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Distribution Function

e The distribution functiory gives the number of particles per unit
phase spacé’xd’q whereq is the momentum (conventional to
work in physical coordinates)

e Consider a box of volum& = L°. Periodicity implies that the
allowed momentum states are givendpy= n,;27 /L so that the
density of states is

v
(2m)?
whereg is the degeneracy factor (spin/polarization states)

AN, = g d>q

e The distribution functiory(x, q, t) describes the particle
occupancy of these states, I.e.

N favr=ov [ G




Bulk Properties

e Integrals over the distribution function define the bulk properties o
the collection of particles

e Number density

d3q

n(x,t) = N/V = g/ (27r)3f

e Energy density

whereE? = ¢* + m?



Bulk Properties

e Pressure: particles bouncing off a surface of atea a volume
spanned by.,. per momentum state

L F L Npart Aq
Pe= "4 =74 At
(Aq = 2|q.|, At=2L,/v,)
o Npart o |QHU‘ B q2
= STl val = R = 3
so that summed over states

d’q g’
1) =
w0 =9 | s
e Likewise anisotropic stress (vanishes in the background)

| d*q 3q¢'q; — q°0",
7600 =0 | sy




Observable Properties

e Only get to measure luminous properties of the universe. For
photons mass: = 0, g = 2 (units: J m™?)

p(x,1) :2/ (;l:‘)zgqf:2/dqd(2 (%)Sf

e Spectral energy density (per unit frequency
q = hv = h27v = 27, solid angle)

__dp
 dvdS)
o Photons travelling at speed of light so thagt= I, = 4717 f the

specific intensity or brightness, energy flux across a surface, units
of Wm=—=2 Hz!sr!

Uy = 2(2m)v° f



Observable Properties

e Integrate over frequencies for total intensity

I:/dyl,,:/dlnyyl,,

v1, often plotted since it shows peak under a log ploandv 1,
have units of W m? sr! and is independent of choice of
frequency unit

e Flux density: integrate over the solid angle of a radiation source,
units of W nt2 Hz~! or Jansky =102 W m—2 Hz!

F, = / I,dS)

a.k.a. spectral energy distribution



Observable Properties
e Flux integrate over frequency, units of W
F = /dlnuyF,,

e Flux in a frequency band, measured in terms of magnitudes
(optical), set to some standard zero point per band

My — Mporm — 2.5 loglo(Fnorm/Fb) ~ 1I1(}7n01"m/1?b>

e Luminosity: integrate over area assuming isotropic emission or
beaming factor, units of W

L = 4rd; F



Extragalactic Light

e Looking at background radiatian/,, peaks in the microwave
mm-cm region, and has the distribution of a perfect black body
f=1/(e¥T —1), T =2.725+0.002K orn., = 410 cm™3,

), = 2.47 x 107°h~2. This is the cosmic microwave background.

e Strong support for hot big bang — densities high enough so that
Interactions can create a thermal distribution of photons that has
since redshifted into the microwave



Liouville Equation

Liouville theorem states that the phase space distribution function
IS conserved along a trajectory in the absence of particle
Interactions

Df [0  dqd  dx9

Dt |t T dtoq | dt ox

subtlety in expanding universe is that the de Broglie wavelength o
particles changes with the expansion so that

f=0

qoca_1

Homogeneous and isotropic limit

(0

of _dg of
ot  dt Oq ot

=0
Olngq




Energy Density Evolution

e Integrate Liouville equation over [ d*q/(27)*E to form

0 d? 0
2L H(a)g/ (2W§3Eqa—qf

as derived previously from energy conservation



Boltzmann Equation

e Boltzmann equation says that Liouville theorem must be modified
to account for collisions

Dy

—=Clf

e If collisions are sufficiently rapid, distribution will tend to thermal
equilibrium form



Kompaneets Example

e Collision term for photons under Compton scattering with free
electronsy’ +e™' — v+ e~

1 / / / 4 ¢(4) / /
Dq.Dq.Dq (2m)*0"(q+ qe — ¢ — q.
Tien (2m) 50 )

[fe(a) F(@) A+ £(@) — felge) F@) (1 + F(dN]IM|?

where stimulated emission included, Pauli blocking neglected,
Lorentz invariant phase space element

Clf] =

d’ 1
Dq = d
(2m)* 2E(q)
and the matrix element for scattering through an apglethe
electron rest frame, averaged over polarization states, is

/
M|? = 2(47)%a> l% n qﬁ _ gin? ﬁ]



Kompaneets Example

e Thermalization of photons in the presence of a “bath” of electrons
at temperaturé&, (Maxwell-Boltzmann distributed electrons)

dr 1 0 | 4 of
— T, — 1
Clf=— el [q ( S + f( +f)>]
where the scattering rate is given by

d 8ma
d_7t_ = T NOT or = 37;% — 6.65 x 107 *°cm 2
e Fromof /ot = C|[f], can check that particle number is conserved:
on/ot =0

e SettingC'|f.q] = 0 returns a diff. eq. solved by the (equilbrium or
Bose-Einstein) distribution

