Astro 321 Lecture Notes Set 2 Wayne Hu

Distribution Function

- The distribution function f gives the number of particles per unit phase space $d^{3} x d^{3} q$ where q is the momentum (conventional to work in physical coordinates)
- Consider a box of volume $V=L^{3}$. Periodicity implies that the allowed momentum states are given by $q_{i}=n_{i} 2 \pi / L$ so that the density of states is

$$
d N_{s}=g \frac{V}{(2 \pi)^{3}} d^{3} q
$$

where g is the degeneracy factor (spin/polarization states)

- The distribution function $f(\mathbf{x}, \mathbf{q}, t)$ describes the particle occupancy of these states, i.e.

$$
N=\int d N_{s} f=g V \int \frac{d^{3} q}{(2 \pi)^{3}} f
$$

Bulk Properties

- Integrals over the distribution function define the bulk properties of the collection of particles
- Number density

$$
n(\mathbf{x}, t) \equiv N / V=g \int \frac{d^{3} q}{(2 \pi)^{3}} f
$$

- Energy density

$$
\rho(\mathbf{x}, t)=g \int \frac{d^{3} q}{(2 \pi)^{3}} E(q) f
$$

where $E^{2}=q^{2}+m^{2}$

Bulk Properties

- Pressure: particles bouncing off a surface of area A in a volume spanned by L_{x} : per momentum state

$$
\begin{aligned}
p_{q}= & \frac{F}{A}=\frac{N_{\mathrm{part}}}{A} \frac{\Delta q}{\Delta t} \\
& \left(\Delta q=2\left|q_{x}\right|, \quad \Delta t=2 L_{x} / v_{x}\right) \\
= & \frac{N_{\mathrm{part}}}{V}\left|q_{x}\right|\left|v_{x}\right|=f \frac{|q \| v|}{3}=f \frac{q^{2}}{3 E}
\end{aligned}
$$

so that summed over states

$$
p(\mathbf{x}, t)=g \int \frac{d^{3} q}{(2 \pi)^{3}} \frac{|q|^{2}}{3 E(q)} f
$$

- Likewise anisotropic stress (vanishes in the background)

$$
\pi_{j}^{i}(\mathbf{x}, t)=g \int \frac{d^{3} q}{(2 \pi)^{3}} \frac{3 q^{i} q_{j}-q^{2} \delta^{i}{ }_{j}}{3 E(q)} f
$$

Observable Properties

- Only get to measure luminous properties of the universe. For photons mass $m=0, g=2$ (units: $J m^{-3}$)

$$
\rho(\mathbf{x}, t)=2 \int \frac{d^{3} q}{(2 \pi)^{3}} q f=2 \int d q d \Omega\left(\frac{q}{2 \pi}\right)^{3} f
$$

- Spectral energy density (per unit frequency
$q=h \nu=\hbar 2 \pi \nu=2 \pi \nu$, solid angle)

$$
u_{\nu}=\frac{d \rho}{d \nu d \Omega}=2(2 \pi) \nu^{3} f
$$

- Photons travelling at speed of light so that $u_{\nu}=I_{\nu}=4 \pi \nu^{3} f$ the specific intensity or brightness, energy flux across a surface, units of $\mathrm{W} \mathrm{m}{ }^{-2} \mathrm{~Hz}^{-1} \mathrm{sr}^{-1}$

Observable Properties

- Integrate over frequencies for total intensity

$$
I=\int d \nu I_{\nu}=\int d \ln \nu I_{\nu}
$$

νI_{ν} often plotted since it shows peak under a log plot; I and νI_{ν} have units of $\mathrm{W} \mathrm{m}{ }^{-2} \mathrm{sr}^{-1}$ and is independent of choice of frequency unit

