect gravity



Fluid Equations
• Densityργ ∝ T 4 so definetemperature fluctuationΘ

δγ = 4
δT

T
≡ 4Θ

• Real spacecontinuity equation

δ̇γ = −(1 + wγ)kvγ

Θ̇ = −1

3
kvγ

• Euler equation (neglecting gravity)

v̇γ = −(1− 3wγ)
ȧ

a
v +

kc2s
1 + wγ

δγ

v̇γ = kc2s
3

4
δγ = 3c2skΘ



Oscillator: Take One
• Combine these to form thesimple harmonic oscillatorequation

Θ̈ + c2sk
2Θ = 0

where the sound speed is adiabatic

c2s =
δp

δρ
=
ṗγ

ρ̇γ

herec2s = 1/3 since we are photon-dominated

• General solution:

Θ(η) = Θ(0) cos(ks) +
Θ̇(0)

kcs
sin(ks)

where thesound horizonis defined ass ≡
∫
csdη



Harmonic Extrema
• All modes arefrozenin at recombination (denoted with a subscript
∗) yielding temperature perturbations ofdifferent amplitudefor
different modes. For the adiabatic (curvature mode)Θ̇(0) = 0

Θ(η∗) = Θ(0) cos(ks∗)

• Modes caught in theextremaof their oscillation will have
enhanced fluctuations

kns∗ = nπ

yielding afundamental scaleor frequency, related to the inverse
sound horizon

kA = π/s∗

and aharmonic relationshipto the other extrema as1 : 2 : 3...



Peak Location
• The fundmentalphysical scaleis translated into a fundamental

angular scaleby simple projection according to the angular
diameter distanceDA

θA = λA/DA

`A = kADA

• In a flat universe, the distance is simplyDA = D ≡ η0 − η∗ ≈ η0,
the horizon distance, andkA = π/s∗ =

√
3π/η∗ so

θA ≈
η∗
η0

• In amatter-dominateduniverseη ∝ a1/2 soθA ≈ 1/30 ≈ 2◦ or

`A ≈ 200



Curvature
• In acurved universe, the apparent orangular diameter distanceis

no longer the conformal distanceDA = R sin(D/R) 6= D

• Objects in aclosed universearefurtherthan they appear!
gravitationallensingof the background...

• Curvature scale of the universe must be substantiallylarger than
current horizon

• Flat universeindicates critical density and implies missing energy
given local measures of the matter density “dark energy”

• D also depends ondark energy densityΩDE andequation of state
w = pDE/ρDE.

• Expansion rate at recombination ormatter-radiation ratioenters
into calculation ofkA.



Doppler Effect
• Bulk motionof fluid changes the observed temperature via

Doppler shifts (
∆T

T

)
dop

= n̂ · vγ

• Averaged over directions(
∆T

T

)
rms

=
vγ√
3

• Acoustic solution

vγ√
3

= −
√

3

k
Θ̇ =

√
3

k
kcs Θ(0)sin(ks)

= Θ(0)sin(ks)



Doppler Peaks?
• Doppler effectfor the photon dominated system is ofequal

amplitudeandπ/2 out of phase: extrema of temperature are
turning points of velocity

• Effects add inquadrature:(
∆T

T

)2

= Θ2(0)[cos2(ks) + sin2(ks)] = Θ2(0)

• No peaksin k spectrum! However the Doppler effect carries an
angular dependence that changes itsprojectionon the sky
n̂ · vγ ∝ n̂ · k̂

• Coordinates wherêz ‖ k̂

Y10Y`0 → Y`±1 0

recouplingj′`Y`0: no peaks in Doppler effect



Restoring Gravity
• Take a simplephoton dominatedsystemwith gravity

• Continuityaltered since a gravitational potential represents a
stretchingof thespatial fabricthat dilutes number densities –
formally a spatialcurvature perturbation

• Think of this as a perturbation to thescale factora→ a(1 + Φ) so
that the cosmogical redshift is generalized to

ȧ

a
→ ȧ

a
+ Φ̇

so that thecontinuity equationbecomes

Θ̇ = −1

3
kvγ − Φ̇



Restoring Gravity
• Gravitational forcein momentum conservationF = −m∇Ψ

generalized to momentum density modifies theEuler equationto

v̇γ = k(Θ + Ψ)

• General relativity says thatΦ andΨ are the relativistic analogues
of theNewtonian potentialand thatΦ ≈ −Ψ.

