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Inhomogeneous Fields

e Like homogeneous cosmology, a full description of the matter
fields is given through their phase space distribution function

f(x,q,1t)

where the momentum dependenrgédescribes the bulk motion of
the particles

e Energy density and pressure are functions of position
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and can be considered as low order moments of the distribution
function




Inhomogeneous Boltzmann Equation

e Evolution of density inhomogeneities is governed by the
Boltzmann equation. Switch over to comoving representaton:
comovingx, retain physical momentumj

e For non-interacting species, Liouville equation
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e Momentumq = ¢gn, wheren is a directional unit vector and in a
flat universeg = ¢gn

e Particle velocityx = q/F
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Energy Equation

e Integrate Boltzmann equation over

g/(g:;gE...

e Time termd/on — p

e Momentum term: perturbation to scale factgx) = a(1 + P)




Energy Equation

Non-relativistic: gravitational forcg = ' = —mVV - n

Relativistic: gravitational redshift= F = iVE = (q/E) - ¢VV
= —EVV - n. Both: de Broglie redshift

e Combined momentum terms (singas to leading order isotropic)
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e Position term: define average momentum as momentum density

V-g/<§3)3qf V-(p+p)v

e Linearized energy/continuity equation
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Momentum Equation

Closure requires an evolution equation for momentum

Integrate Boltzmann equation over
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Momentum term: de Broglie redshift
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Momentum Equation

e Momentum term: gravitational potentigh component
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where angle averag€d’n;) = 6, and used relation from
homogeneous energy equation

e Spatial term: recall stress tensor divided into isotropic and
anisotropic pieces
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Boltzmann Hierarchy

e Momentum equation is Navier-Stokes equation. Unless stress
tensor Is specified, equation is not closed

e |In general, the time derivative of a low order moment of the
Boltzmann equation is given by the spatial gradient of higher orde
moments (here anisotropic stress)

e Microphysics closes the Boltzmann equation. Energy and
momentum equations simply reflect conservation of the stress
energy tensor and is valid fanycomponent of matter — even
things like cosmological defects.



Density Fluctuation

Given homogeneity on the large scale, it is useful to define the
density fluctuation

p(X7 t) o <,0(X, t)>
O(x,t) =
x.2) (p(x,1))
where) <« 1 on large scales

Evolution of the density fluctuation is given by Boltzmann
equation as a partial differential equation

For small fluctuations, evolution equations are linear and decoupl
In harmonic space

In a spatially flat cosmology plane waves form a complete and
orthogonal set of harmonics. In general, eigenfunctions of the
Laplace operator form a complete set
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Fourier Conventions

e Often required to relate harmonics in a finite (e.g. survey) volume
to infinite volume

e Periodicity: assume a 1D fiell(x) periodic in finite volume of
length L

F(z + L) = F(z)

— Z F(kn)e—iknx—iknL
2T

— Z F(k,)e % = F(z) ifk, = —n

e Reality:






Fourier Conventions

e Band limited: function has no high frequency structure, e.g.
because smoothed
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e Sampling theorem: sampling at a rate= L /N is sufficient to
reconstruct field exactly. Inverse relation
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Fourier Conventions

e ¢ (Kronecker) function
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Fourier Conventions
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Fourier Conventions

e Two point correlation

(F(x)F(2")) = Z<F*(kn)F(/fn/»eik”x_ikn’x/

nn’

e Translational invariance
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two point statistical properties are given by the power spectifym
and correlation function depends only on separation

(F(2)F(2)) = &(x — o)



Fourier Conventions

e Continuous conventions: It — oo, density ofk,, states gets high
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e Forward and inverse transform
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Fourier Conventions

e The (Dirac)s function
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e Define thed function as
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Fourier Conventions
e 3D Fields
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1

F(k) = V/deF(X)eik'x

(27T)35(k — k') = /d?’a;ei(kk')-x

(2m)°
V
e Statistical isotropyPr(k) = Pr(k)

(Fr(k)F(K)) = 0(k — k') Pp(k)



Fourier Conventions

e Suppress volume terms by making Fourier representation
dimensionfulF' (k) = VF(k), Pr = V Pg
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e Hereafter, suppress, power spectra have dimensions of volume

e S0: what does it mean to have a large fluctuation in power?