- Flux density: integrate over the solid angle of a radiation source, units of $\mathrm{W} \mathrm{m}^{-2} \mathrm{~Hz}^{-1}$ or Jansky $=10^{-26} \mathrm{~W} \mathrm{~m}^{-2} \mathrm{~Hz}^{-1}$

$$
S_{\nu}=\int_{\text {source }} I_{\nu} d \Omega
$$

a.k.a. spectral energy distribution

Observable Properties

- Flux integrate over frequency, units of $\mathrm{W} \mathrm{m}^{-2}$

$$
S=\int d \ln \nu \nu S_{\nu}
$$

- Flux in a frequency band S_{b} measured in terms of magnitudes (optical), set to some standard zero point per band

$$
m_{b}-m_{\text {norm }}=2.5 \log _{10}\left(S_{\text {norm }} / S_{b}\right) \approx \ln \left(S_{\text {norm }} / S_{b}\right)
$$

- Luminosity: integrate over area assuming isotropic emission or beaming factor, units of W

$$
L=4 \pi d_{L}^{2} S
$$

Extragalactic Light

- Looking at background radiation νI_{ν} peaks in the microwave $\mathrm{mm}-\mathrm{cm}$ region, and has the distribution of a perfect black body $f=1 /\left(e^{q / T}-1\right), T=2.725 \pm 0.002 K$ or $n_{\gamma}=410 \mathrm{~cm}^{-3}$, $\Omega_{\gamma}=2.47 \times 10^{-5} h^{-2}$. This is the cosmic microwave background.
- Strong support for hot big bang - densities high enough so that interactions can create a thermal distribution of photons that has since redshifted into the microwave

Liouville Equation

- Liouville theorem states that the phase space distribution function is conserved along a trajectory in the absence of particle interactions

$$
\frac{D f}{D t}=\left[\frac{\partial}{\partial t}+\frac{d \mathbf{q}}{d t} \frac{\partial}{\partial \mathbf{q}}+\frac{d \mathbf{x}}{d t} \frac{\partial}{\partial \mathbf{x}}\right] f=0
$$

subtlety in expanding universe is that the de Broglie wavelength of particles changes with the expansion so that

$$
q \propto a^{-1}
$$

- Homogeneous and isotropic limit

$$
\frac{\partial f}{\partial t}+\frac{d q}{d t} \frac{\partial f}{\partial q}=\frac{\partial f}{\partial t}-H(a) \frac{\partial f}{\partial \ln q}=0
$$

Energy Density Evolution

- Integrate Liouville equation over $g \int d^{3} q /(2 \pi)^{3} E$ to form

$$
\begin{aligned}
\frac{\partial \rho}{\partial t}= & H(a) g \int \frac{d^{3} q}{(2 \pi)^{3}} E q \frac{\partial}{\partial q} f \\
= & H(a) g \int \frac{d \Omega}{(2 \pi)^{3}} \int d q q^{3} E \frac{\partial}{\partial q} f \\
= & -H(a) g \int \frac{d \Omega}{(2 \pi)^{3}} \int d q \frac{d\left(q^{3} E\right)}{d q} f \\
= & -H(a) g \int \frac{d \Omega}{(2 \pi)^{3}} \int d q\left(3 q^{2} E+q^{3} \frac{d E}{d q}\right) f \\
& \left(\frac{d E}{d q}=\frac{d\left(q^{2}+m^{2}\right)^{1 / 2}}{d q}=\frac{1}{2} \frac{2 q}{E}=\frac{q}{E}\right) \\
= & -3 H(a) g \int \frac{d^{3} q}{(2 \pi)^{3}}\left(E+\frac{q^{2}}{3 E}\right) f=-3 H(a)(\rho+p)
\end{aligned}
$$

as derived previously from energy conservation

Boltzmann Equation

- Boltzmann equation says that Liouville theorem must be modified to account for collisions

$$
\frac{D f}{D t}=C[f]
$$

- If collisions are sufficiently rapid, distribution will tend to thermal equilibrium form

Kompaneets Example

- Collision term for photons under Compton scattering with free electrons $\gamma^{\prime}+e^{-\prime} \rightarrow \gamma+e^{-}$

$$
\begin{aligned}
C[f]= & \frac{1}{2 E(q)} \int D q_{e} D q_{e}^{\prime} D q^{\prime}(2 \pi)^{4} \delta^{(4)}\left(q+q_{e}-q^{\prime}-q_{e}^{\prime}\right) \\
& {\left[f_{e}\left(q_{e}^{\prime}\right) f\left(q^{\prime}\right)(1+f(q))-f_{e}\left(q_{e}\right) f(q)\left(1+f\left(q^{\prime}\right)\right)\right]|M|^{2} }
\end{aligned}
$$

where stimulated emission included, Pauli blocking neglected, Lorentz invariant phase space element

$$
D q=\frac{d^{3} q}{(2 \pi)^{3}} \frac{1}{2 E(q)}
$$

and the matrix element for scattering through an angle β in the electron rest frame, averaged over polarization states, is

$$
|M|^{2}=2(4 \pi)^{2} \alpha^{2}\left[\frac{q^{\prime}}{q}+\frac{q}{q^{\prime}}-\sin ^{2} \beta\right]
$$