• In our matter-dominated approximation,Φ represents matter
density fluctuations through the cosmologicalPoisson equation

k2Φ = 4πGa2ρm∆m

where the difference comes from the use ofcomoving coordinates
for k (a2 factor), the removal of thebackground densityinto the
background expansion(ρ∆m) and finally acoordinate subtletythat
enters into the definition of∆m



Constant Potentials
• In the matter dominated epochpotentials are constantbecause

infall generates velocitiesasvm ∼ kηΨ

• Velocity divergence generates densityperturbations as
∆m ∼ −kηvm ∼ −(kη)2Ψ

• And density perturbations generate potentialfluctuations as
Φ ∼ ∆m/(kη)

2 ∼ −Ψ, keeping them constant. Note that because
of the expansion, density perturbations mustgrow to keep
potentials constant.

• Here we have used theFriedman equationH2 = 8πGρm/3 and
η =

∫
d ln a/(aH) ∼ 1/(aH)

• More generally, ifstress perturbationsare negligible compared
with density perturbations( δp� δρ ) then potential will remain
roughly constant – more specifically a variant called theBardeen
or comoving curvatureζ is constant



Oscillator: Take Two
• Combine these to form thesimple harmonic oscillatorequation

Θ̈ + c2sk
2Θ = −k

2

3
Ψ− Φ̈

• In aCDM dominatedexpansionΦ̇ = Ψ̇ = 0. Also for photon
dominationc2s = 1/3 so the oscillator equation becomes

Θ̈ + Ψ̈ + c2sk
2(Θ + Ψ) = 0

• Solution is just anoffset versionof the original

[Θ + Ψ](η) = [Θ + Ψ](0) cos(ks)

• Θ + Ψ is also theobserved temperature fluctuationsince photons
lose energy climbing out ofgravitational potentialsat
recombination



Effective Temperature
• Photons climb out of potential wells at last scattering

• Lose energy to gravitational redshifts

• Observed oreffective temperature

Θ + Ψ

• Effective temperature oscillates aroundzerowith amplitude given
by theinitial conditions

• Note: initial conditions are set when the perturbation isoutside of
horizon, need inflation or other modification to matter-radiation
FRW universe.

• GR says thatinitial temperatureis given byinitial potential



Sachs-Wolfe Effect and the Magic 1/3
• A gravitational potentialis a perturbation to the temporal

coordinate [formally agauge transformation]

δt

t
= Ψ

• Convert this to a perturbation in thescale factor,

t =

∫
da

aH
∝
∫

da

aρ1/2
∝ a3(1+w)/2

wherew ≡ p/ρ so that duringmatter domination

δa

a
=

2

3

δt

t

• CMB temperature iscoolingasT ∝ a−1 so

Θ + Ψ ≡ δT

T
+ Ψ = −δa

a
+ Ψ =

1

3
Ψ



Baryon Loading
• Baryons add extramassto the photon-baryon fluid

• Controlling parameter is themomentum density ratio:

R ≡ pb + ρb

pγ + ργ

≈ 30Ωbh
2
( a

10−3

)
of orderunity at recombination

• Momentum density of thejoint systemis conserved

(ργ + pγ)vγ + (ρb + pb)vb ≈ (pγ + pγ + ρb + ργ)vγ

= (1 +R)(ργ + pγ)vγb

where the controlling parameter is themomentum density ratio:

R ≡ pb + ρb

pγ + ργ

≈ 30Ωbh
2
( a

10−3

)
of orderunity at recombination



New Euler Equation
• Momentum density ratio enters as

[(1 +R)vγb]
· = kΘ + (1 +R)kΨ

• Photon continuityremains the same

Θ̇ = −k
3
vγb − Φ̇

• Modification ofoscillator equation

[(1 +R)Θ̇]· +
1

3
k2Θ = −1

3
k2(1 +R)Ψ− [(1 +R)Φ̇]·



Oscillator: Take Three
• Combine these to form the not-quite-sosimple harmonic oscillator

equation

c2s
d

dη
(c−2

s Θ̇) + c2sk
2Θ = −k

2

3
Ψ− c2s

d

dη
(c−2

s Φ̇)

wherec2s ≡ ṗγb/ρ̇γb

c2s =
1

3

1

1 +R

• In aCDM dominatedexpansionΦ̇ = Ψ̇ = 0 and theadiabatic
approximationṘ/R� ω = kcs