1
feq — ela—p)/Te _ 1




Kompaneets Example

o Verify
O feoq ela—n)/Te
0q/T, [ela—m)/Te — 1]2
ela—n)/Te
B _feq@(q—u)/Te —1
= —feq(1 + feq)

e 11 IS the chemical potential; from number density integral we see
that it represents a way of changing number density at equilibriun
- I.e. unavoidable if particle number is conserved in the collisional
process

e The equilibrium distribution comes about through general
considerations of statistical equilibrium.



General Collision Term

C|f] :/d(phase spageenergy-momentum conservatjon

X | M| ..[SOUrces- sinkg

i d’q;
/d(phase spage= II,— , 21)7 / ¥

o [enery-momentum](2m)*6™ (¢ + g2 + ...)
e [sources-sinks]#+ = boson;— = fermion

IGIL.f.(1 £ f))(1 £ f) = ILIL.(1 = f.) fif

Sources: “1”: spontaneous emissiog: f: stimulated.

Sinks: “1”: absorption off; “+£ f,”. occupied and fermionic
blocked (bosonic enhanced)



Poor Man’s Boltzmann Equation

e Non expanding medium

of
E_F(f_feq)

wherel' Is some rate for collisions, typically ~ nov wheren is
the number density of interactors ands the relative velocity with

the species in questiotf., (£ /T — 1/T) is the equilibrium
distribution (BE or FD, below)

e Add in expansion in a homogeneous medium

af dqdf
ot +dt@q _F(f_feQ)
o lag _ lda
(g oca ,th_ adt_H)
g_Haf :F(f_feQ)

ot O0lnq



Poor Man’s Boltzmann Equation

e So equilibrium will be maintained if collision rate exceeds
expansion rat€ > H, f(E,t) = feq(q¢/T(t) — p/T (1)) = feq(x)
(relativistic)

e Oncel' ~ H Interactions cease being effective and the distribution
freezes out. Thereafter

0 0
8_{ — H(?lr]:q =0;  flr=g = feq(£/TT — p/Tt)

e Solution: f = foq(qa/Trar — p/Iv) or T = Trar/a

of | O
o¢"  Olnzx

e e.g. a blackbody remains a blackbody but wiithx ¢

df  0Ofeq dlna
ot'?  Olnz dt

H(a)




Thermodynamic Equilibrium

e Thermal physics describes the equilibrium distribution of particles
for a medium at temperatuf@e

e Expect that the typical energy of a particle by equipartition is
E ~ T, sothatf(E£/T,?) in equilibrium

e Must be a second variable of import. Number density

n=g [ Gl (B/T) =1 n(D)

e If particles are conserved thencannot simply be a function of
temperature.

e The integration constant that concerns particle conservation is
called the chemical potential. Relevant for photons when creation
and annihilation processes are ineffective



Temperature and Chemical Potential

e Fundamental assumption of statistical mechanics is that all
accessible states have an equal probability of being populated. Tl
number of state&’ defines the entropy (U, N, V) = kIn G where
U Is the energy)\V is the number of particles arid is the volume

e When two systems are placed in thermal contact they may
exchange energy, leading to a wider range of accessible states

G(U7 N7 v) — ZGI(UlaNla %)G2(U — UlaN T Nlav T ‘/1)
Ur

e The most likely distribution ot/; andU, is given for the
maximumdG/dU;, = 0

(9G1 aGQ
— GodUy + G | —= dUs = 0 dU,{ +dU, =0
(8U1>N1,V1 2T <8U2>N2,V2 ; L i



Temperature and Chemical Potential

e Or equilibrium requires the temperature of the two systems to be
the same

O0ln G4 ~ (9InG) :L
Uy Jyove \ OUy )y o kT

e Likewise define a chemical potentialfor a system in diffusive
equilibrium

0ln G4 - (0InG, B
ON; Ul,Vl_ ON, UQ,VZ_ kT

defines the most likely distribution of particle numbers as a syster
with equal chemical potentials: generalize to multiple types of
particles undergoing “chemical” reactien law of mass action

Zi MidNi =0




Gibbs or Boltzmann Factor

Suppose the system has two states unoccupied 0, U; = 0 and
occupiedN; = 1, U; = E then the ratio of probabilities in the
occupied to unoccupied states is given by

exp|ln Gres(U — E, N — 1, V)]
exXp [lﬂ Gres(Ua N7 V)]

More generally the probability of a system being in a state of
energyFE; and particle numbed; is given by the Gibbs factor

