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Thomson Scattering
• Thomson scatteringof photons off of free electrons is the most

important CMB process with a cross section (averaged over
polarization states) of

σT =
8πα2

3m2
e

= 6.65× 10−25cm2

• Density of free electrons in a fully ionizedxe = 1 universe

ne = (1− Yp/2)xenb ≈ 10−5Ωbh
2(1 + z)3cm−3 ,

whereYp ≈ 0.24 is the Helium mass fraction, creates a high
(comoving) Thomsonopacity

τ̇ ≡ neσT a

where dots are conformal timeη ≡
∫

dt/a derivatives andτ is the
optical depth.



Tight Coupling Approximation
• Nearrecombinationz ≈ 103 andΩbh

2 ≈ 0.02, the (comoving)
mean free pathof a photon

λC ≡
1

τ̇
∼ 2.5Mpc

small by cosmological standards!

• On scalesλ � λC photons aretightly coupledto the electrons by
Thomson scattering which in turn are tightly coupled to the
baryons by Coulomb interactions

• Specifically, their bulk velocities are defined by asingle fluid
velocityvγ = vb and the photons carryno anisotropyin the rest
frame of the baryons

• → No heat conductionor viscosity(anisotropic stress) in fluid



Zeroth Order Approximation
• Momentum densityof a fluid is(ρ + p)v, wherep is the pressure

• Neglectthe momentum density of thebaryons

R ≡ (ρb + pb)vb

(ργ + pγ)vγ

=
ρb + pb

ργ + pγ

=
3ρb

4ργ

≈ 0.6

(
Ωbh

2

0.02

) ( a

10−3

)
sinceργ ∝ T 4 is fixed by the CMB temperatureT = 2.73(1 + z)K
– OK substantiallybefore recombination

• Neglectradiationin theexpansion

ρm

ρr

= 3.6

(
Ωmh2

0.15

) ( a

10−3

)
• Neglect gravity



Fluid Equations
• Densityργ ∝ T 4 so definetemperature fluctuationΘ

δγ = 4
δT

T
≡ 4Θ

• Real spacecontinuity equation

δ̇γ = −(1 + wγ)kvγ

Θ̇ = −1

3
kvγ

• Euler equation (neglecting gravity)

v̇γ = −(1− 3wγ)
ȧ

a
v +

kc2
s

1 + wγ

δγ

v̇γ = kc2
s

3

4
δγ = 3c2

skΘ



Oscillator: Take One
• Combine these to form thesimple harmonic oscillatorequation

Θ̈ + c2
sk

2Θ = 0

where the sound speed is adiabatic

c2
s =

δp

δρ
=

ṗγ

ρ̇γ

herec2
s = 1/3 since we are photon-dominated

• General solution:

Θ(η) = Θ(0) cos(ks) +
Θ̇(0)

kcs

sin(ks)

where thesound horizonis defined ass ≡
∫

csdη



Harmonic Extrema
• All modes arefrozenin at recombination (denoted with a subscript
∗) yielding temperature perturbations ofdifferent amplitudefor
different modes. For the adiabatic (curvature mode)Θ̇(0) = 0

Θ(η∗) = Θ(0) cos(ks∗)

• Modes caught in theextremaof their oscillation will have
enhanced fluctuations

kns∗ = nπ

yielding afundamental scaleor frequency, related to the inverse
sound horizon

kA = π/s∗

and aharmonic relationshipto the other extrema as1 : 2 : 3...



Peak Location
• The fundmentalphysical scaleis translated into a fundamental

angular scaleby simple projection according to the angular
diameter distanceDA

θA = λA/DA

`A = kADA

• In a flat universe, the distance is simplyDA = D ≡ η0 − η∗ ≈ η0,
the horizon distance, andkA = π/s∗ =

√
3π/η∗ so

θA ≈
η∗
η0

• In amatter-dominateduniverseη ∝ a1/2 soθA ≈ 1/30 ≈ 2◦ or

`A ≈ 200



Curvature
• In acurved universe, the apparent orangular diameter distanceis

no longer the conformal distanceDA = R sin(D/R) 6= D

• Objects in aclosed universearefurtherthan they appear!
gravitationallensingof the background...