[Θ + (1 +R)Ψ](η) = [Θ + (1 +R)Ψ](0) cos(ks)



Baryon Peak Phenomenology
• Photon-baryon ratio enters inthree ways

• Overall largeramplitude:

[Θ + (1 +R)Ψ](0) =
1

3
(1 + 3R)Ψ(0)

• Even-odd peakmodulationof effective temperature

[Θ + Ψ]peaks = [±(1 + 3R)− 3R]
1

3
Ψ(0)

[Θ + Ψ]1 − [Θ + Ψ]2 = [−6R]
1

3
Ψ(0)

• Shifting of thesound horizondown or`A up

`A ∝
√

1 +R

• Actual effectssmallersinceR evolves



Photon Baryon Ratio Evolution
• Oscillator equation has timeevolving mass

c2s
d

dη
(c−2

s Θ̇) + c2sk
2Θ = 0

• Effective mass is ismeff = 3c−2
s = (1 +R)

• Adiabatic invariant

E

ω
=

1

2
meffωA

2 =
1

2
3c−2

s kcsA
2 ∝ A2(1 +R)1/2 = const.

• Amplitude of oscillationA ∝ (1 +R)−1/4 decays adiabaticallyas
the photon-baryon ratio changes



Oscillator: Take Three and a Half
• The not-quite-sosimple harmonic oscillatorequation is aforced

harmonic oscillator

c2s
d

dη
(c−2

s Θ̇) + c2sk
2Θ = −k

2

3
Ψ− c2s

d

dη
(c−2

s Φ)

changes in thegravitational potentialsalter the form of the
acoustic oscillations

• If the forcing term has atemporal structurethat is related to the
frequencyof the oscillation, this becomes adriven harmonic
oscillator

• Term involvingΨ is the ordinarygravitational force

• Term involvingΦ involves theΦ̇ term in thecontinuity equationas
a (curvature) perturbation to thescale factor



Potential Decay
• Matter-to-radiation ratio

ρm

ρr

≈ 24Ωmh
2
( a

10−3

)
of orderunity at recombination in a lowΩm universe

• Radiation is not stress free and soimpedesthe growth of structure

k2Φ = 4πGa2ρr∆r

∆r ∼ 4Θ oscillatesaround a constant value,ρr ∝ a−4 so the
Netwoniancurvature decays.

• General rule: potential decays if the dominant energy component
has substantial stress fluctuations, i.e. below the generalized sound
horizon or Jeans scale



Radiation Driving
• Decay is timed precisely todrive the oscillator - close to fully

coherent

[Θ + Ψ](η) = [Θ + Ψ](0) + ∆Ψ−∆Φ

=
1

3
Ψ(0)− 2Ψ(0) =

5

3
Ψ(0)

• 5× the amplitude of the Sachs-Wolfe effect!

• Coherent approximation isexactfor a photon-baryon fluid but
reality is reduced to∼ 4× because ofneutrino contributionto
radiation

• Actual initial conditionsareΘ + Ψ = Ψ/2 for radiation
domination but comparison to matter dominated SW correct



Damping
• Tight coupling equations assume aperfect fluid: noviscosity, no

heat conduction

• Fluid imperfections are related to themean free path of the
photons in the baryons

λC = τ̇−1 where τ̇ = neσTa

is the conformal opacity toThomson scattering

• Dissipation is related to thediffusion length: random walk
approximation

λD =
√
NλC =

√
η/λC λC =

√
ηλC

thegeometric meanbetween the horizon and mean free path

• λD/η∗ ∼ few %, so expect thepeaks:> 3 to be affected by
dissipation



Equations of Motion
• Continuity

Θ̇ = −k
3
vγ − Φ̇ , δ̇b = −kvb − 3Φ̇

where the photon equation remains unchanged and the baryons
follow number conservation withρb = mbnb

