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Inhomogeneous Fields
• Like homogeneous cosmology, a full description of the matter

fields is given through their phase space distribution function

f(x,q, t)

where the momentum dependenceq describes the bulk motion of
the particles

• Energy density and pressure are functions of position

ρ(x, t) = g

∫
d3q

(2π)3
f(x,q, t)E

p(x, t) = g

∫
d3q

(2π)3
f(x,q, t)

|q|2

3E

and can be considered as low order moments of the distribution
function



Inhomogeneous Boltzmann Equation
• Evolution of density inhomogeneities is governed by the

Boltzmann equation. Switch over to comoving representation:η,
comovingx, retain physical momentumq

• For non-interacting species, Liouville equation

ḟ + q̇ · ∂f

∂q
+ ẋ · ∂f

∂x
= 0

• Momentumq = qn̂, wheren̂ is a directional unit vector and in a
flat universeq̇ = q̇n̂

• Particle velocityẋ = q/E

ḟ + q̇ · ∂f

∂q
+

q

E
· ∂f

∂x
= 0



Energy Equation
• Integrate Boltzmann equation over

g

∫
d3q

(2π)3
E . . .

• Time term∂/∂η → ρ̇

• Momentum term: perturbation to scale factora(x) = a(1 + Φ)

ȧ(x) = ȧ(1 + Φ) + aΦ̇

ȧ(x)

a(x)
≈ ȧ

a
+

Φ̇

1 + Φ
≈ ȧ

a
+ Φ̇

q̇ = −
(

ȧ

a
+ Φ̇

)
q − (∇Ψ · n̂)E



Energy Equation
Non-relativistic: gravitational forcėq = F = −m∇Ψ · n̂
Relativistic: gravitational redshifṫq = Ė = ẋ∇E = (q/E) · q∇Ψ

= −E∇Ψ · n̂. Both: de Broglie redshift

• Combined momentum terms (sincef is to leading order isotropic)

g

∫
d3q

(2π)3
q̇E

∂f

∂q
≈ 3

[
ȧ

a
+ Φ̇

]
(ρ + p)

• Position term: define average momentum as momentum density

∇ · g
∫

d3q

(2π)3
qf ≡ ∇ · (ρ + p)v

• Linearized energy/continuity equation

ρ̇ = −3

[
ȧ

a
+ Φ̇

]
(ρ + p)−∇ · (ρ + p)v



Momentum Equation
• Closure requires an evolution equation for momentum

• Integrate Boltzmann equation over

g

∫
d3q

(2π)3
q . . .

• Time term

∂

∂η
→ ∂

∂η
[(ρ + p)v]

• Momentum term: de Broglie redshift

−[
ȧ

a
+ Φ̇]g

∫
d3q

(2π)3
q

∂f

∂q
= 4[

ȧ

a
+ Φ̇]g

∫
d3q

(2π)3
qf

= 4

[
ȧ

a
+ Φ̇

]
(ρ + p)v ≈ 4

ȧ

a
(ρ + p)v



Momentum Equation
• Momentum term: gravitational potentialjth component

−∂iΨ · g
∫

d3q

(2π)3
qEnjn

i ∂f

∂q
≈ ∂jΨ(ρ + p)

where angle averaged〈ninj〉 = 1
3
δi

j and used relation from
homogeneous energy equation

• Spatial term: recall stress tensor divided into isotropic and
anisotropic pieces

g

∫
d3q

(2π)3

qiqj

E
f ≡ pδi

j + πi
j

• Combined momentum terms

∂

∂η
[(ρ + p)vi] = −4

ȧ

a
(ρ + p)vi − ∂ip− ∂jπi

j − (ρ + p)∂iΨ



Boltzmann Hierarchy
• Momentum equation is Navier-Stokes equation. Unless stress

tensor is specified, equation is not closed

• In general, the time derivative of a low order moment of the
Boltzmann equation is given by the spatial gradient of higher order
moments (here anisotropic stress)

• Microphysics closes the Boltzmann equation. Energy and
momentum equations simply reflect conservation of the stress
energy tensor and is valid foranycomponent of matter – even
things like cosmological defects.