• Curvature scale of the universe must be substantiallylarger than
current horizon

• Flat universeindicates critical density and implies missing energy
given local measures of the matter density “dark energy”

• D also depends ondark energy densityΩDE andequation of state
w = pDE/ρDE.

• Expansion rate at recombination ormatter-radiation ratioenters
into calculation ofkA.



Doppler Effect
• Bulk motionof fluid changes the observed temperature via

Doppler shifts (
∆T

T

)
dop

= n̂ · vγ

• Averaged over directions(
∆T

T

)
rms

=
vγ√
3

• Acoustic solution

vγ√
3

= −
√

3

k
Θ̇ =

√
3

k
kcs Θ(0)sin(ks)

= Θ(0)sin(ks)



Doppler Peaks?
• Doppler effectfor the photon dominated system is ofequal

amplitudeandπ/2 out of phase: extrema of temperature are
turning points of velocity

• Effects add inquadrature:(
∆T

T

)2

= Θ2(0)[cos2(ks) + sin2(ks)] = Θ2(0)

• No peaksin k spectrum! However the Doppler effect carries an
angular dependence that changes itsprojectionon the sky
n̂ · vγ ∝ n̂ · k̂

• Coordinates wherêz ‖ k̂

Y10Y`0 → Y`±1 0

recouplingj′`Y`0: no peaks in Doppler effect



Restoring Gravity
• Take a simplephoton dominatedsystemwith gravity

• Continuityaltered since a gravitational potential represents a
stretchingof thespatial fabricthat dilutes number densities –
formally a spatialcurvature perturbation

• Think of this as a perturbation to thescale factora → a(1 + Φ) so
that the cosmogical redshift is generalized to

ȧ

a
→ ȧ

a
+ Φ̇

so that thecontinuity equationbecomes

Θ̇ = −1

3
kvγ − Φ̇



Restoring Gravity
• Gravitational forcein momentum conservationF = −m∇Ψ

generalized to momentum density modifies theEuler equationto

v̇γ = k(Θ + Ψ)

• General relativity says thatΦ andΨ are the relativistic analogues
of theNewtonian potentialand thatΦ ≈ −Ψ.

• In our matter-dominated approximation,Φ represents matter
density fluctuations through the cosmologicalPoisson equation

k2Φ = 4πGa2ρm∆m

where the difference comes from the use ofcomoving coordinates
for k (a2 factor), the removal of thebackground densityinto the
background expansion(ρ∆m) and finally acoordinate subtletythat
enters into the definition of∆m



Constant Potentials
• In the matter dominated epochpotentials are constantbecause

infall generates velocitiesasvm ∼ kηΨ

• Velocity divergence generates densityperturbations as
∆m ∼ −kηvm ∼ −(kη)2Ψ

• And density perturbations generate potentialfluctuations as
Φ ∼ ∆m/(kη)2 ∼ −Ψ, keeping them constant. Note that because
of the expansion, density perturbations mustgrow to keep
potentials constant.

• Here we have used theFriedman equationH2 = 8πGρm/3 and
η =

∫
d ln a/(aH) ∼ 1/(aH)

• More generally, ifstress perturbationsare negligible compared
with density perturbations( δp � δρ ) then potential will remain
roughly constant – more specifically a variant called theBardeen
or comoving curvatureζ is constant



Oscillator: Take Two
• Combine these to form thesimple harmonic oscillatorequation

Θ̈ + c2
sk

2Θ = −k2

3
Ψ− Φ̈

• In aCDM dominatedexpansionΦ̇ = Ψ̇ = 0. Also for photon
dominationc2

s = 1/3 so the oscillator equation becomes

Θ̈ + Ψ̈ + c2
sk

2(Θ + Ψ) = 0

• Solution is just anoffset versionof the original

[Θ + Ψ](η) = [Θ + Ψ](0) cos(ks)

• Θ + Ψ is also theobserved temperature fluctuationsince photons
lose energy climbing out ofgravitational potentialsat
recombination



Effective Temperature
• Photons climb out of potential wells at last scattering

• Lose energy to gravitational redshifts

• Observed oreffective temperature

Θ + Ψ

• Effective temperature oscillates aroundzerowith amplitude given
by theinitial conditions

• Note: initial conditions are set when the perturbation isoutside of
horizon, need inflation or other modification to matter-radiation
FRW universe.

