Astro 321: Problem Set 3
Due Jan. 29

1 Problem 1: Predict the CMB Temperature

- Assume that deuterium forms when the background temperature is $T=10^{9} \mathrm{~K}$. Require that neutron capture be efficient enough to form light elements but not so efficient as to leave no deuterium so that $\langle\sigma v\rangle n_{b} t \sim 1$. (a) With $\langle\sigma v\rangle=4.6 \times 10^{-20} \mathrm{~cm}^{3} \mathrm{~s}^{-1}$, and the age of the universe at $T=10^{9} \mathrm{~K}$ calculated in the first problem set, estimate the baryon density n_{b} under this condition. (b) Assuming a current baryon number density corresponding to $\Omega_{b} h^{2}=0.02$, what is the scale factor at $T=10^{9}$? (c) What is the temperature of the background today?

2 Problem 2: Compton-y distortions

Recall that the Kompaneets equation is given by

$$
\begin{equation*}
\frac{\partial f}{\partial t}=\frac{d \tau}{d t} \frac{k_{B} T_{e}}{m_{e} c^{2}} \frac{1}{x^{2}} \frac{\partial}{\partial x}\left[x^{4}\left(\frac{\partial f}{\partial x}+f+f^{2}\right)\right] \tag{1}
\end{equation*}
$$

where $x=h \nu / k T_{e}$.

- Show that evolution under the Kompaneets equation preserves the number (density) of photons.

Consider small deviations of the spectrum from the blackbody form

$$
\begin{equation*}
f=\frac{1}{e^{h \nu / k_{B} T}-1} . \tag{2}
\end{equation*}
$$

- Show

$$
\begin{equation*}
f+f^{2} \approx-\frac{T}{T_{e}} \frac{\partial f}{\partial x} \tag{3}
\end{equation*}
$$

- Transform variables from time t to the Compton- y parameter

$$
\begin{equation*}
y=\int d t \frac{d \tau}{d t} \frac{k_{B}\left(T_{e}-T\right)}{m_{e} c^{2}}, \tag{4}
\end{equation*}
$$

and write the Kompaneets equation in the form of a diffusion equation $\frac{\partial f}{\partial y}=\ldots$ The Kompaneets equation describes an upwards diffusion in energy of the photons via scattering off hotter electrons.

- Again assuming small deviations, insert the blackbody form eqn. into the right hand side of the Kompaneets/diffusion equation. Trivially integrate the equation to show that the change in the distribution function is given by

$$
\begin{equation*}
\frac{\Delta f}{f}=-y x_{\nu} e^{x_{\nu}} f\left(4-x_{\nu} \operatorname{coth} \frac{x_{\nu}}{2}\right), \tag{5}
\end{equation*}
$$

where $x_{\nu}=h \nu / k_{B} T$.

- Define the effective thermodynamic temperature as the temperature of a blackbody that has the same f at a given frequency as the perturbed spectrum. Convert $\Delta f / f$ to $\Delta T / T$. What happens as $x_{\nu} \rightarrow 0$? What happens at $x_{\nu} \rightarrow \infty$. Argue that there must be a frequency (independent of y) at which $\Delta T / T=0$. Numerically find this value of x_{ν}. Convert your answer to frequency (in GHz) and wavelength (cm) assuming $T=2.726 \mathrm{~K}$. This is known as the null in the thermal Sunyaev Zeldovich effect.