Density Fluctuation
• Given homogeneity on the large scale, it is useful to define the

density fluctuation

δ(x, t) =
ρ(x, t)− 〈ρ(x, t)〉

〈ρ(x, t)〉
whereδ � 1 on large scales

• Evolution of the density fluctuation is given by Boltzmann
equation as a partial differential equation

• For small fluctuations, evolution equations are linear and decouple
in harmonic space

• In a spatially flat cosmology plane waves form a complete and
orthogonal set of harmonics. In general, eigenfunctions of the
Laplace operator form a complete set

∇2Q = −k2Q → Q = eik·x



Fourier Conventions
• Often required to relate harmonics in a finite (e.g. survey) volume

to infinite volume

• Periodicity: assume a 1D fieldF (x) periodic in finite volume of
lengthL

F (x + L) = F (x)

=
∑

n

F (kn)e−iknx−iknL

=
∑

n

F (kn)e−iknx = F (x) if kn =
2π

L
n

• Reality:



F ∗(x) =
∑

n

F ∗(kn)eiknx = F (x) =
∑

n

F (kn)e−iknx

F ∗(kn) = F (−kn)



Fourier Conventions
• Band limited: function has no high frequency structure, e.g.

because smoothed

kn < kmax ≡
2π

L

N

2

F (x) =

N/2∑
n=−N/2

F (kn)e−iknx

• Sampling theorem: sampling at a rate∆ = L/N is sufficient to
reconstruct field exactly. Inverse relation

F (kn) =
1

N

N−1∑
m=0

F (xm)eiknxm , xm = m∆



Fourier Conventions
• δ (Kronecker) function

F (kn) =
1

N

N−1∑
m=0

N/2∑
n′=−N/2

F (kn′)e
−i(kn′−kn)xm

if n′ = n then

1

N

N−1∑
m=0

e−i(kn′−kn)xm =
1

N

N−1∑
m=0

1 = 1

if n′ 6= n then

e−i(kn′−kn)xm = cos(kn − kn′)xm + i sin(kn − kn′)xm



Fourier Conventions

N−1∑
m=0

cos[(kn − kn′)
2πm

N
] =

sin[(N − 1
2
)(n− n′)2π

N
]

2 sin[(n− n′) π
N

]
+

1

2

(N(n− n′)2π/N = 2π(n− n′) where n− n′ integer)

= −
sin[(n− n′) π

N
]

2 sin[(n− n′) π
N

]
+

1

2
= 0

N−1∑
m=0

sin[(kn − kn′)
2πm

N
] =

sin[(n− n′)π] sin[N−1
N

(n− n′)π]

sin[(n− n′) π
N

]
= 0

→ 1

N

N−1∑
m=0

e−i(kn′−kn)xm = δnn′



Fourier Conventions
• Two point correlation

〈F (x)F (x′)〉 =
∑
nn′

〈F ∗(kn)F (kn′)〉eiknx−ikn′x
′

• Translational invariance

〈F (x + d)F (x′ + d)〉 = 〈F (x)F (x′)〉∑
nn′

〈F ∗(kn)F (kn′)〉eiknx−ikn′x
′
ei(kn−kn′ )d =

∑
nn′

〈F ∗(kn)F (kn′)〉eiknx−ikn′x
′

〈F ∗(kn)F (kn′)〉 = δnn′PF (kn)

two point statistical properties are given by the power spectrumPF

and correlation function depends only on separation

〈F (x)F (x′)〉 = ξ(x− x′)



Fourier Conventions
• Continuous conventions: letL →∞, density ofkn states gets high∑

n

→
∫

dn

• Forward and inverse transform

F (x) =

N/2∑
n=−N/2

F (kn)e−iknx =

∫ N/2

−N/2

dnF (kn)e−iknx,

= L

∫ kmax

−kmax

dk

2π
F (k)e−ikx (dkn = dn

2π

L
)

F (k) =
1

N

N−1∑
m=0

F (xm)eikxm =
1

L

∫
dxF (x)eikx dxm =

L

N
dm



Fourier Conventions
• The (Dirac)δ function

δnn′ =
1

N

N−1∑
m=0

e−i(kn′−kn)xm =
1

L

∫
dxe−i(kn′−kn)xm

F (kn) =
∑
n′

F (kn′)δnn′ =

∫
dn′F (kn′)δnn′ =

L

2π

∫
dk′

n′F (kn′)δnn′

• Define theδ function as∫
dk′F (k′)δ(k − k′) = F (k)

then δ(k − k′) =
L

2π
δnn′ =

1

2π

∫
dxei(k−k′)x

〈F ∗(k)F (k′)〉 =
2π

L
δ(k − k′)PF (k)



