Astro 321 Lecture Notes Set 7 Wayne Hu

Closed Universe

- Friedman equation in a closed universe

$$
\frac{1}{a} \frac{d a}{d t}=H_{0}\left(\Omega_{m} a^{-3}+\left(1-\Omega_{m}\right) a^{-2}\right)^{1 / 2}
$$

- Parametric solution in terms of a development angle
$\theta=H_{0} \eta\left(\Omega_{m}-1\right)^{1 / 2}$, scaled conformal time η

$$
\begin{aligned}
r(\theta) & =A(1-\cos \theta) \\
t(\theta) & =B(\theta-\sin \theta)
\end{aligned}
$$

where $A=r_{0} \Omega_{m} / 2\left(\Omega_{m}-1\right), B=H_{0}^{-1} \Omega_{m} / 2\left(\Omega_{m}-1\right)^{3 / 2}$.

- Turn around at $\theta=\pi, r=2 A, t=B \pi$.
- Collapse at $\theta=2 \pi, r \rightarrow 0, t=2 \pi B$

Spherical Collapse

- Parametric Solution:

Correspondence

- Eliminate cosmological correspondence in A and B in terms of enclosed mass M

$$
M=\frac{4 \pi}{3} r_{0}^{3} \Omega_{m} \rho_{c}=\frac{4 \pi}{3} r_{0}^{3} \Omega_{m} \frac{3 H_{0}^{2}}{8 \pi G}
$$

- Related as $A^{3}=G M B^{2}$, and to initial perturbation δ_{i} at a_{i} require an explicit $r(t) \rightarrow r(a)$

$$
\begin{aligned}
& \lim _{\theta \rightarrow 0} r(\theta)=A\left(\frac{1}{2} \theta^{2}-\frac{1}{24} \theta^{4}\right) \\
& \lim _{\theta \rightarrow 0} t(\theta)=B\left(\frac{1}{6} \theta^{3}-\frac{1}{120} \theta^{5}\right)
\end{aligned}
$$

- Leading Order: $r=A \theta^{2} / 2, t=B \theta^{3} / 6$

$$
r=\frac{A}{2}\left(\frac{6 t}{B}\right)^{2 / 3}
$$

Next Order

- Leading order is unperturbed matter dominated expansion $r \propto a \propto t^{2 / 3}$
- Iterate r and t solutions

$$
\begin{aligned}
& \lim _{\theta \rightarrow 0} t(\theta)=\frac{\theta^{3}}{6} B\left[1-\frac{1}{20}\left(\frac{6 t}{B}\right)^{2 / 3}\right] \\
& \theta \approx\left(\frac{6 t}{B}\right)^{1 / 3}\left[1+\frac{1}{60}\left(\frac{6 t}{B}\right)^{2 / 3}\right]
\end{aligned}
$$

Next Order

- Substitute back into $r(\theta) \rightarrow r(t)$

$$
\begin{aligned}
r(\theta) & =A \frac{\theta^{2}}{2}\left(1-\frac{\theta^{2}}{12}\right) \\
& =\frac{A}{2}\left(\frac{6 t}{B}\right)^{2 / 3}\left[1-\frac{1}{20}\left(\frac{6 t}{B}\right)^{2 / 3}\right] \\
& =\frac{1}{2}(6 t)^{2 / 3}(G M)^{1 / 3}\left[1-\frac{1}{20}\left(\frac{6 t}{B}\right)^{2 / 3}\right]
\end{aligned}
$$

Density Correspondence

- Density

$$
\begin{aligned}
\rho_{m} & =\frac{M}{\frac{4}{3} \pi r^{3}} \\
& =\frac{1}{6 \pi t^{2} G}\left[1+\frac{3}{20}\left(\frac{6 t}{B}\right)^{2 / 3}\right]
\end{aligned}
$$

- Density perturbation

$$
\delta \equiv \frac{\rho_{m}-\bar{\rho}_{m}}{\bar{\rho}_{m}} \approx \frac{3}{20}\left(\frac{6 t}{B}\right)^{2 / 3}
$$

Density Correspondence

- Time \rightarrow scale factor

$$
\begin{aligned}
t & =\frac{2}{3 H_{0} \Omega_{m}^{1 / 2}} a^{3 / 2} \\
\delta & =\frac{3}{20} a\left(4 / B H_{0} \Omega_{m}^{1 / 2}\right)^{2 / 3}
\end{aligned}
$$

- A and B constants \rightarrow initial cond.

$$
\begin{aligned}
B & =\frac{1}{2 H_{0} \Omega_{m}^{1 / 2}}\left(\frac{3}{5} \frac{a_{i}}{\delta_{i}}\right)^{3 / 2} \\
A & =\frac{3}{10} \frac{r_{i}}{\delta_{i}}
\end{aligned}
$$

Spherical Collapse Relations

- Scale factor $a \propto t^{2 / 3}$

$$
a=\left(\frac{3}{4}\right)^{2 / 3}\left(\frac{3}{5} \frac{a_{i}}{\delta_{i}}\right)(\theta-\sin \theta)^{2 / 3}
$$

- At collapse $\theta=2 \pi$

$$
a_{\mathrm{col}}=\left(\frac{3}{4}\right)^{2 / 3}\left(\frac{3}{5} \frac{a_{i}}{\delta_{i}}\right)(2 \pi)^{2 / 3} \approx 1.686 \frac{a_{i}}{\delta_{i}}
$$