Fourier Conventions

e Variance
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e Define power per logarithmic interval

k3 Pr(k)
272

e This quantity is dimensionless in all representations. Serves as a
definition of the linear regimé’s whereA: < 1

Ap(k) =



Linearity

e Fields related by a linear equation obey equation independent
equations

F(x)= AG(x)+ B — F(k)=AGK) (k> 0)

Includes linear differential equation

F(x)=AVG(k)+ B

- d°k'
F(k)=A 3 etk Y /
(k) /d e (2m)3

B k' 3 pt(k—K)x(__ -1/ N = A(—1

converts differential equations to algebraic relations
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Convolution

e Convolution in real space often occurs — smoothing of field by
finite resolution

Fyv (x) = / YW (x — y)F(y)

3 3
d3 d k zk-(x—y) Ak’ F(k/)e—zk’y
(2m)°

/ (;ZZ / (2113/3 T (k) F(K) / dPye k)Y

_ / (gﬂiSW(k)F(k)eik'x

Fy (k) = W(k)F(k)

e Smoothing acts as a low pass filter¥if(x) is a broad function of
width L, W (k) suppressed fat > 27 /L



Convolution

e Filtered Variance

(Fw(x)Fw(x)) = / (;ZW]; / (Zf);e“k—k’)'xw*(k)F(k’)>W*(k)W(k’)
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e Common filter is the spherical tophat:

1 r < R
0 x> R
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e Fourier transform

3
Wr(k) = g(smy —ycosy),  (y=kR)



Normalization
e Normalization is often quoted as the top hat rms of the density fiel
0% = /dlnkA?;(/f)WVR(/f)\2

where observationallyg;, -1y, = 0 = 1

o Note thatA3(k) itself can be thought of as the variance of the field
with a filter that has sharp high and low pass filterg4space



Linear Perturbation Theory

e Energy (continuity) and momentum (Navier-Stokes) equations are

linearized and hence Fourier modes obey

8_77[(’0 + p)v'| = —45(,0 +p)v' + +ikp + ik 7' + ik (p + p)V

e If the source of perturbations is from the (scalar) gravitational
potential, directional dependence of velocity and anisotropic stres
follows the direction of the plane wave, so define scalar velocity

and anisotropic stress as



Linear Perturbation Theory

e Navier-Stokes equation
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e Continuity Equation
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Poisson Equation

e Naive expectationd = —¥ and
Vi® = —4rGa*sp
k*® = 4rGa?pd

wherea? comes from physical> comoving andp since
background density goes into scale factor evolution

e Einstein equations put in a relativistic correction (flat universe)
°® = 4nGa®pd + 39(1 + w)v/k]
a
(D + V) = —8rGa’pr

e convenient to call combination

A=6+3201+w/k
a



Constancy of Potential & Growth Rate

e Given the Poisson equation relates a redshifting total depsihd
the comoving derivative factarthe density perturbation must
grow asA « (a*p)~! o @'~ to maintain a constant potential.

e Density perturbations are stabilized by the expanding universe
(expansion drag) and do not grow exponentially. Presents a new
version of the horizon problem.

e Naive (Newtonian) argument: in the absence of stress
perturbations the Euler equation takes the form kWU

e Given an initial potential perturbatiob; a velocity perturbation
v~ (kn)V;

e Given a velocity perturbation continuity grows a density
fluctuation asA ~ —kv or A = —(kn)>,.



Constancy of Potential & Growth Rate

e The growing density perturbation is exactly that required to
maintain the potential constant

47TGa2pA N 4rGa*p
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e Under gravity alone, the density fluctuations grow just fast enougt
to maintain constant potentials

e Stress fluctuations only decrease the rate of growth of the
potential. Starting from an unperturb@g = 0 universe, where do
the fluctuations that form large scale structure come from



Bardeen Curvature

e A proper relativistic generalization involves the/a)v /k
corrections, called the Bardeen (or comoving) curvature

CE@—%U//{.

e Continuity equation becomes

A=-32(C2—w) A~ (Lt w)(ko+30).

where the transformed sound speed



Bardeen Curvature

Euler equation becomes
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so that the Bardeen curvature only changes in the presence of
stress fluctuations — scales below the horizon

.

Extremely useful result (proven in problem set) says that calculate
¢ once and for all — e.g. during formation in an inflationary epoch



Bardeen Curvature

Relationship to gravitational potential: (from Poisson &
conservation eguations)

b= ArGa’(p + p)v/k
a
so that if® constant and = —® then
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Matter dominatedd = 3¢ /5, radiation dominated = 2(/3, A
dominatedd — 0.