~ exp|—(E — 1) /KT

P(E;, N;) o exp|—(E; — uN;) /T

Unlikely to be in an energy statg; > T' mitigated by the number
of particles

Dropping the diffusive contact, this is the Boltzmann factor



Bose-Einstein / Fermi-Dirac

L o Zz NiP(E’ivNi)
f=W)= > P(E;, Ny)

e For fermions, occupation is either O or 1

 exp[-(BE-p)/T] 1
 L+exp[—(E—p)/T]  exp[(E—p)/T]+1
e For bosons, infinite sum gives
B 1
e e
e For the nonrelativistic limit£ = m + 1¢*/m, E/T >> 1 so both
distributions go to the Maxwell-Boltzmann distribution

f = exp[—(m — p)/T] exp(—q*/2mT)




Non-Relativistic Bulk Properties

e Number density

47
(27)°

23/2 00
= ge(m“)/T—(mT)3/2/ v dx exp(—a°)
0

n = ge (mH/T / ¢*dgq exp(—q*/2mT)
0

2772

ML 32 =m0/ T
2T

e Energy densityy = m — p = mn

= g(

e Pressure’/3E = ¢°/3m — p = nT, ideal gas law



Ultra-Relativistic Bulk Properties
Chemical potential = 0, ((3) =~ 1.202

Number density

5C(3) 1 [ X
nboson—gT ? C(Tl+1):ﬁ/()‘ dl‘em_l
3 5C03)
Nfermion — ZQT ?
Energy density

i T4— _ T
Pboson = § C(4)=yg 20
7 7 2

= LSy = L™
;Ofermlon 8 g 7_‘_2 C( ) 8 g 30

Pressure?/3FE = E/3 —p=p/3, w, = 1/3



Entropy Density

e Second law of thermodynamics

1

dS 7 (dp(T)V + p(T)dV)
so that
0S 1
ETA T[P(T) + p(T)]
0S| _Vdp
oTlv T dT

e SinceS(V,T) x V is extensive

S:

N[ <

P(T)+p(T)] o=5/V=Zp(T) +p(T)



Entropy Density

e Integrability conditiondS/dV dT = dS/dTdV relates the
evolution of entropy density

do _1ldp
dT  TdT
do 1dp 1 dlna
P T[—3(P+p)] g
dlno 3alhrloz _3
— — X
dt dt o d

comoving entropy density is conserved in thermal equilibrium

e For ultra relativisitic bosons, .., = 3.60274 050, fOr fermions
factor of 7/8 from energy density.

go= gﬁgzgf

bosons



Neutrino Freezeout

e Neutrino equilibrium maintained by weak interactions, e.g.
et +e —v4v

e Weak interaction cross secti@fh, = T/10'YK ~ T'/1MeV

Ow ~ GHE? ~ 4 x 107" Tf cm?
e Ratel' =n,0, = H atTjg ~30rt ~0.2s

e After neutrino freezeout, electrons and positrons annihilate
dumping their entropy into the photons

o Beforeg,: v,et,e” =24+ 1(2+2) =%

e After g,.: v = 2; so conservation of entropy gives

T3 T, = 4 1/3T
9~ final v 11 K

initial




Relic Neutrinos

e Relic number density (zero chemical potential; now required by
oscillations & BBN)

34
My =My = 112cm ™

e Relic energy density assuming one species with fimite

Pr = My

Py = 112m—\; eVem ™ pe = 1.05 x 10*h* eVem ™
e

my

93.7eV

e Candidate for dark matter? an eV mass neutrino goes non
relativistic around: ~ 1000 and retains a substantial velocity
dispersiorn,,.

QO h* =




Hot Dark Matter

e Momenta for a nonrelativistic species redshifts like temperature
for a relativistic one, so average momentum is still given by

<Q> — 3le/ — Moy
_S(my)—l 1, _S(m,/)—l 1,
Ov = leV leV /) leV 104K

~1 m. N —1
=610 (35) = 200km/s (155)
6 x 10 oV 00km /s TV

e on order the rotation velocity of galactic halos and higher at highe
redshift - small objects can’t form: top down structure formation —
not observed — must not constitute the bulk of the dark matter




Cold Dark Matter

e Problem with neutrinos is they decouple while relativistic and
hence have a comparable number density to photons - for a
reasonable energy density, the mass must be small

e The equilibrium distribution for a non-relativistic species declines
exponentially beyond the mass threshold

m’

n=950

e Freezeout when annihilation rate equal expansionlrateo 4,
Increasing annihilation cross section decreases abundance

)3/26—m/T

e Appropriate candidates supplied by supersymmetry

e Alternate solution: keep light particle but not created in thermal
equilibrium, axion dark matter



Big Bang Nucleosynthesis

e Most of light element synthesis can be understood through nuclec
statistical equilibrium and reaction rates

e Equilibrium abundance of species with mass numband charge
Z (Z protons andd — Z neutrons)

