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FRW Cosmology
• FRW cosmology = homogeneous and isotropic on large scales

• Universe observed to be nearly isotropic (e.g. CMB, radio point
sources, galaxy surveys)

• Copernican principle: must be isotropic to all observers (all
locations)

• Implies homogeneity; also galaxy redshift surveys (LCRS, 2dF,
SDSS) have seen the “end of greatness”, large scale homogeneity
directly

• FRW cosmology (homogeneity, isotropy & Einstein equations)
generically implies the expansion of the universe, except for
special unstable cases



FRW Geometry
• Spatial geometry is that of a constant curvature (positive, negative,

zero) surface

• Metric tells us how to measure distances on this surface

• Consider the closed geometry of a sphere of radiusR and suppress
one dimension
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Angular Diameter Distance
• Spatial distance: restore 3rd dimension with the usual spherical

polar angles

dΣ2 = dD2 + D2
Adα2

= dD2 + D2
A(dθ2 + sin2 θdφ2)

• DA is called the angular diameter distance sinceDAdα

corresponds to the transverse separation or size as opposed to the
EuclideanDdα, i.e. is the apparent distance to an object through
the gravitational lens of the background geometry

• In a positively curved geometryDA < D and objects are further
than they appear

• In a negatively curved universeR is imaginary and
R sin(D/R) = i|R| sin(D/i|R|) = |R| sinh(D/|R|) – and
DA > D objects are closer than they appear



Volume Element
• Metric also defines the volume element

dV = (dD)(DAdθ)(DA sin θdφ)

= D2
AdDdΩ

• Most of classical cosmology boils down to these three quantities,
(comoving) distance, (comoving) angular diameter distance, and
volume element

• For example, distance to a high redshift supernova, angular size of
the horizon at last scattering, number density of clusters...



Comoving Coordinates
• Remaining degree of freedom (preserving homogeneity and

isotropy) is an overall scale factor that relates the geometry (fixed
by the radius of curvatureR) to physical coordinates – a function
of time only

dσ2 = a2(t)dΣ2

our conventions are that the scale factor todaya(t0) ≡ 1

• Similarly physical distances are given byd(t) = a(t)D,
dA(t) = a(t)DA.

• Distances in capital case arecomovingi.e. they comove with the
expansion and do not change with time – simplest coordinates to
work out geometrical effects



Time and Conformal Time
• Proper time

dτ 2 = dt2 − dσ2

= dt2 − a2(t)dΣ2

≡ a2(t) (dη2 − dΣ2)

• Taking out the scale factor in the time coordinatedη = dt/a

definesconformal time– useful in that photons travelling radially
from observer then obey

∆D = ∆η =

∫
dt

a

so that time and distance may be interchanged



Horizon
• Distance travelled by a photon in the whole lifetime of the universe

defines thehorizon

• By dτ = 0, the horizon is simply the conformal time elapsed

Dhorizon(t) =

∫ t

0

dt′

a
= η(t)

• Since the horizon always grows with time, there is always a point
in time before which two observers separated by a distanceD

could not have been in causal contact

• Horizon problem: why is the universe homogeneous and isotropic
on large scales, near the current horizon – problem deepens for
objects seen at early times, e.g. CMB



FRW Metric
• Proper time defines the metricgµν

dτ 2 ≡ gµνdxµdxν

signature follows Peacock’s convention. Caveat reader: this is
opposite to what I’m used to so Iwill occasionally mess up the sign

• Usually we will use comoving coordinates and conformal time as
the “x” ’s unless otherwise specified – metric for other choices are
related bya(t)

• We will generally skirt around real General Relativity but
rudimentary knowledge will be useful



Hubble Parameter
• Useful to define the expansion rate or Hubble parameter

H(t) ≡ 1

a

da

dt

since dynamics (Einstein equations) will give this directly as
H(a) ≡ H(t(a))

• Time becomes

t =

∫
dt =

∫
da

aH(a)

• Conformal time becomes

η =

∫
dt

a
=

∫
da

a2H(a)



Redshift
• Wavelength of light “stretches” with the scale factor, so that it is

convenient to define a shift-to-the-red or redshift as the scale factor
increases

λ(a) = a(t)Λ

λ(1)

λ(a)
=

1

a
≡ (1 + z)

δλ

λ
= −δν

ν
= z

• Given known frequency of emissionν(a), redshift can be precisely
measured (modulo Doppler shifts from peculiar velocities) –
interpreting the redshift as a Doppler shift, objects receed in an
expanding universe

• Given a measure of distance,D(z) ≡ D(z(a)) can be measured



Distance-Redshift Relation
• All distance redshift relations are based on the comoving distance

D(z)

D(a) =

∫
dD =

∫ 1

a

da′

a′2H(a′)