• Euler

v̇γ = k(Θ + Ψ)− k

6
πγ − τ̇(vγ − vb)

v̇b = − ȧ
a
vb + kΨ + τ̇(vγ − vb)/R

where the photons gain an anisotropic stress termπγ from radiation
viscosityand amomentum exchangeterm with the baryons and
are compensated by theopposite termin the baryon Euler equation



Viscosity
• Viscosityis generated from radiationstreamingfrom hot to cold

regions

• Expect

πγ ∼ vγ
k

τ̇

generated by streaming, suppressed byscatteringin a wavelength
of the fluctuation.Radiative transfersays

πγ ≈ 2Avvγ
k

τ̇

whereAv = 16/15

v̇γ = k(Θ + Ψ)− k

3
Av
k

τ̇
vγ



Oscillator: Penultimate Take
• Adiabatic approximation( ω � ȧ/a)

Θ̇ ≈ −k
3
vγ

• Oscillator equation contains ȧΘ damping term

c2s
d

dη
(c−2

s Θ̇) +
k2c2s
τ̇
AvΘ̇ + k2c2sΘ = −k

2

3
Ψ− c2s

d

dη
(c−2

s Φ̇)

• Heat conductionterm similar in that it is proportional tovγ and is
suppressed by scatteringk/τ̇ . Expansion ofEuler equationsto
leading order inkτ̇ gives

Ah =
R2

1 +R

since the effects are only significant if the baryons are dynamically
important



Oscillator: Final Take
• Finaloscillator equation

c2s
d

dη
(c−2

s Θ̇) +
k2c2s
τ̇

[Av + Ah]Θ̇ + k2c2sΘ = −k
2

3
Ψ− c2s

d

dη
(c−2

s Φ̇)

• Solve in theadiabatic approximation

Θ ∝ exp(i

∫
ωdη)

−ω2 +
k2c2s
τ̇

(Av + Ah)iω + k2c2s = 0 (1)



Dispersion Relation
• Solve

ω2 = k2c2s

[
1 + i

ω

τ̇
(Av + Ah)

]
ω = ±kcs

[
1 +

i

2

ω

τ̇
(Av + Ah)

]
= ±kcs

[
1± i

2

kcs
τ̇

(Av + Ah)

]
• Exponentiate

exp(i

∫
ωdη) = e±iks exp[−k2

∫
dη

1

2

c2s
τ̇

(Av + Ah)]

= e±iks exp[−(k/kD)2] (2)

• Damping isexponentialunder the scalekD



Diffusion Scale
• Diffusion wavenumber

k−2
D =

∫
dη

1

τ̇

1

6(1 +R)

(
16

15
+

R2

(1 +R)

)
• Limiting forms

lim
R→0

k−2
D =

1

6

16

15

∫
dη

1

τ̇

lim
R→∞

k−2
D =

1

6

∫
dη

1

τ̇

• Geometric mean between horizon and mean free path as expected
from arandom walk

λD =
2π

kD

∼ 2π√
6
(ητ̇−1)1/2



Thomson Scattering
• Polarization state of radiation in direction̂n described by the

intensity matrix
〈
Ei(n̂)E∗

j (n̂)
〉
, whereE is the electric field vector

and the brackets denote time averaging.

• Differential cross section

dσ

dΩ
=

3

8π
|Ê′ · Ê|2σT ,

whereσT = 8πα2/3me is the Thomson cross section,Ê′ andÊ

denote the incoming and outgoing directions of the electric field or
polarization vector.

• Summed over angle and incoming polarization∑
i=1,2

∫
dn̂′

dσ

dΩ
= σT



Polarization Generation
• Heuristic: incoming radiation shakes an electron in direction of

electric field vector̂E′

• Radiates photon with polarization also in directionÊ′

• But photon cannot be longitudinally polarized so that scattering
into 90◦ can only pass one polarization

• Linearly polarized radiation like polarization by reflection

• Unlike reflection of sunlight, incoming radiation is nearly isotropic

• Missing linear polarization supplied by scattering from direction
orthogonal to original incoming direction