MAL \3/2 g (ua=ma)/T
2T

¢ In chemical equilibrium with protons and neutrons

na = gal

pa = Zpy + (A= 2)py

77;AT )3/2e—mA/Te(Z,UJp-F(A_Z),UJn)/T
T

na = ga(



Big Bang Nucleosynthesis

e Eliminate chemical potentials with,, n,,

3/2
eﬂp/T — "p ( 2 ) emp/T

gp \Mpl’
3/2
Q'UJ”/T: g ( 2T ) / emn/T

Gn \Mpd’
. y Z_A(mAT)3/2 or \32/2 / o N\ 3(A-2)/2
AT IA% In A Ton m, T mnT

w o~ mA/T o(Zpp+(A=Z)pn) /T ) Z ) A=Z
p''n

(Gp = gn=2;mp = My, =mp =my/A)
(Ba=Z2Zm,+ (A—Z)m, —my)

9\ 3(A-1)/2
= ga2~" ( T) A3/2ngnf_ZeBA/T
my



Big Bang Nucleosynthesis

e Convenient to define abundance fraction

" o \ 3(A-1)/2
X4= A4 = AQAQ_A A3/2nzn;?_zngleBA/T
n mp 1’ P
2/3\ 3(A=1)/2
— Ag 24 2mn, AB2oBalT X2 x A=2
mbT p-n
2 3 _
(ny = pT ¢(3) Moy = N/ 107)
TN 203y |
_ A5/29A2—A n C( )7767 eBA/TXZX;:l—Z
™My 7'('2 p

e DeuteriumA =2,7 =1, g, = 3, By = 2.225 MeV

3 (4nT\*?
Xy = (7T > mC(3)eP/T X X,

7T2 Ty



Deuterium

e Deuterium “bottleneck” is mainly due to the low baryon-photon
number of the universg,, ~ 107, secondarily due to the low
binding energyb;

o X0/X, X, =~ O(1)atT ~ 100keV or10” K, much lower than the
binding energyb;

e Most of the deuterium formed then goes through to helium via
D+ D —3He+p,°He+D — ‘He +n

e Deuterium freezes out as number abundance becomes too small
maintain reactiong p = const. The deuterium freezeout fraction
np/ny 1, o (Qh*)~! and so is fairly sensitive to the baryon
density.

e Observations of the ratio in quasar absorption systems give
Qbh2 ~ 0.02



Helium

Essentially all neutrons around during nucleosynthesis end up in
Helium

In equilibrium, the neutron-to-proton ratio is determined by the
mass differenc€) = m,, — m, = 1.293 MeV

% = exp|[—Q/T]

p
Equilibrium is maintained through weak interactions, e.g.
n—pte +v,v+n<p+te et +n«— p+ v withrate

I' T

"~ 0.8MeV

Freezeout fraction

I — exp[—1.293/0.8] ~ 0.2

Np



Helium
Finite lifetime of neutrons brings this te 1/7 by 10°K

Helium mass fraction

Inge 4(n,/2)
g Ny, + Ty
2nn/ny - 2/T 1

B 1+n,/n, 8/7 4

Depends mainly on the expansion rate during BBN - measure
number of relativistic species

Traces of Li as well. Measured abundances in reasonable
agreement with deuterium measutgh? = 0.02



Recombination

e Statistical equilibrium says that neutral hydrogen will form

sometime after the temperature drops below the binding energy o
hydrogen

e Number density:

e Hydrogen recombinatiom, = n, + ny)

tp = o= T (1, 2
N, = gee_(me_“e)/kT (meT/27T)3/2

Ng = gHe_(mH_,uH)/kT (mHT/QT(-)S/Q



Saha Equation
e Hydrogen binding energy = 13.6eV: myg = m, + m. — B

n,N T2 m. T 3/2
Pre — c o IpYe eB/T6Np+MeMH< € )

ngn, 1 — . -~ gy 2T
e Spin degeneracy: spin 12 =2, g. = 2; gy = 4 product
e Equilibrium p, + pte = g
2 1 3/2
Le ~ —G_B/T meT
l—2x. ny 2T

e Quadratic equation involving and the total density - explicit
solution forz.(7T)

e Exponential dominant factor: ionization drops quickly/agrops
below B - exactly where the sharp transition occurs depends on th
densityn,



Recombination

e But again thehoton-baryon raties very low

My = /1y &~ 3 x 107%Qh% ~ 6 x 10717
o Eliminatein favor ofn,, and B /T through

Me

n, = 0.244T° = =376 x 10°*

e Big coefficient

2

x B\??
c =316 x 10" | = -B/T
1 — . . (T) ‘

T=1/3eV - 2,=0.7,T =0.3eV — 2, = 0.2

e Further delayedby inability to maintain equilibrium since net is
through2~ process and redshifting out of line