Kompaneets Example

- Thermalization of photons in the presence of a "bath" of electrons at temperature T_{e} (Maxwell-Boltzmann distributed electrons)

$$
C[f]=\frac{d \tau}{d t} \frac{1}{m_{e} q^{2}} \frac{\partial}{\partial q}\left[q^{4}\left(T_{e} \frac{\partial f}{\partial q}+f(1+f)\right)\right]
$$

where the scattering rate is given by

$$
\frac{d \tau}{d t}=x_{e} n_{e} \sigma_{T} \quad \sigma_{T}=\frac{8 \pi \alpha^{2}}{3 m_{e}^{2}}=6.65 \times 10^{-25} \mathrm{~cm}^{-2}
$$

- From $\partial f / \partial t=C[f]$, can check that particle number is conserved: $\partial n / \partial t=0$
- Setting $C\left[f_{\text {eq }}\right]=0$ returns a diff. eq. solved by the (equilbrium or Bose-Einstein) distribution

$$
f_{\mathrm{eq}}=\frac{1}{e^{(q-\mu) / T_{e}}-1}
$$

Kompaneets Example

- Verify

$$
\begin{aligned}
\frac{\partial f_{\mathrm{eq}}}{\partial q / T_{e}} & =-\frac{e^{(q-\mu) / T_{e}}}{\left[e^{(q-\mu) / T_{e}}-1\right]^{2}} \\
& =-f_{\mathrm{eq}} \frac{e^{(q-\mu) / T_{e}}}{e^{(q-\mu) / T_{e}}-1} \\
& =-f_{\mathrm{eq}}\left(1+f_{\mathrm{eq}}\right)
\end{aligned}
$$

- μ is the chemical potential; from number density integral we see that it represents a way of changing number density at equilibrium - i.e. unavoidable if particle number is conserved in the collisional process
- The equilibrium distribution comes about through general considerations of statistical equilibrium.

Poor Man's Boltzmann Equation

- Non expanding medium

$$
\frac{\partial f}{\partial t}=\Gamma\left(f-f_{\mathrm{eq}}\right)
$$

where Γ is some rate for collisions

- Add in expansion in a homogeneous medium

$$
\begin{aligned}
\frac{\partial f}{\partial t}+\frac{d q}{d t} \frac{\partial f}{\partial q} & =\Gamma\left(f-f_{\mathrm{eq}}\right) \\
\quad(& \left.q \propto a^{-1} \rightarrow \frac{1}{q} \frac{d q}{d t}=-\frac{1}{a} \frac{d a}{d t}=H\right) \\
\frac{\partial f}{\partial t}-H \frac{\partial f}{\partial \ln q} & =\Gamma\left(f-f_{\mathrm{eq}}\right)
\end{aligned}
$$

- So equilibrium will be maintained if collision rate exceeds expansion rate $\Gamma>H$

Thermodynamic Equilibrium

- Consider a gas of particles in thermal and diffusive contact with a reservoir of temperature T. Then the relative probability of being in a state with energy E_{i} and particle number N_{i} is given by the Gibbs factor ($\mu=$ chemical potential, non-vanishing even in equilibrium if collisions do not change particle number)

$$
P\left(E_{i}, N_{i}\right) \propto \exp \left[-\left(E_{i}-\mu N_{i}\right) / T\right]
$$

- The mean occupation of the state defines the distribution function

$$
f \equiv \frac{\sum N_{i} P\left(E_{i}, N_{i}\right)}{\sum P\left(E_{i}, N_{i}\right)}
$$

- The energy, allowing for a zero point, is $E_{i}=\left(N_{i}+1 / 2\right) E$ where E is the particle energy.