• Only quadrupole anisotropy generates polarization by Thomson
scattering



Acoustic Polarization
• Break down of tight-coupling leads to quadrupole anisotropy of

πγ ≈
k

τ̇
vγ

• ScalingkD = (τ̇ /η∗)
1/2 → τ̇ = k2

Dη∗

• Know: kDs∗ ≈ kDη∗ ≈ 10

• So:

πγ ≈
k

kD

1

10
vγ

∆P ≈
`

`D

1

10
∆T



Acoustic Polarization
• Gradient of velocity is along direction of wavevector, so

polarization is pureE-mode

• Velocity is90◦ out of phase with temperature – turning points of
oscillator are zero points of velocity:

Θ + Ψ ∝ cos(ks); vγ ∝ sin(ks)

• Polarization peaks are at troughs of temperature power



Cross Correlation
• Cross correlation of temperature and polarization

(Θ + Ψ)(vγ) ∝ cos(ks) sin(ks) ∝ sin(2ks)

• Oscillation at twice the frequency

• Correlation: radial or tangential around hot spots

• Partial correlation: easier to measure if polarization data is noisy,
harder to measure if polarization data is highS/N or if bands do
not resolve oscillations

• Good check for systematics and foregrounds

• Comparison of temperature and polarization is proof against
features in initial conditions mimicking acoustic features



CMB Normalization
• Normalization of potential, hence inflationary power spectrum, set

by CMB observations, aka COBE or WMAP normalization

• Angular power spectrum:

C` =
4π∆2

T (`/D∗)

2`(`+ 1)
=

2π

`(`+ 1)
∆2

T (`/D∗)

• `(`+ 1)C`/2π = ∆2
T is commonly used log power

• Sachs-Wolfe effect says∆2
T = ∆2

Φ/9, Φ = 3
5
ζ initial

• Observed number at recombination

∆2
T =

(
28µK

2.725× 106µK

)2

∆2
Φ ≈ (3× 10−5)2

∆2
ζ ≈ (5× 10−5)2



COBE vs WMAP Normalization
• Given that the temperature response to an inflationary initial

perturbation is known for allk through the Boltzmann solution of
the acoustic physics, one can translate∆2

T to ∆2
ζ at the best

measuredk ≈ `/D∗.

• The CMB normalization was first extracted from COBE at` ∼ 10

or k ∼ H0. A low ` normalization point suffers from cosmic
variance: only2`+ 1 samples of a giveǹmode.

• WMAP measures very precisely the first acoustic peak at` ≈ 200.
This is the current best place to normalize the spectrum (k ∼ 0.02

Mpc−1).

• To account for future improvements, WMAP chosek = 0.05

Mpc−1 as the normalization point. Taking out the CMB transfer
function∆2

ζ(k = 0.05) = (5.07× 10−5)2 consistent with a scale
invariant spectrum from0.0002− 0.05 Mpc−1



Transfer Function
• Transfer functiontransfers the initial Newtonian curvature to its

value today (linear response theory)

T (k) =
Φ(k, a = 1)

Φ(k, ainit)

Φ(knorm, ainit)

Φ(knorm, a = 1)

• Conservation of Bardeen curvature: Newtonian curvature is a
constantwhenstress perturbations are negligible: above the
horizon during radiation and dark energy domination, on all scales
during matter domination

• When stress fluctuations dominate, perturbations are stabilized by
theJeans mechanism

• Hybrid Poisson equation: Newtonian curvature, comoving density
perturbation∆ ≡ (δρ/ρ)com impliesΦ decays

(k2 − 3K)Φ = 4πGρ∆ ∼ η−2∆



Transfer Function
• Freezingof ∆ stops atηeq

Φ ∼ (kηeq)
−2∆H ∼ (kηeq)

−2Φinit

• Transfer function has ak−2 fall-off beyondkeq ∼ η−1
eq

ηeq = 15.7(Ωmh
2)−1

(
T

2.7K

)2

Mpc

• Small correction since growth with a smooth radiation component
is logarithmic not frozen

• Transfer function is a direct output of an Einstein-Boltzmann code



Fitting Function
• Alternately accurate fitting formula exist, e.g. pure CDM form:

T (k(q)) =
L(q)

L(q) + C(q)q2

L(q) = ln(e+ 1.84q)