• GR says thatinitial temperatureis given byinitial potential



Sachs-Wolfe Effect and the Magic 1/3
• A gravitational potentialis a perturbation to the temporal

coordinate [formally agauge transformation]

δt

t
= Ψ

• Convert this to a perturbation in thescale factor,

t =

∫
da

aH
∝

∫
da

aρ1/2
∝ a3(1+w)/2

wherew ≡ p/ρ so that duringmatter domination

δa

a
=

2

3

δt

t

• CMB temperature iscoolingasT ∝ a−1 so

Θ + Ψ ≡ δT

T
+ Ψ = −δa

a
+ Ψ =

1

3
Ψ



Baryon Loading
• Baryons add extramassto the photon-baryon fluid

• Controlling parameter is themomentum density ratio:

R ≡ pb + ρb

pγ + ργ

≈ 30Ωbh
2
( a

10−3

)
of orderunity at recombination

• Momentum density of thejoint systemis conserved

(ργ + pγ)vγ + (ρb + pb)vb ≈ (pγ + pγ + ρb + ργ)vγ

= (1 + R)(ργ + pγ)vγb

where the controlling parameter is themomentum density ratio:

R ≡ pb + ρb

pγ + ργ

≈ 30Ωbh
2
( a

10−3

)
of orderunity at recombination



New Euler Equation
• Momentum density ratio enters as

[(1 + R)vγb]
· = kΘ + (1 + R)kΨ

• Photon continuityremains the same

Θ̇ = −k

3
vγb − Φ̇

• Modification ofoscillator equation

[(1 + R)Θ̇]· +
1

3
k2Θ = −1

3
k2(1 + R)Ψ− [(1 + R)Φ̇]·



Oscillator: Take Three
• Combine these to form the not-quite-sosimple harmonic oscillator

equation

c2
s

d

dη
(c−2

s Θ̇) + c2
sk

2Θ = −k2

3
Ψ− c2

s

d

dη
(c−2

s Φ̇)

wherec2
s ≡ ṗγb/ρ̇γb

c2
s =

1

3

1

1 + R

• In aCDM dominatedexpansionΦ̇ = Ψ̇ = 0 and theadiabatic
approximationṘ/R � ω = kcs

[Θ + (1 + R)Ψ](η) = [Θ + (1 + R)Ψ](0) cos(ks)



Baryon Peak Phenomenology
• Photon-baryon ratio enters inthree ways

• Overall largeramplitude:

[Θ + (1 + R)Ψ](0) =
1

3
(1 + 3R)Ψ(0)

• Even-odd peakmodulationof effective temperature

[Θ + Ψ]peaks = [±(1 + 3R)− 3R]
1

3
Ψ(0)

[Θ + Ψ]1 − [Θ + Ψ]2 = [−6R]
1

3
Ψ(0)

• Shifting of thesound horizondown or`A up

`A ∝
√

1 + R

• Actual effectssmallersinceR evolves



Photon Baryon Ratio Evolution
• Oscillator equation has timeevolving mass

c2
s

d

dη
(c−2

s Θ̇) + c2
sk

2Θ = 0

• Effective mass is ismeff = 3c−2
s = (1 + R)

• Adiabatic invariant

E

ω
=

1

2
meffωA2 =

1

2
3c−2

s kcsA
2 ∝ A2(1 + R)1/2 = const.