(da = −(1 + z)−2dz = −a2dz)

D(z) = −
∫ 0

z

dz′

H(z′)
=

∫ z

0

dz′

H(z′)

• Note limiting case is the Hubble law

lim
z→0

D(z) = z/H(z = 0) ≡ z/H0

• Hubble constant usually quoted asH0 = 100h km s−1 Mpc−1,
observationallyh ∼ 0.7; in natural unitsH0 = (2997.9)−1h Mpc−1

defines an inverse length scale



Distance-Redshift Relation
• Example: object of known physical sizeλ = a(t)Λ (“standard

ruler”) subtending an (observed) angle on the skyα

α =
Λ

DA(z)
=

λ

aR sin(D(z)/R)

=
λ

R sin(D(z)/R)
(1 + z) ≡ λ

dA(z)

• Example: object of known luminosityL (“standard candle”) with a
measured fluxF . Comoving surface area4πD2

A, frequency/energy
(1 + z), time-dilation or arrival rate of photons (crests)(1 + z):

F =
L

4πD2
A

1

(1 + z)2

≡ L

4πd2
L

(dL = (1 + z)DA = (1 + z)2dA)



Absolute calibration
• If absolute calibration of standards unknown, then Hubble constant

not measured

• Still measures evolution of Hubble parameterH(z)/H0:

dA,L(z)

dA,L(δz)
=

H0

δz
dA,L(z)

• Alternately, distances & curvature are measured in units ofh−1

Mpc.

• Fundamental dependence (aside from(1 + z) factors)

H0DA(z) = H0R sin(D(z)/R)

= R̃ sin(H0D(z)/R̃), R̃ = H0R

H0D(z) =

∫
da

a2

H0

H(a)



Evolution of Scale Factor
• FRW cosmology is fully specified if the functiona(t) is given

• General relativity relates the scale factor with the matter content of
universe.

• Build the Einstein tensorGµν out of the metric and use Einstein
equation

Gµν = −8πGTµν

G0
0 = − 3

a2

[(
ȧ
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Einstein Equations
• Isotropy demands that the stress-energy tensor take the form

T 0
0 = ρ

T i
j = −pδi

j

whereρ is the energy density andp is the pressure

• So Einstein equations become(
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Friedman Equations
• More usual to see Einstein equations expressed in time not

conformal time

ȧ

a
=

da

dη

1
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= aH(a)
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• Friedmann equations:

H2(a) +
1

a2R2
=

8πG

3
ρ

1

a

d2a

dt2
= −4πG

3
(ρ + 3p)

• Convenient fiction to describe curvature as an energy density
componentρK = −3/(8πGa2R2) ∝ a−2



Critical Density
• Friedmann equation forH then reads

H2(a) =
8πG

3
(ρ + ρK) ≡ 8πG

3
ρc

defining a critical density todayρc in terms of the expansion rate

• In particular, its value today is given by the Hubble constant as

ρc(z = 0) = 3H2
0/8πG = 1.8788× 10−29h2g cm−3

• Energy density today is given as a fraction of critical
Ω ≡ ρ/ρc|z=0. Radius of curvature then given by
R−2 = H2

0 (Ω− 1)

• If Ω ≈ 1, ρ ≈ ρc, thenρK � ρc or H0R � 1, universe is flat
across the Hubble distance.Ω < 1 negatively curved;Ω > 1

positively curved



Newtonian Interpretation
• Consider a test particle of massm in expanding spherical region of

radiusr and total massM . Energy conservation

E =
1

2
mv2 − GMm

r
= const

1

2

(
dr

dt

)2

− GM

r
= const

1

2

(
1

r

dr

dt

)2

− GM

r3
=

const

r2

H2 =
8πGρ

3
− const

a2

• Constant determines whether the system is bound and in the
Friedmann equation is associated with curvature – not general
since neglects pressure



Conservation Law
• Second Friedmann equation, or acceleration equation, simply

expresses energy conservation (why: stress energy is automatically
conserved in GR via Bianchi identity)

dρV + pdV = 0

dρa3 + pda3 = 0

ρ̇a3 + 3
ȧ

a
ρa3 + 3

ȧ

a
pa3 = 0

ρ̇

ρ
= −3(1 + w)

ȧ

a
w ≡ p/ρ

• If w = const. then the energy density depends on the scale factor
asρ ∝ a−3(1+w).