C(q) = 14.4 +
325

1 + 60.5q1.11

q = k/Ωmh
2Mpc−1(TCMB/2.7K)2

• In h Mpc−1, the critical scale depends onΓ ≡ Ωmh also known as
the shape parameter



Transfer Function
• Numerical calculation

1

0.1

0.0001 0.001 0.01 0.1 1
0.01

T(
k)

k (h–1 Mpc)

wiggles

k–2



Baryon Wiggles
• Baryons caught up in the acoustic oscillations of the CMB and

impart acoustic wiggles to the transfer function. Density
enhancements are produced kinematically through the continuity
equationδb ∼ (kη)vb and hence are out of phase with CMB
temperature peaks

• Dissipation of the acoustic oscillations eliminates both the CMB
and baryon perturbations – known as Silk damping for the
baryons. This suppression and the general fact that baryons are
caught up with photons was one of the main arguments for CDM

• Detected first (so far only) in the SDSS LRG survey.

• An excellent standard ruler for angular diameter distanceDA(z)

since it does not evolve in redshift in linear theory

• Radial extent of wiggles givesH(z) (not yet seen in data)



Massive Neutrinos
• Neutrino dark matter suffers similar effects and hence cannot be

the main component of dark matter in the universe

• Relativisticstressesof a light neutrinoslow thegrowthof structure

• Neutrino species withcosmological abundancecontribute to
matter asΩνh

2 =
∑
mν/94eV, suppressing power as

∆P/P ≈ −8Ων/Ωm

• Current data from SDSS galaxy survey and CMB indicate∑
mν < 1.7eV (95% CL) and with Lyα forest< 0.42 eV.



Growth Function
• Same physics applies to the dark energy dominated universe

• Under the dark energy sound horizon or Jeans scale, dark energy
density frozen. Potential decays at the same rate for all scales

G(a) =
Φ(knorm, a)

Φ(knorm, ainit)
′ ≡ d

d ln a

• Continuity + Euler + Poisson

G′′ +

(
1− ρ′′

ρ′
+

1

2

ρ′c
ρc

)
G′ +

(
1

2

ρ′c + ρ′

ρc

− ρ′′

ρ′

)
G = 0

whereρ is the Jeans unstable matter andρc is the critical density



Dark Energy Growth Suppression
• Pressuregrowth suppression: δ ≡ δρm/ρm ∝ aG

d2G

d ln a2
+

[
5

2
− 3

2
w(z)ΩDE(z)

]
dG

d ln a
+

3

2
[1− w(z)]ΩDE(z)G = 0 ,

wherew ≡ pDE/ρDE andΩDE ≡ ρDE/(ρm + ρDE) with initial
conditionsG = 1, dG/d ln a = 0

• As ΩDE → 0 g =const. is a solution. The other solution is the
decaying mode, elimated by initial conditions

• As ΩDE → 1 g ∝ a−1 is a solution. Corresponds to a frozen
density field.



Power Spectrum Normalization
• Present (or matter dominated) vs inflationary initial conditions

(normalized by CMB):

∆2
Φ(k, a) ≈ 9

25
∆2

ζi
(knorm)G2(a)T 2(k)

(
k

knorm

)n−1

• Density field

k2Φ = 4πGa2∆ρm

=
3

2
H2

0Ωm
∆ρm

ρm

1

a

∆2
Φ =

9

4

(
H0

k

)4

Ω2
ma

−2∆2
m

∆2
m =

4

25
∆2

ζi
(knorm)Ω−2

m a2G2(a)T 2(k)

(
k

knorm

)n−1(
k

H0

)4



Antiquated Normalization Conventions
• Current density field on the horizon scalek = H0

δ2
H =

4

25
∆2

ζi
(knorm)Ω−2

m a2G2(a) = (2G(1)/Ωm × 10−5)

• σ8, RMS of density field filtered by tophat of 8h−1Mpc



Power Spectrum
• SDSS data

• Power spectrum defines large scale structure observables: galaxy
clustering, velocity field, Lyα forest clustering, cosmic shear