Bose-Einstein / Fermi-Dirac

- For fermions, occupation is either 0 or 1

$$
f=\frac{\exp [-(E-\mu) / T]}{1+\exp [-(E-\mu) / T]}=\frac{1}{\exp [(E-\mu) / T]+1}
$$

- For bosons, infinite sum gives

$$
f=\frac{1}{\exp [(E-\mu) / T]-1}
$$

- For the nonrelativistic limit $E=m+\frac{1}{2} q^{2} / m, E / T \gg 1$ so both distributions go to the Maxwell-Boltzmann distribution

$$
f=\exp [-(m-\mu) / T] \exp \left(-q^{2} / 2 m T\right)
$$

Non-Relativistic Bulk Properties

- Number density

$$
\begin{aligned}
n & =g e^{-(m-\mu) / T} \frac{4 \pi}{(2 \pi)^{3}} \int_{0}^{\infty} q^{2} d q \exp \left(-q^{2} / 2 m T\right) \\
& =g e^{-(m-\mu) / T} \frac{2^{3 / 2}}{2 \pi^{2}}(m T)^{3 / 2} \int_{0}^{\infty} x^{2} d x \exp \left(-x^{2}\right) \\
& =g\left(\frac{m T}{2 \pi}\right)^{3 / 2} e^{-(m-\mu) / T}
\end{aligned}
$$

- Energy density $E=m \rightarrow \rho=m n$
- Pressure $q^{2} / 3 E=q^{2} / 3 m \rightarrow p=n T$, ideal gas law

Ultra-Relativistic Bulk Properties

- Chemical potential $\mu=0, \zeta(3) \approx 1.202$
- Number density

$$
\begin{aligned}
n_{\text {boson }} & =g T^{3} \frac{\zeta(3)}{\pi^{2}} \quad \zeta(n+1) \equiv \frac{1}{n!} \int_{0}^{\infty} \frac{x^{n}}{e^{x}-1} \\
n_{\text {fermion }} & =\frac{3}{4} g T^{3} \frac{\zeta(3)}{\pi^{2}}
\end{aligned}
$$

- Energy density

$$
\begin{array}{r}
\rho_{\text {boson }}=g T^{4} \frac{3}{\pi^{2}} \zeta(4)=g T^{4} \frac{\pi^{2}}{30} \\
\rho_{\text {fermion }}=\frac{7}{8} g T^{4} \frac{3}{\pi^{2}} \zeta(4)=\frac{7}{8} g T^{4} \frac{\pi^{2}}{30}
\end{array}
$$

- Pressure $q^{2} / 3 E=E / 3 \rightarrow p=\rho / 3, w_{r}=1 / 3$

Entropy Density

- First law of thermodynamics

$$
d S=\frac{1}{T}(d \rho(T) V+p(T) d V)
$$

so that

$$
\begin{array}{r}
\left.\frac{\partial S}{\partial V}\right|_{T}=\frac{1}{T}[\rho(T)+p(T)] \\
\left.\frac{\partial S}{\partial T}\right|_{V}=\frac{V}{T} \frac{d \rho}{d T}
\end{array}
$$

- Since $S(V, T) \propto V$ is extensive

$$
S=\frac{V}{T}[\rho(T)+p(T)] \quad \sigma=S / V=\frac{1}{T}[\rho(T)+p(T)]
$$

Entropy Density

- Integrability condition $d S / d V d T=d S / d T d V$ relates the evolution of entropy density

$$
\begin{aligned}
\frac{d \sigma}{d T} & =\frac{1}{T} \frac{d \rho}{d T} \\
\frac{d \sigma}{d t} & =\frac{1}{T} \frac{d \rho}{d t}=\frac{1}{T}[-3(\rho+p)] \frac{d \ln a}{d t} \\
\frac{d \ln \sigma}{d t} & =-3 \frac{d \ln a}{d t} \quad \sigma \propto a^{-3}
\end{aligned}
$$

comoving entropy density is conserved in thermal equilibrium

- For ultra relativisitic bosons $s_{\text {boson }}=3.602 n_{\text {boson }}$; for fermions factor of $7 / 8$ from energy density.

