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CMB Normalization
• Normalization of potential, hence inflationary power spectrum, set

by CMB observations, aka COBE or WMAP normalization

• Angular power spectrum:
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• `(`+ 1)C`/2π = ∆2
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• Sachs-Wolfe effect says∆2
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• Observed number at recombination
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COBE vs WMAP Normalization
• Given that the temperature response to an inflationary initial

perturbation is known for allk through the Boltzmann solution of
the acoustic physics, one can translate∆2

T to ∆2
ζ at the best

measuredk ≈ `/D∗.

• The CMB normalization was first extracted from COBE at` ∼ 10

or k ∼ H0. A low ` normalization point suffers from cosmic
variance: only2`+ 1 samples of a giveǹmode.

• WMAP measures very precisely the first acoustic peak at` ≈ 200.
This is the current best place to normalize the spectrum (k ∼ 0.02

Mpc−1).

• To account for future improvements, WMAP chosek = 0.05

Mpc−1 as the normalization point. Taking out the CMB transfer
function∆2

ζ(k = 0.05) = (5.07× 10−5)2 consistent with a scale
invariant spectrum from0.0002− 0.05 Mpc−1



Transfer Function
• Transfer functiontransfers the initial Newtonian curvature to its

value today (linear response theory)

T (k) =
Φ(k, a = 1)

Φ(k, ainit)

Φ(knorm, ainit)

Φ(knorm, a = 1)

• Conservation of Bardeen curvature: Newtonian curvature is a
constantwhenstress perturbations are negligible: above the
horizon during radiation and dark energy domination, on all scales
during matter domination

• When stress fluctuations dominate, perturbations are stabilized by
theJeans mechanism

• Hybrid Poisson equation: Newtonian curvature, comoving density
perturbation∆ ≡ (δρ/ρ)com impliesΦ decays

(k2 − 3K)Φ = 4πGρ∆ ∼ η−2∆



Transfer Function
• Freezingof ∆ stops atηeq

Φ ∼ (kηeq)
−2∆H ∼ (kηeq)

−2Φinit

• Transfer function has ak−2 fall-off beyondkeq ∼ η−1
eq

ηeq = 15.7(Ωmh
2)−1

(
T

2.7K

)2

Mpc

• Small correction since growth with a smooth radiation component
is logarithmic not frozen

• Transfer function is a direct output of an Einstein-Boltzmann code



Fitting Function
• Alternately accurate fitting formula exist, e.g. pure CDM form:

T (k(q)) =
L(q)

L(q) + C(q)q2

L(q) = ln(e+ 1.84q)

C(q) = 14.4 +
325

1 + 60.5q1.11

q = k/Ωmh
2Mpc−1(TCMB/2.7K)2

• In h Mpc−1, the critical scale depends onΓ ≡ Ωmh also known as
the shape parameter



Transfer Function
• Numerical calculation
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Baryon Wiggles
• Baryons caught up in the acoustic oscillations of the CMB and

impart acoustic wiggles to the transfer function. Density
enhancements are produced kinematically through the continuity
equationδb ∼ (kη)vb and hence are out of phase with CMB
temperature peaks

• Dissipation of the acoustic oscillations eliminates both the CMB
and baryon perturbations – known as Silk damping for the
baryons. This suppression and the general fact that baryons are
caught up with photons was one of the main arguments for CDM

• Detected first (so far only) in the SDSS LRG survey.

• An excellent standard ruler for angular diameter distanceDA(z)

since it does not evolve in redshift in linear theory

• Radial extent of wiggles givesH(z) (not yet seen in data)



Massive Neutrinos
• Neutrino dark matter suffers similar effects and hence cannot be

the main component of dark matter in the universe

• Relativisticstressesof a light neutrinoslow thegrowthof structure

• Neutrino species withcosmological abundancecontribute to
matter asΩνh

2 =
∑
mν/94eV, suppressing power as

∆P/P ≈ −8Ων/Ωm

• Current data from SDSS galaxy survey and CMB indicate∑
mν < 1.7eV (95% CL) and with Lyα forest< 0.42 eV.



Growth Function
• Same physics applies to the dark energy dominated universe

• Under the dark energy sound horizon or Jeans scale, dark energy
density frozen. Potential decays at the same rate for all scales

G(a) =
Φ(knorm, a)

Φ(knorm, ainit)
′ ≡ d

d ln a

• Continuity + Euler + Poisson

G′′ +

(
1− ρ′′

ρ′
+

1

2

ρ′c
ρc

)
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− ρ′′
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)
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whereρ is the Jeans unstable matter andρc is the critical density



Dark Energy Growth Suppression
• Pressuregrowth suppression: δ ≡ δρm/ρm ∝ aG

d2G

d ln a2
+

[
5

2
− 3

2
w(z)ΩDE(z)

]
dG

d ln a
+

3

2
[1− w(z)]ΩDE(z)G = 0 ,

wherew ≡ pDE/ρDE andΩDE ≡ ρDE/(ρm + ρDE) with initial
conditionsG = 1, dG/d ln a = 0

• As ΩDE → 0 g =const. is a solution. The other solution is the
decaying mode, elimated by initial conditions

• As ΩDE → 1 g ∝ a−1 is a solution. Corresponds to a frozen
density field.