Multicomponent Universe
• The total energy density can be composed of a sum of components

with differing equations of state

ρ(a) =
∑

i

ρi(a) =
∑

i

ρi(a = 1)a−3(1+wi), Ωi ≡ ρi/ρc|a=1

• Important cases: nonrelativistic matterρm = mnm ∝ a−3,
wm = 0; relativistic radiationρr = Enr = νnr ∝ a−4, wr = 1/3;
“curvature”ρK ∝ a−2, wK = −1/3; constant energy density or
cosmological constantρΛ ∝ a0, wΛ = −1

• Or generally withwc = pc/ρc = (p + pK)/(ρ + ρK)

ρc(a) = ρc(a = 1)e−
R

d ln a 3(1+wc(a))

H2(a) = H2
0e
−

R
d ln a 3(1+wc(a))



Acceleration Equation
• Time derivative of (first) Friedman equation

2
1

a
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3
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= −4πG

3
(1 + 3w)ρ

• Acceleration equation says that universe decelerates ifw > −1/3



Expansion Required
• Friedmann equations “predict” the expansion of the universe.

Non-expanding conditionsda/dt = 0 andd2a/dt2 = 0 require

ρ = −ρK ρ = −3p

i.e. a positive curvature and a total equation of state
w ≡ p/ρ = −1/3

• Since matter is known to exist, one can in principle achieve this
with

ρ = ρm + ρΛ = −ρK = −3p = 3ρΛ

ρΛ = −1

3
ρK ρm = −2

3
ρK

Einstein introducedρΛ for exactly this reason – “biggest blunder”;
but note that this balance is unstable:ρm can be perturbed butρΛ, a
true constant cannot



Dark Energy
• Distance redshift relation depends on energy density components

H0D(z) =

∫
da

a2

H0

H(a)

=

∫
da

a2
e

R
d ln a 3

2
(1+wc(a))

• Distant supernova Ia as standard candles imply thatwc < −1/3 so
that the expansion is accelerating

• Consistent with a cosmological constant that is
ΩΛ = ρΛ/ρcrit= 2/3 of the total energy density

• Coincidence problem: different components of matter scale
differently witha. Why are (at least) two components comparable
today? – Anthropic?



Dark Matter
• Since Zwicky in the 1930’s non-luminous or dark matter has been

known to dominate over luminous matter in stars (and hot gas)

• Arguments are basically from a balance of gravitational force
against “pressure” from internal motions: rotation velocity in
galactic disks, velocity dispersion of galaxies in clusters, gas
pressure in clusters, radiation pressure in CMB

• Assuming that the object is somehow typical in its non-luminous
to luminous density, these measures are converted to an overall
dark matter density through a “mass-to-light ratio”

• From galaxy surveys the luminosity density in solar units is

ρL = 2± 0.7× 108hL�Mpc−3

(h’s: distances inh−1 Mpc; luminosity inferred from flux
L ∝ Sd2 ∝ h−2; inverse volume∝ h3)



Dark Matter
• Critical density in solar units isρc = 2.7754× 1011h2 M�Mpc−3

so that the critical mass-to-light ratio in solar units is(
M

L

)
≈ 1400h

• Flat rotation curves:GM/r2 ≈ v2/r →M ≈ v2r/G, so the
observed flat rotation curve impliesM ∝ r out to 30h−1 kpc,
beyond the light. ImpliesM/L > 30h and perhaps more – closure
if flat out to∼ 1 Mpc.

• Similar argument holds in clusters of galaxies where velocity
dispersion replaces circular velocity and centripetal force is
replaced by a “pressure gradient”T/m = σ2 and
p = ρT/m = ρσ2– generalization of hydrostatic equilibrium:
Zwicky gotM/L ≈ 300h.



Hydrostatic Equilibrium
• Evidence for dark matter inX-ray clusters also comes from direct

hydrostatic equilibrium inference from the gas: balance radial
pressure gradient with gravitational potential gradient

• Infinitesimal volume of areadA and thicknessdr at radiusr and
interior massM(r): pressure difference supports the gas

[pg(r)− pg(r + dr)]dA =
GmM

r2
=

GρgM

r2
dV

dpg

dr
= −ρg

dΦ

dr

with pg = ρgTg/m becomes

GM

r
= −Tg

m

(
d ln ρg

d ln r
+

d ln Tg

d ln r

)
• ρg from X-ray luminosity;Tg sometimes taken as isothermal



Gravitational Lensing
• Mass can be directly measured in the gravitational lensing of

sources behind the cluster

• Strong lensing (giant arcs) probes central region of clusters

• Weak lensing (1-10% ) elliptical distortion to galaxy image probes
outer regions of cluster and total mass

• All techniques agree on the necessity of dark matter and are
roughly consistent with a dark matter densityΩm ∼ 0.2− 0.4

• Ωm + ΩΛ ≈ 1 from matter density + dark energy

• CMB provides a test ofDA 6= D through the standard rulers of the
acoustic peaks and shows that the universe is close to flatΩ ≈ 1

• Consistency has lead to the standard model for the cosmological
matter budget