Velocity field
• Continuity gives the velocity from the density field as

v = −∆̇/k = −aH
k

d∆

d ln a

= −aH
k

∆
d ln(aG)

d ln a

• In aΛCDM model or open modeld ln(aG)/d ln a ≈ Ω0.6
m

• Measuring both the density field and the velocity field (through
distance determination and redshift) allows a measurement ofΩm

• Practically one measuresβ = Ω0.6
m /b whereb is a bias factor for

the tracer of the density field, i.e. with galaxy numbersδn/n = b∆

• Can also measure this factor from the redshift space power
spectrum - the Kaiser effect where clustering in the radial direction
is apparently enhanced by gravitational infall



Redshift Space Power Spectrum
• Kaiser effect is separable from the real space clustering if one

measures modes parallel and transverse to the line of sight.
Redshift space distortions only modify the former

• 2D power spectrum in “s” or redshift space

Ps(k⊥, k‖) =

[
1 + β

(
k‖
k

)2
]2

b2P (k)

wherek2 = k2
‖ + k2

⊥ andk⊥ is a 2D vector transverse to the line of
sight



Power Spectrum Errors
• The precision with which the power spectrum can be measured is

ultimately limited by sample variance from having a finite survey
volumeV = L3. This is basically a mode counting argument. The
errors on the power spectrum are given by(

∆Ps

Ps

)2

=
2

Nk

whereNk is the number of modes in a range of∆k⊥, ∆k‖. This is
determined by thek-space volume and the fundamental mode of
the boxk0 = 2π/L which sets the cell size in the volume(

∆Ps

Ps

)2

=
2

V
(2π)3

2πk⊥∆k⊥∆k‖



Lyman-α Forest
• QSO spectra absorbed by neutral hydrogen through the Lyα

transition.

• The optical depth to absorption is (withds in physical scale)

τ(ν) =

∫
dsxHInbσα ∼

∫
dsxHInbΓφ(ν)λ2

wherexHI is the neutral fraction,Γ = 6.25× 108s−1 is the
transition rate andλ = 1216A is the Lyα wavelength andφ(ν) is
the Lorentz profile. For radiation at a given emitted frequencyν0

above the transition, it will redshift through the transition

• Resonant transition: lack of complete absorption, known as the
lack of a Gunn-Peterson trough indicates that the universe is nearly
fully ionizedxHI � 1 out to the highest redshift quasarz ∼ 6;
indications that this is near the end of the reionization epoch



Lyman-α Forest
• In ionization equilibrium, the Gunn-Peterson optical depth is a

tracer of the underlying baryon density which itself is a tracer of
the dark matterτGP ∝ ρ2

bT
−0.7 with T (ρb).

d(1− xHI)

dt
= −xHI

∫
dν

4πJν

hν
σν + (1− xHI)

2nbR

whereσν is the photoionization cross section (sharp edge at
threshold and falling in frequency meansJν ≈ J21) andR ∝ T−0.7

is the recombination coefficient.

• Given an equation of state from simulations ofp ∝ ργ

xHI ∝
ρbR

J21

∝ ρbT
−0.7

J21

, τGP ∝
ρ

2−0.7(γ−1)
b

JHI

• Clustering in the Lyα forest reflects the underlying power
spectrum modulo an overall ionization intensityJ21



Gravitational Lensing
• Gravitational potentials along the line of sightn̂ to some source at

comoving distanceDs lens the images according to (flat universe)

φ(n̂) = 2

∫
dD

Ds −D

DDs

Φ(Dn̂, η(D))

remapping image positions as

n̂I = n̂S +∇n̂φ(n̂)

• Since absolute source position is unknown, use image distortion
defined by the Jacobian matrix

∂nI
i

∂nS
j

= δij + ψij



Weak Lensing
• Small image distortions described by the convergenceκ and shear

components(γ1, γ2)

ψij =

(
κ− γ1 −γ2

−γ2 κ+ γ1

)
where∇n̂ = D∇ and

ψij = 2

∫
dD

D(Ds −D)

Ds

∇i∇jΦ(Dn̂, η(D))

• In particular, through the Poisson equation the convergence
(measured from shear) is simply the projected mass

κ =
3

2
ΩmH

2
0

∫
dD

D(Ds −D)

Ds

∆(Dn̂, η(D))

a