$$
g_{*}=\sum_{\text {bosons }} g_{b}+\frac{7}{8} \sum g_{f}
$$

Neutrino Freezeout

- Neutrino equilibrium maintained by weak interactions, e.g. $e^{+}+e^{-} \leftrightarrow \nu+\bar{\nu}$
- Weak interaction cross section $T_{10}=T / 10^{10} K \sim T / 1 \mathrm{MeV}$

$$
\sigma_{w} \sim G_{F}^{2} E_{\nu}^{2} \approx 4 \times 10^{-44} T_{10}^{2} \mathrm{~cm}^{2}
$$

- Rate $\Gamma=n_{\nu} \sigma_{w}=H$ at $T_{10} \sim 3$ or $t \sim 0.2 \mathrm{~s}$
- After neutrino freezeout, electrons and positrons annihilate dumping their entropy into the photons
- Before $g_{*}: \gamma, e^{+}, e^{-}=2+\frac{7}{8}(2+2)=\frac{11}{2}$
- After $g_{*}: \gamma=2$; so conservation of entropy gives

$$
\left.g_{*} T^{3}\right|_{\text {initial }}=\left.g_{*} T^{3}\right|_{\text {final }} \quad T_{\nu}=\left(\frac{4}{11}\right)^{1 / 3} T_{\gamma}
$$

Relic Neutrinos

- Relic number density (zero chemical potential; now required by oscillations \& BBN)

$$
n_{\nu}=n_{\gamma} \frac{3}{4} \frac{4}{11}=112 \mathrm{~cm}^{-3}
$$

- Relic energy density assuming one species with finite m_{ν} : $\rho_{\nu}=m_{\nu} n_{\nu}$

$$
\begin{aligned}
\rho_{\nu} & =112 \frac{m_{\nu}}{\mathrm{eV}} \mathrm{eV} \mathrm{~cm}^{-3} \quad \rho_{c}=1.05 \times 10^{4} h^{2} \mathrm{eVcm}^{-3} \\
\Omega_{\nu} h^{2} & =\frac{m_{\nu}}{93.7 \mathrm{eV}}
\end{aligned}
$$

- Candidate for dark matter? an eV mass neutrino goes non relativistic around $z \sim 1000$ and retains a substantial velocity dispersion σ_{ν}.

Hot Dark Matter

- Momenta for a nonrelativistic species redshifts like temperature for a relativistic one, so average momentum is still given by

$$
\begin{aligned}
\langle q\rangle & =3 T_{\nu}=m \sigma_{\nu} \\
\sigma_{\nu} & =3\left(\frac{m_{\nu}}{1 \mathrm{eV}}\right)^{-1}\left(\frac{T_{\nu}}{1 \mathrm{eV}}\right)=3\left(\frac{m_{\nu}}{1 \mathrm{eV}}\right)^{-1}\left(\frac{T_{\nu}}{10^{4} \mathrm{~K}}\right) \\
& =6 \times 10^{-4}\left(\frac{m_{\nu}}{1 \mathrm{eV}}\right)^{-1}=200 \mathrm{~km} / \mathrm{s}\left(\frac{m_{\nu}}{1 \mathrm{eV}}\right)^{-1}
\end{aligned}
$$

- on order the rotation velocity of galactic halos and higher at higher redshift - small objects can't form: top down structure formation not observed - must not constitute the bulk of the dark matter

Cold Dark Matter

- Problem with neutrinos is they decouple while relativistic and hence have a comparable number density to photons - for a reasonable energy density, the mass must be small
- The equilibrium distribution for a non-relativistic species declines exponentially beyond the mass threshold

$$
n=g\left(\frac{m T}{2 \pi}\right)^{3 / 2} e^{-m / T}
$$

- Freezeout when annihilation rate equal expansion rate $\Gamma \propto \sigma_{A}$, increasing annihilation cross section decreases abundance
- Appropriate candidates supplied by supersymmetry
- Alternate solution: keep light particle but not created in thermal equilibrium, axion dark matter