Power Spectrum Normalization
• Present (or matter dominated) vs inflationary initial conditions

(normalized by CMB):

∆2
Φ(k, a) ≈ 9

25
∆2

ζi
(knorm)G2(a)T 2(k)

(
k

knorm

)n−1

• Density field

k2Φ = 4πGa2∆ρm

=
3

2
H2

0Ωm
∆ρm

ρm

1

a

∆2
Φ =

9

4

(
H0

k

)4

Ω2
ma

−2∆2
m

∆2
m =

4

25
∆2

ζi
(knorm)Ω−2

m a2G2(a)T 2(k)

(
k

knorm

)n−1(
k

H0

)4



Antiquated Normalization Conventions
• Current density field on the horizon scalek = H0

δ2
H =

4

25
∆2

ζi
(knorm)Ω−2

m a2G2(a) = (2G(1)/Ωm × 10−5)

• σ8, RMS of density field filtered by tophat of 8h−1Mpc



Power Spectrum
• SDSS data

• Power spectrum defines large scale structure observables: galaxy
clustering, velocity field, Lyα forest clustering, cosmic shear



Velocity field
• Continuity gives the velocity from the density field as

v = −∆̇/k = −aH
k

d∆

d ln a

= −aH
k

∆
d ln(aG)

d ln a

• In aΛCDM model or open modeld ln(aG)/d ln a ≈ Ω0.6
m

• Measuring both the density field and the velocity field (through
distance determination and redshift) allows a measurement ofΩm

• Practically one measuresβ = Ω0.6
m /b whereb is a bias factor for

the tracer of the density field, i.e. with galaxy numbersδn/n = b∆

• Can also measure this factor from the redshift space power
spectrum - the Kaiser effect where clustering in the radial direction
is apparently enhanced by gravitational infall



Redshift Space Power Spectrum
• Kaiser effect is separable from the real space clustering if one

measures modes parallel and transverse to the line of sight.
Redshift space distortions only modify the former

• 2D power spectrum in “s” or redshift space

Ps(k⊥, k‖) =

[
1 + β

(
k‖
k

)2
]2

b2P (k)

wherek2 = k2
‖ + k2

⊥ andk⊥ is a 2D vector transverse to the line of
sight



Power Spectrum Errors
• The precision with which the power spectrum can be measured is

ultimately limited by sample variance from having a finite survey
volumeV = L3. This is basically a mode counting argument. The
errors on the power spectrum are given by(

∆Ps

Ps

)2

=
2

Nk

whereNk is the number of modes in a range of∆k⊥, ∆k‖. This is
determined by thek-space volume and the fundamental mode of
the boxk0 = 2π/L which sets the cell size in the volume(

∆Ps

Ps

)2

=
2

V
(2π)3

2πk⊥∆k⊥∆k‖



Lyman-α Forest
• QSO spectra absorbed by neutral hydrogen through the Lyα

transition.

• The optical depth to absorption is (withds in physical scale)

τ(ν) =

∫
dsxHInbσα ∼

∫
dsxHInbΓφ(ν)λ2

wherexHI is the neutral fraction,Γ = 6.25× 108s−1 is the
transition rate andλ = 1216A is the Lyα wavelength andφ(ν) is
the Lorentz profile. For radiation at a given emitted frequencyν0

above the transition, it will redshift through the transition

• Resonant transition: lack of complete absorption, known as the
lack of a Gunn-Peterson trough indicates that the universe is nearly
fully ionizedxHI � 1 out to the highest redshift quasarz ∼ 6;
indications that this is near the end of the reionization epoch



Lyman-α Forest
• In ionization equilibrium, the Gunn-Peterson optical depth is a

tracer of the underlying baryon density which itself is a tracer of
the dark matterτGP ∝ ρ2

bT
−0.7 with T (ρb).

d(1− xHI)

dt
= −xHI

∫
dν

4πJν

hν
σν + (1− xHI)

2nbR

whereσν is the photoionization cross section (sharp edge at
threshold and falling in frequency meansJν ≈ J21) andR ∝ T−0.7

is the recombination coefficient.

• Given an equation of state from simulations ofp ∝ ργ

xHI ∝
ρbR

J21

∝ ρbT
−0.7

J21

, τGP ∝
ρ

2−0.7(γ−1)
b

JHI

• Clustering in the Lyα forest reflects the underlying power
spectrum modulo an overall ionization intensityJ21



Gravitational Lensing
• Gravitational potentials along the line of sightn̂ to some source at

comoving distanceDs lens the images according to (flat universe)

φ(n̂) = 2

∫
dD

Ds −D

DDs

Φ(Dn̂, η(D))

remapping image positions as

n̂I = n̂S +∇n̂φ(n̂)

• Since absolute source position is unknown, use image distortion
defined by the Jacobian matrix

∂nI
i

∂nS
j

= δij + ψij



Weak Lensing
• Small image distortions described by the convergenceκ and shear

components(γ1, γ2)

ψij =

(
κ− γ1 −γ2

−γ2 κ+ γ1

)
where∇n̂ = D∇ and

ψij = 2

∫
dD

D(Ds −D)

Ds

∇i∇jΦ(Dn̂, η(D))

• In particular, through the Poisson equation the convergence
(measured from shear) is simply the projected mass

κ =
3

2
ΩmH

2
0

∫
dD

D(Ds −D)

Ds

∆(Dn̂, η(D))

a