Fourier Conventions
• 3D Fields

F (x) = V

∫
d3k

(2π)3
F (k)e−ik·x

F (k) =
1

V

∫
d3xF (x)eik·x

(2π)3δ(k− k′) =

∫
d3xei(k−k′)·x

〈F ∗(k)F (k′)〉 =
(2π)3

V
δ(k− k′)PF (k)

• Statistical isotropy:PF (k) = PF (k)



Fourier Conventions
• Suppress volume terms by making Fourier representation

dimensionfulF̃ (k) ≡ V F (k), P̃F = V PF

F (x) =

∫
d3k

(2π)3
F̃ (k)e−ik·x

F̃ (k) =

∫
d3xF (x)eik·x

〈F̃ ∗(k)F̃ (k′)〉 = (2π)3V δ(k− k′)PF (k)

= (2π)3δ(k− k′)P̃F (k)

• Hereafter, suppress∼, power spectra have dimensions of volume

• So: what does it mean to have a large fluctuation in power?



Fourier Conventions
• Variance

σ2
F ≡ 〈F (x)F (x)〉 =

∫
d3k

(2π)3
PF (k)

=

∫
k2dk

2π2

∫
dΩ

4π
PF (k)

=

∫
d ln k

k3

2π2
PF (k)

• Define power per logarithmic interval

∆2
F (k) ≡ k3PF (k)

2π2

• This quantity is dimensionless in all representations. Serves as a
definition of the linear regimek’s where∆2

δ � 1



Linearity
• Fields related by a linear equation obey equation independent

equations

F (x) = AG(x) + B → F (k) = AG(k) (k > 0)

includes linear differential equation

F (x) = A∇G(k) + B

F (k) = A

∫
d3xeik·x∇

∫
d3k′

(2π)3
e−ik′·xG(k′)

= A

∫
d3k′

(2π)3

∫
d3xei(k−k′)·x(−ik′)G(k′) = A(−ik)G(k)

converts differential equations to algebraic relations



Convolution
• Convolution in real space often occurs – smoothing of field by

finite resolution

FW (x) =

∫
d3yW (x− y)F (y)

=

∫
d3y

∫
d3k

(2π)3
W (k)e−ik·(x−y)

∫
d3k′

(2π)3
F (k′)e−ik′·y

=

∫
d3k

(2π)3

∫
d3k′

(2π)3
e−ik·xW (k)F (k′)

∫
d3yei(k−k′)·y

=

∫
d3k

(2π)3
W (k)F (k)e−ik·x

FW (k) = W (k)F (k)

• Smoothing acts as a low pass filter: ifW (x) is a broad function of
width L, W (k) suppressed fork > 2π/L



Convolution
• Filtered Variance

〈FW (x)FW (x)〉 =

∫
d3k

(2π)3

∫
d3k′

(2π)3
ei(k−k′)·x〈F ∗(k)F (k′)〉W ∗(k)W (k′)

=

∫
d3k

(2π)3
PF (k)|W (k)|2

• Common filter is the spherical tophat:

WR(x) = 1 x < R

WR(x) = 0 x > R

• Fourier transform

WR(k) =
3

y3
(sin y − y cos y) , (y = kR)



Normalization
• Normalization is often quoted as the top hat rms of the density field

σ2
R =

∫
d ln k ∆2

δ(k)|WR(k)|2

where observationallyσ8h−1Mpc ≡ σ8 ≈ 1

• Note that∆2
δ(k) itself can be thought of as the variance of the field

with a filter that has sharp high and low pass filters ink-space



Linear Perturbation Theory
• Energy (continuity) and momentum (Navier-Stokes) equations are

linearized and hence Fourier modes obey

∂

∂η
[(ρ + p)vi] = −4

ȧ

a
(ρ + p)vi + +ikp + ikjπi

j + iki(ρ + p)Ψ

• If the source of perturbations is from the (scalar) gravitational
potential, directional dependence of velocity and anisotropic stress
follows the direction of the plane wave, so define scalar velocity
and anisotropic stress as