Big Bang Nucleosynthesis

- Most of light element synthesis can be understood through nuclear statistical equilibrium and reaction rates
- Equilibrium abundance of species with mass number A and charge Z (Z protons and $A-Z$ neutrons)

$$
n_{A}=g_{A}\left(\frac{m_{A} T}{2 \pi}\right)^{3 / 2} e^{\left(\mu_{A}-m_{A}\right) / T}
$$

- In chemical equilibrium with protons and neutrons

$$
\begin{gathered}
\mu_{A}=Z \mu_{p}+(A-Z) \mu_{n} \\
n_{A}=g_{A}\left(\frac{m_{A} T}{2 \pi}\right)^{3 / 2} e^{-m_{A} / T} e^{\left(Z \mu_{p}+(A-Z) \mu_{n}\right) / T}
\end{gathered}
$$

Big Bang Nucleosynthesis

- Eliminate chemical potentials with n_{p}, n_{n}

$$
\begin{aligned}
& e^{\mu_{p} / T}= \frac{n_{p}}{g_{p}}\left(\frac{2 \pi}{m_{p} T}\right)^{3 / 2} e^{m_{p} / T} \\
& e^{\mu_{n} / T}= \frac{n_{n}}{g_{n}}\left(\frac{2 \pi}{m_{n} T}\right)^{3 / 2} e^{m_{n} / T} \\
& n_{A}= g_{A} g_{p}^{-Z} g_{n}^{Z-A}\left(\frac{m_{A} T}{2 \pi}\right)^{3 / 2}\left(\frac{2 \pi}{m_{p} T}\right)^{3 Z / 2}\left(\frac{2 \pi}{m_{n} T}\right)^{3(A-Z) / 2} \\
& \times e^{-m_{A} / T} e^{\left(Z \mu_{p}+(A-Z) \mu_{n}\right) / T} n_{p}^{Z} n_{n}^{A-Z} \\
& \quad\left(g_{p}=g_{n}=2 ; m_{p} \approx m_{n}=m_{b}=m_{A} / A\right) \\
& \quad\left(B_{A}=Z m_{p}+(A-Z) m_{n}-m_{A}\right. \\
&= g_{A} 2^{-A}\left(\frac{2 \pi}{m_{b} T}\right)^{3(A-1) / 2} A^{3 / 2} n_{p}^{Z} n_{n}^{A-Z} e^{B_{A} / T}
\end{aligned}
$$

Big Bang Nucleosynthesis

- Convenient to define abundance fraction

$$
\begin{aligned}
X_{A} \equiv & A \frac{n_{A}}{n_{b}}=A g_{A} 2^{-A}\left(\frac{2 \pi}{m_{b} T}\right)^{3(A-1) / 2} A^{3 / 2} n_{p}^{Z} n_{n}^{A-Z} n_{b}^{-1} e^{B_{A} / T} \\
= & A g_{A} 2^{-A}\left(\frac{2 \pi n_{b}^{2 / 3}}{m_{b} T}\right)^{3(A-1) / 2} \\
& \left(n_{\gamma}=\frac{2}{\pi^{2}} T^{3} \zeta(3) \quad A^{3 / 2} e^{B_{A} / T} X_{p}^{Z} X_{n}^{A-Z}\right. \\
= & \left.\eta_{b \gamma} \equiv n_{b} / n_{\gamma}\right) \\
= & g_{A} 2^{-A}\left[\left(\frac{2 \pi T}{m_{b}}\right)^{3 / 2} \frac{2 \zeta(3) \eta_{b \gamma}}{\pi^{2}}\right]^{A-1} e^{B_{A} / T} X_{p}^{Z} X_{n}^{A-Z}
\end{aligned}
$$

- Deuterium $A=2, Z=1, g_{2}=3, B_{2}=2.225 \mathrm{MeV}$

$$
X_{2}=\frac{3}{\pi^{2}}\left(\frac{4 \pi T}{m_{b}}\right)^{3 / 2} \eta_{b \gamma} \zeta(3) e^{B_{2} / T} X_{p} X_{n}
$$