- Perturbation collapses when linear theory predicts $\delta_{c} \equiv 1.686$

Virialization

- A real density perturbation is neither spherical nor homogeneous
- Shell crossing if δ_{i} doesn't monotonically decrease
- Collapse does not proceed to a point but reaches virial equilibrium

$$
\begin{aligned}
U & =-2 K \\
E & =U+K=U\left(r_{\max }\right)=\frac{1}{2} U\left(r_{\mathrm{vir}}\right) \\
r_{\mathrm{vir}} & =\frac{1}{2} r_{\max }
\end{aligned}
$$

since $U \propto r^{-1}$. Thus $\theta_{\text {vir }}=\frac{3}{2} \pi$

- Overdensity at virialization

$$
\frac{\rho_{m}(\theta=3 \pi / 2)}{\bar{\rho}_{m}(\theta=2 \pi)}=18 \pi^{2} \approx 178
$$

- Threshold $\Delta_{v}=178$ often used to define a collapsed object

Virialization

- Schematic Picture:

The Mass Function

- Spherical collapse predicts the end state as virialized halos given an initial density perturbation
- Initial density perturbation is a Gaussian random field
- Compare the variance in the linear density field to threshold $\delta_{c}=1.686$ to determine collapse fraction
- Combine to form the mass function, the number density of halos in a range $d M$ around M.
- Halo density defined entirely by linear theory
- Fudge the result to get the right answer compared with simulations (a la Press-Schechter)!

Press-Schechter Formalism

- Smooth linear density density field on mass scale M with tophat

$$
R=\left(\frac{3 M}{4 \pi}\right)^{1 / 3}
$$

- Result is a Gaussian random field with variance $\sigma^{2}(M)$
- Fluctuations above the threshold δ_{c} correspond to collapsed regions. The fraction in halos $>M$ becomes

$$
\frac{1}{\sqrt{2 \pi} \sigma(M)} \int_{\delta_{c}}^{\infty} d \delta \exp \left(-\frac{\delta^{2}}{2 \sigma^{2}(M)}\right)=\frac{1}{2} \operatorname{erfc}\left(\frac{\nu}{\sqrt{2}}\right)
$$

where $\nu \equiv \delta_{c} / \sigma(M)$

- Problem: even as $\sigma(M) \rightarrow \infty, \nu \rightarrow 0$, collapse fraction $\rightarrow 1 / 2-$ only overdense regions participate in spherical collapse.
- Multiply by an ad hoc factor of 2 !

Press-Schechter Mass Function

- Differentiate in M to find fraction in range $d M$ and multiply by ρ_{m} / M the number density of halos if all of the mass were composed of such halos \rightarrow differential number density of halos

$$
\begin{aligned}
\frac{d n}{d \ln M} & =\frac{\rho_{m}}{M} \frac{d}{d \ln M} \operatorname{erfc}\left(\frac{\nu}{\sqrt{2}}\right) \\
& =\sqrt{\frac{2}{\pi}} \frac{\rho_{m}}{M} \frac{d \ln \sigma^{-1}}{d \ln M} \nu \exp \left(-\nu^{2} / 2\right)
\end{aligned}
$$

- High mass: exponential cut off above M_{*} where $\sigma\left(M_{*}\right)=\delta_{c}$

$$
M_{*} \sim 10^{13} h^{-1} M_{\odot} \quad \text { today }
$$

- Low mass divergence: (too many for the observations?)

$$
\frac{d n}{d \ln M} \propto \sim M^{-1}
$$

Extended Press-Schechter Formalism

- A region that is underdense when smoothed on the scale M_{2} may be overdense on a scale of a larger $M>M_{2}$
- If smoothing is a tophat in k-space, independence of k-modes implies fluctuation executes a random walk

Extended Press-Schechter Formalism

- For each trajectory that lies above threshold at M_{2}, there is an equivalent trajectory that is its mirror image reflected around δ_{c}
- Press-Schechter ignored this branch. It supplies the missing factor of 2

Conditional Mass Function

- Extended Press-Schechter also gives the conditional mass function, useful for merger histories.
- Given a halo of mass M_{1} exists at z_{1}, what is the probability that it was part of a halo of mass M_{2} at z_{2}

Conditional Mass Function

- Same as before but with the origin translated.
- Conditional mass function is mass function with δ_{c} and $\sigma^{2}(M)$ shifted

Magic "2" resolved?

- Spherical collapse is defined for a real-space not k-space smoothing. Random walk is only a qualitative explanation.
- Modern approach: think of spherical collapse as motivating a fitting form for the mass function

$$
\nu \exp \left(-\nu^{2} / 2\right) \rightarrow A\left[1+\left(a \nu^{2}\right)^{-p}\right] \sqrt{a \nu^{2}} \exp \left(-a \nu^{2} / 2\right)
$$

Sheth-Torman 1999, $a=0.75, p=0.3$. or a completely empirical fitting

$$
\frac{d n}{d \ln M}=0.301 \frac{\rho_{m}}{M} \frac{d \ln \sigma^{-1}}{d \ln M} \exp \left[-\left|\ln \sigma^{-1}+0.64\right|^{3.82}\right]
$$

Jenkins et al 2001. Choice is tied up with the question: what is the mass of a halo?

Numerical Mass Function

- Example of difference in mass definition (from Hu \& Kravstov 2002)