• Amplitude of oscillationA ∝ (1 + R)−1/4 decays adiabaticallyas
the photon-baryon ratio changes



Oscillator: Take Three and a Half
• The not-quite-sosimple harmonic oscillatorequation is aforced

harmonic oscillator

c2
s

d

dη
(c−2

s Θ̇) + c2
sk

2Θ = −k2

3
Ψ− c2

s

d

dη
(c−2

s Φ)

changes in thegravitational potentialsalter the form of the
acoustic oscillations

• If the forcing term has atemporal structurethat is related to the
frequencyof the oscillation, this becomes adriven harmonic
oscillator

• Term involvingΨ is the ordinarygravitational force

• Term involvingΦ involves theΦ̇ term in thecontinuity equationas
a (curvature) perturbation to thescale factor



Potential Decay
• Matter-to-radiation ratio

ρm

ρr

≈ 24Ωmh2
( a

10−3

)
of orderunity at recombination in a lowΩm universe

• Radiation is not stress free and soimpedesthe growth of structure

k2Φ = 4πGa2ρr∆r

∆r ∼ 4Θ oscillatesaround a constant value,ρr ∝ a−4 so the
Netwoniancurvature decays.

• General rule: potential decays if the dominant energy component
has substantial stress fluctuations, i.e. below the generalized sound
horizon or Jeans scale



Radiation Driving
• Decay is timed precisely todrive the oscillator - close to fully

coherent

[Θ + Ψ](η) = [Θ + Ψ](0) + ∆Ψ−∆Φ

=
1

3
Ψ(0)− 2Ψ(0) =

5

3
Ψ(0)

• 5× the amplitude of the Sachs-Wolfe effect!

• Coherent approximation isexactfor a photon-baryon fluid but
reality is reduced to∼ 4× because ofneutrino contributionto
radiation

• Actual initial conditionsareΘ + Ψ = Ψ/2 for radiation
domination but comparison to matter dominated SW correct



Damping
• Tight coupling equations assume aperfect fluid: noviscosity, no

heat conduction

• Fluid imperfections are related to themean free path of the
photons in the baryons

λC = τ̇−1 where τ̇ = neσT a

is the conformal opacity toThompson scattering

• Dissipation is related to thediffusion length: random walk
approximation

λD =
√

NλC =
√

η/λC λC =
√

ηλC

thegeometric meanbetween the horizon and mean free path

• λD/η∗ ∼ few %, so expect thepeaks:> 3 to be affected by
dissipation



Equations of Motion
• Continuity

Θ̇ = −k

3
vγ − Φ̇ , δ̇b = −kvb − 3Φ̇

where the photon equation remains unchanged and the baryons
follow number conservation withρb = mbnb

• Euler

v̇γ = k(Θ + Ψ)− k

6
πγ − τ̇(vγ − vb)

v̇b = − ȧ

a
vb + kΨ + τ̇(vγ − vb)/R

where the photons gain an anisotropic stress termπγ from radiation
viscosityand amomentum exchangeterm with the baryons and
are compensated by theopposite termin the baryon Euler equation



Viscosity
• Viscosityis generated from radiationstreamingfrom hot to cold

regions

• Expect

πγ ∼ vγ
k

τ̇

generated by streaming, suppressed byscatteringin a wavelength
of the fluctuation.Radiative transfersays

πγ ≈ 2Avvγ
k

τ̇

whereAv = 16/15

v̇γ = k(Θ + Ψ)− k

3
Av

k

τ̇
vγ



Oscillator: Penultimate Take
• Adiabatic approximation( ω � ȧ/a)

Θ̇ ≈ −k

3
vγ

• Oscillator equation contains ȧΘ damping term

c2
s

d

dη
(c−2

s Θ̇) +
k2c2

s

τ̇
AvΘ̇ + k2c2

sΘ = −k2

3
Ψ− c2

s

d

dη
(c−2

s Φ̇)

• Heat conductionterm similar in that it is proportional tovγ and is
suppressed by scatteringk/τ̇ . Expansion ofEuler equationsto
leading order inkτ̇ gives