Deuterium

- Deuterium "bottleneck" is mainly due to the low baryon-photon number of the universe $\eta_{b \gamma} \sim 10^{-9}$, secondarily due to the low binding energy B_{2}
- $X_{2} / X_{p} X_{n} \approx \mathcal{O}(1)$ at $T \approx 100 \mathrm{keV}$ or $10^{9} \mathrm{~K}$, much lower than the binding energy B_{2}
- Most of the deuterium formed then goes through to helium via $\mathrm{D}+\mathrm{D} \rightarrow{ }^{3} \mathrm{He}+p,{ }^{3} \mathrm{He}+\mathrm{D} \rightarrow{ }^{4} \mathrm{He}+n$
- Deuterium freezes out as number abundance becomes too small to maintain reactions $n_{D}=$ const. The deuterium freezeout fraction $n_{D} / n_{b} \propto \eta_{b \gamma}^{-1} \propto\left(\Omega_{b} h^{2}\right)^{-1}$ and so is fairly sensitive to the baryon density.
- Observations of the ratio in quasar absorption systems give $\Omega_{b} h^{2} \approx 0.02$

Helium

- Essentially all neutrons around during nucleosynthesis end up in Helium
- In equilibrium, the neutron-to-proton ratio is determined by the mass difference $Q=m_{n}-m_{p}=1.293 \mathrm{MeV}$

$$
\frac{n_{n}}{n_{p}}=\exp [-Q / T]
$$

- Equilibrium is maintained through weak interactions, e.g. $n \leftrightarrow p+e^{-}+\bar{\nu}$ with rate

$$
\frac{\Gamma}{H} \approx \frac{T}{0.8 \mathrm{MeV}}
$$

- Freezeout fraction

$$
\frac{n_{n}}{n_{p}}=\exp [-1.293 / 0.8] \approx 0.2
$$

Helium

- Finite lifetime of neutrons brings this to $\sim 1 / 7$ by $10^{9} \mathrm{~K}$
- Helium mass fraction

$$
\begin{aligned}
Y_{\mathrm{He}} & =\frac{4 n_{\mathrm{He}}}{n_{b}}=\frac{4\left(n_{n} / 2\right)}{n_{n}+n_{p}} \\
& =\frac{2 n_{n} / n_{p}}{1+n_{n} / n_{p}} \approx \frac{2 / 7}{8 / 7} \approx \frac{1}{4}
\end{aligned}
$$

- Depends mainly on the expansion rate during BBN - measure number of relativistic species
- Traces of ${ }^{7} \mathrm{Li}$ as well. Measured abundances in reasonable agreement with deuterium measure $\Omega_{b} h^{2}=0.02$

Recombination

- Statistical equilibrium says that neutral hydrogen will form sometime after the temperature drops below the binding energy of hydrogen
- Apply equiliburium distribution

$$
n_{i}=g_{i}\left(\frac{m_{i} T}{2 \pi}\right)^{3 / 2} e^{-m_{i} / T}
$$

to the $e^{-}+p \leftrightarrow H$ system: Saha Equation

$$
\begin{aligned}
\frac{n_{e} n_{p}}{n_{H} n_{b}} & =\frac{x_{e}^{2}}{1-x_{e}} \\
& =\frac{1}{n_{b}}\left(\frac{m_{e} T}{2 \pi}\right)^{3 / 2} e^{-B / T}
\end{aligned}
$$

where $B=m_{e}+m_{p}-m_{H}=13.6 \mathrm{eV}$

Recombination

- But again the photon-baryon ratio is very low

$$
\eta_{b \gamma} \equiv n_{b} / n_{\gamma} \approx 3 \times 10^{-8} \Omega_{b} h^{2}
$$

- Eliminate in favor of $\eta_{b \gamma}$ and B / T through

$$
n_{\gamma}=0.244 T^{3}, \quad \frac{m_{e}}{B}=3.76 \times 10^{4}
$$

- Big coefficient

$$
\begin{aligned}
\frac{x_{e}^{2}}{1-x_{e}} & =3.16 \times 10^{15}\left(\frac{B}{T}\right)^{3 / 2} e^{-B / T} \\
T=1 / 3 \mathrm{eV} \rightarrow x_{e} & =0.7, T=0.3 \mathrm{eV} \rightarrow x_{e}=0.2
\end{aligned}
$$

- Further delayed by inability to maintain equilibrium since net is through 2γ process and redshifting out of line

