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Closed Universe
• Friedman equationin a closed universe

1

a

da

dt
= H0

(
Ωma−3 + (1− Ωm)a−2

)1/2

• Parametric solution in terms of adevelopment angle
θ = H0η(Ωm − 1)1/2, scaled conformal timeη

r(θ) = A(1− cos θ)

t(θ) = B(θ − sin θ)

whereA = r0Ωm/2(Ωm − 1), B = H−1
0 Ωm/2(Ωm − 1)3/2.

• Turn around atθ = π, r = 2A, t = Bπ.

• Collapse atθ = 2π, r → 0, t = 2πB



Spherical Collapse
• Parametric Solution:
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Correspondence
• Eliminate cosmological correspondence inA andB in terms of

enclosed massM

M =
4π

3
r3
0Ωmρc =

4π

3
r3
0Ωm

3H2
0

8πG

• Related asA3 = GMB2, and to initial perturbationδi atai -
require an explicitr(t) → r(a)

lim
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(
1

2
θ2 − 1

24
θ4

)
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)
• Leading Order:r = Aθ2/2, t = Bθ3/6
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Next Order
• Leading order is unperturbed matter dominated expansion

r ∝ a ∝ t2/3

• Iterater andt solutions

lim
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t(θ) =
θ3
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Next Order
• Substitute back intor(θ) → r(t)

r(θ) = A
θ2

2

(
1− θ2

12

)
=

A

2

(
6t

B

)2/3
[
1− 1

20

(
6t

B

)2/3
]

=
1

2
(6t)2/3(GM)1/3

[
1− 1

20

(
6t

B

)2/3
]



Density Correspondence
• Density

ρm =
M

4
3
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6πt2G
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• Density perturbation

δ ≡ ρm − ρ̄m

ρ̄m

≈ 3
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Density Correspondence
• Time→ scale factor
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• A andB constants→ initial cond.
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Spherical Collapse Relations
• Scale factora ∝ t2/3

a =

(
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4

)2/3 (
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δi

)
(θ − sin θ)2/3

• At collapseθ = 2π

acol =
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)2/3 (
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)
(2π)2/3 ≈ 1.686

ai

δi

• Perturbation collapses whenlinear theorypredictsδc ≡ 1.686



Virialization
• A real density perturbation is neither spherical nor homogeneous

• Shell crossingif δi doesn’t monotonically decrease

• Collapse does not proceed to a point but reachesvirial equilibrium

U = −2K

E = U + K = U(rmax) =
1

2
U(rvir)

rvir =
1

2
rmax

sinceU ∝ r−1. Thusθvir = 3
2
π

• Overdensityat virialization

ρm(θ = 3π/2)

ρ̄m(θ = 2π)
= 18π2 ≈ 178

• Threshold∆v = 178 often used to define acollapsed object



Virialization
• Schematic Picture:

4

3

2

1

0.5 1 1.5 2
θ/π

r/A

r/A

t/πBtu
rn

 a
ro

un
d

virialization



The Mass Function
• Spherical collapsepredicts the end state as virializedhalosgiven

an initial density perturbation

• Initial density perturbation is aGaussian random field

• Compare the variance in the linear density field tothreshold
δc = 1.686 to determine collapse fraction

• Combine to form themass function, the number density of halos in
a rangedM aroundM .

• Halo density defined entirely by linear theory

• Fudge the result to get the right answer compared with simulations
(a la Press-Schechter)!



Press-Schechter Formalism
• Smoothlinear density density field on mass scaleM with tophat

R =

(
3M

4π

)1/3

• Result is a Gaussian random field withvarianceσ2(M)

• Fluctuations above the thresholdδc correspond tocollapsed
regions. The fraction in halos> M becomes

1√
2πσ(M)

∫ ∞

δc

dδ exp

(
− δ2

2σ2(M)

)
=

1

2
erfc

(
ν√
2

)
whereν ≡ δc/σ(M)

• Problem:even asσ(M) →∞, ν → 0, collapse fraction→ 1/2 –
only overdense regionsparticipate in spherical collapse.

• Multiply by an ad hoc factor of 2!



Press-Schechter Mass Function
• Differentiatein M to find fraction in rangedM and multiply by

ρm/M the number density of halos if all of the mass were
composed of such halos→ differential number densityof halos

dn

d ln M
=

ρm

M

d

d ln M
erfc

(
ν√
2

)
=

√
2

π

ρm

M

d ln σ−1

d ln M
ν exp(−ν2/2)

• High mass:exponential cut offaboveM∗ whereσ(M∗) = δc

M∗ ∼ 1013h−1M� today

• Low massdivergence: (too manyfor the observations?)

dn

d ln M
∝∼ M−1



Extended Press-Schechter Formalism
• A region that isunderdensewhen smoothed on the scaleM2 may

beoverdenseon a scale of alargerM > M2

• If smoothing is a tophat ink-space, independence ofk-modes
implies fluctuation executes arandom walk

δc

δ

R(M)
M2

Press-Schechter prescription

collapsed

uncollapsed



Extended Press-Schechter Formalism
• For each trajectory that lies above threshold atM2, there is an

equivalent trajectorythat is its mirror image reflected aroundδc

• Press-Schechter ignored this branch. It supplies themissing factor
of 2

δc

δ

R(M)
M2 M1

equal probability

collapsed

uncollapsed

first upcrossing



Conditional Mass Function
• Extended Press-Schechter also gives theconditional mass

function, useful formerger histories.

• Given a halo of massM1 exists atz1, what is the probability that it
was part of a halo of massM2 at z2

(1+z1)δc

(1+z2)δcδ

R(M)
M2 M1



Conditional Mass Function
• Same as before but with theorigin translated.

• Conditional mass function is mass function withδc andσ2(M)

shifted

(1+z1)δc

(1+z2)δcδ

R(M)
M2 M1



Magic “2” resolved?
• Spherical collapse is defined for areal-spacenotk-space

smoothing. Random walk is only aqualitative explanation.

• Modern approach: think of spherical collapse as motivating a
fitting form for the mass function

ν exp(−ν2/2) → A[1 + (aν2)−p]
√

aν2 exp(−aν2/2)

Sheth-Torman 1999, a = 0.75, p = 0.3. or a completely empirical
fitting

dn

d ln M
= 0.301

ρm

M

d ln σ−1

d ln M
exp[−| ln σ−1 + 0.64|3.82]

Jenkins et al 2001. Choice is tied up with the question:what is the
mass of a halo?



Numerical Mass Function
• Example of difference inmass definition(from Hu & Kravstov 2002)
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Ωm =Γ =0.15; flat; h=0.65; σ8=1.07 