Ah =
R2

1 + R

since the effects are only significant if the baryons are dynamically
important



Oscillator: Final Take
• Finaloscillator equation

c2
s

d

dη
(c−2

s Θ̇) +
k2c2

s

τ̇
[Av + Ah]Θ̇ + k2c2

sΘ = −k2

3
Ψ− c2

s

d

dη
(c−2

s Φ̇)

• Solve in theadiabatic approximation

Θ ∝ exp(i

∫
ωdη)

−ω2 +
k2c2

s

τ̇
(Av + Ah)iω + k2c2

s = 0 (1)



Dispersion Relation
• Solve

ω2 = k2c2
s

[
1 + i

ω

τ̇
(Av + Ah)

]
ω = ±kcs

[
1 +

i

2

ω

τ̇
(Av + Ah)

]
= ±kcs

[
1± i

2

kcs

τ̇
(Av + Ah)

]
• Exponentiate

exp(i

∫
ωdη) = e±iks exp[−k2

∫
dη

1

2

c2
s

τ̇
(Av + Ah)]

= e±iks exp[−(k/kD)2] (2)

• Damping isexponentialunder the scalekD



Diffusion Scale
• Diffusion wavenumber

k−2
D =

∫
dη

1

τ̇

1

6(1 + R)

(
16

15
+

R2

(1 + R)

)
• Limiting forms

lim
R→0

k−2
D =

1

6

16

15

∫
dη

1

τ̇

lim
R→∞

k−2
D =

1

6

∫
dη

1

τ̇

• Geometric mean between horizon and mean free path as expected
from arandom walk

λD =
2π

kD

∼ 2π√
6
(ητ̇−1)1/2



Thomson Scattering
• Polarization state of radiation in direction̂n described by the

intensity matrix
〈
Ei(n̂)E∗

j (n̂)
〉
, whereE is the electric field vector

and the brackets denote time averaging.

• Differential cross section

dσ

dΩ
=

3

8π
|Ê′ · Ê|2σT ,

whereσT = 8πα2/3me is the Thomson cross section,Ê′ andÊ

denote the incoming and outgoing directions of the electric field or
polarization vector.

• Summed over angle and incoming polarization∑
i=1,2

∫
dn̂′

dσ

dΩ
= σT



Polarization Generation
• Heuristic: incoming radiation shakes an electron in direction of

electric field vector̂E′

• Radiates photon with polarization also in directionÊ′

• But photon cannot be longitudinally polarized so that scattering
into 90◦ can only pass one polarization

• Linearly polarized radiation like polarization by reflection

• Unlike reflection of sunlight, incoming radiation is nearly isotropic

• Missing linear polarization supplied by scattering from direction
orthogonal to original incoming direction

• Only quadrupole anisotropy generates polarization by Thomson
scattering



Acoustic Polarization
• Break down of tight-coupling leads to quadrupole anisotropy of

πγ ≈
k

τ̇
vγ

• ScalingkD = (τ̇ /η∗)
1/2 → τ̇ = k2

Dη∗

• Know: kDs∗ ≈ kDη∗ ≈ 10

• So:

πγ ≈
k

kD

1

10
vγ

∆P ≈
`

`D

1

10
∆T



Acoustic Polarization
• Gradient of velocity is along direction of wavevector, so

polarization is pureE-mode

• Velocity is90◦ out of phase with temperature – turning points of
oscillator are zero points of velocity:

Θ + Ψ ∝ cos(ks); vγ ∝ sin(ks)

• Polarization peaks are at troughs of temperature power



Cross Correlation
• Cross correlation of temperature and polarization

(Θ + Ψ)(vγ) ∝ cos(ks) sin(ks) ∝ sin(2ks)

• Oscillation at twice the frequency

• Correlation: radial or tangential around hot spots

• Partial correlation: easier to measure if polarization data is noisy,
harder to measure if polarization data is highS/N or if bands do
not resolve oscillations

• Good check for systematics and foregrounds

• Comparison of temperature and polarization is proof against
features in initial conditions mimicking acoustic features