v(k) = ik̂v

πi
j(k) =

(
−k̂ik̂j +

1

3
δi

j

)
pπ



Linear Perturbation Theory
• Navier-Stokes equation

∂

∂η
[(ρ + p)v] = −4

ȧ

a
(ρ + p)vi + kp− 2

3
kpπ + (ρ + p)kΨ

(w = p/ρ , c2
s = δp/δρ , ρ̇/ρ = −3(1 + w)ȧ/a)

v̇ = −(1− 3w)
ȧ

a
v − ẇ

1 + w
v +

kc2
s

1 + w
δ − 2

3

w

1 + w
kπ + kΨ

• Continuity Equation

ρ̇ = −3

[
ȧ

a
+ Φ̇

]
(ρ + p) + ik · (ρ + p)v

ρ̇ = −3

[
ȧ

a
+ Φ̇

]
(ρ + p)− k(ρ + p)v

δ̇ = −3
ȧ

a
(c2

s − w)δ − (1 + w)(kv + 3Φ̇)



Poisson Equation
• Naive expectation:Φ = −Ψ and

∇2Φ = −4πGa2δρ

k2Φ = 4πGa2ρδ

wherea2 comes from physical→ comoving andδρ since
background density goes into scale factor evolution

• Einstein equations put in a relativistic correction (flat universe)

k2Φ = 4πGa2ρ[δ + 3
ȧ

a
(1 + w)v/k]

k2(Φ + Ψ) = −8πGa2pπ

• convenient to call combination

∆ ≡ δ + 3
ȧ

a
(1 + w)v/k



Constancy of Potential & Growth Rate
• Given the Poisson equation relates a redshifting total densityρ and

the comoving derivative factora the density perturbation must
grow as∆ ∝ (a2ρ)−1 ∝ a1−3w to maintain a constant potential.

• Density perturbations are stabilized by the expanding universe
(expansion drag) and do not grow exponentially. Presents a new
version of the horizon problem.

• Naive (Newtonian) argument: in the absence of stress
perturbations the Euler equation takes the formv̇ ∼ kΨ

• Given an initial potential perturbationΨi a velocity perturbation
v ∼ (kη)Ψi

• Given a velocity perturbation continuity grows a density
fluctuation as∆̇ ∼ −kv or ∆ = −(kη)2Ψi.



Constancy of Potential & Growth Rate
• The growing density perturbation is exactly that required to

maintain the potential constant

Ψ ≈ −4πGa2ρ

k2
∆ ≈ 4πGa2ρ

k2
(kη)2Ψi

η ∝ a(1+3w)/2, a2ρ ∝ a−(1+3w)

• Under gravity alone, the density fluctuations grow just fast enough
to maintain constant potentials

• Stress fluctuations only decrease the rate of growth of the
potential. Starting from an unperturbedΨi = 0 universe, where do
the fluctuations that form large scale structure come from



Bardeen Curvature
• A proper relativistic generalization involves the(ȧ/a)v/k

corrections, called the Bardeen (or comoving) curvature

ζ ≡ Φ− ȧ

a
v/k .

• Continuity equation becomes

∆̇ = −3
ȧ

a

(
C2

s − w
)
∆− (1 + w)(kv + 3ζ̇) ,

where the transformed sound speed

C2
s ≡

∆p

∆ρ

∆p ≡ δp− ṗv/k



Bardeen Curvature
• Euler equation becomes

ζ̇ =
ȧ

a
ξ

ξ = − C2
s

1 + w
∆ +

2

3

w

1 + w
π .

so that the Bardeen curvature only changes in the presence of
stress fluctuations – scales below the horizon

• Extremely useful result (proven in problem set) says that calculated
ζ once and for all – e.g. during formation in an inflationary epoch



Bardeen Curvature
• Relationship to gravitational potential: (from Poisson &

conservation equations)

ȧ

a
Ψ− Φ̇ = 4πGa2(ρ + p)v/k

so that ifΦ constant andΨ = −Φ then

−
(

ȧ

a

)2

Φ = 4πGa2ρ(1 + w)
ȧ

a
v/k

=
3

2

(
ȧ

a

)2

(1 + w)
ȧ

a
v/k

ȧ

a
v/k = − 2

3(1 + w)
Φ → ζ = 1 +

2

3(1 + w)
Φ

• Matter dominatedΦ = 3ζ/5, radiation dominatedΦ = 2ζ/3, Λ

dominatedΦ → 0.


