Evolution of a k-mode

Take the initial conditions for a given k-mode from CMB PS\# 3 and evolve the equations of motion in linear perturbation theory for a fully ionized universe.

In the notation of the previous problem sets and class notes, your fundamental variables are for the density perturbations

$$
\begin{equation*}
\Delta_{\gamma}, \Delta_{b}, \Delta_{c} \tag{1}
\end{equation*}
$$

for the fluid velocities

$$
\begin{equation*}
v_{\gamma}, v_{b}, v_{c} \tag{2}
\end{equation*}
$$

[if you care, these are all in comoving gauge; although v_{b} is not technically needed for the approximation you are asked to solve, keep it anyway so that you can generalize your code later]. Your auxiliary variables are: the Newtonian curvature Φ, the Newtonian potential Ψ, the conformal time derivative of the Bardeen curvature $\dot{\zeta}$, the Newtonian temperature perturbation Θ, the anisotropic stress of the photons π_{γ} and the entropy perturbation in the photon-baryon system σ.

Explicitly, the set of coupled linear differential equations are:
(1) Continuity

$$
\begin{align*}
\dot{\Delta}_{\gamma} & =-\frac{4}{3}\left(k v_{\gamma}+3 \dot{\zeta}\right) \\
\dot{\Delta}_{b} & =-\left(k v_{b}+3 \dot{\zeta}\right) \tag{3}\\
\dot{\Delta}_{c} & =-\left(k v_{c}+3 \dot{\zeta}\right)
\end{align*}
$$

(2) Euler

$$
\begin{align*}
\dot{v}_{\gamma} & =-\frac{R}{1+R} \frac{\dot{a}}{a} v_{\gamma}+\frac{1}{1+R} k \Theta+k \Psi-\frac{1}{3} \frac{R}{(1+R)^{2}} k \sigma-\frac{1}{6} \frac{1}{(1+R)} k \pi_{\gamma} \\
\dot{v}_{b} & =\dot{v}_{\gamma} \tag{4}\\
\dot{v}_{c} & =-\frac{\dot{a}}{a} v_{c}+k \Psi
\end{align*}
$$

For which you will need the definitions of the auxiliary parameters:

$$
\begin{align*}
k^{2} \Phi & =4 \pi G a^{2} \sum_{i} \Delta_{i} \rho_{i} \tag{5}\\
k^{2}(\Psi+\Phi) & =-\frac{8}{3} \pi G a^{2} \rho_{\gamma} \pi_{\gamma} \tag{6}\\
\Theta & =\frac{1}{4} \Delta_{\gamma}-\frac{\dot{a}}{a} v / k \tag{7}\\
v & =\frac{\sum_{i}\left(\rho_{i}+p_{i}\right) v_{i}}{\sum_{i}\left(\rho_{i}+p_{i}\right)} \tag{8}\\
\dot{\zeta}\left(\frac{\dot{a}}{a}\right)^{-1} & =-\frac{w}{(1+w)}\left(\Delta_{\gamma}-\frac{2}{3} \pi_{\gamma}\right) \tag{9}\\
w & =\frac{1}{3} \frac{\rho_{\gamma}}{\rho} \tag{10}\\
\sigma & =\left(k \dot{\tau}^{-1}\right) R v_{\gamma} \tag{11}\\
\pi_{\gamma} & =\frac{32}{15}\left(k \dot{\tau}^{-1}\right) v_{\gamma} \tag{12}
\end{align*}
$$

where the sums are over the three particle species. You can and should verify all these relationships yourselves from your PS's and notes since I am prone to make sign errors, etc!

Test your code.
Artificially set $\sigma=\pi_{\gamma}=0$ to make the system dissipationless.

- Choose a $k \gg \eta_{\text {eq }}^{-1}$ and plot the evolution of the fundamental and auxiliary parameters. In particular what is the amplitude of the acoustic oscillation in Θ in terms of $\zeta(0)$? check the answer with the solution given in class. What is the behavior of the Newtonian potential Φ ? again check this against what we learned in class.
- Choose a $k \ll \eta_{\text {eq }}^{-1}$ and follow the evolution well past horizon crossing (ignoring recombination). What is the value of Φ and Ψ compared with $\zeta(0)$, check your answer. How does the amplitude of the oscillation in $\Theta+\Psi$ behave as you cross $R=1$, verify the qualitative behavior discussed in class.

Turn dissipation back on.

- For the $k \gg \eta_{\text {eq }}^{-1}$ case, when does the acoustic oscillation dissipate, compare that with the random walk (or full dissipation) calculation in class.

