
What's the Matter
with the CMB



COBE Normalization



COBE Normalization

•	Sachs-Wolfe Effect relates the COBE detection to the gravitational
	 potential on the last scattering surface

•	Decompose the angular and spatial information into normal modes:
	 spherical harmonics for angular, plane waves for spatial
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COBE Normalization cont.

•	Multipole moment decomposition for each k

•	Power spectrum is the integral over k modes

•	Fourier transform Sachs-Wolfe source

•	Decompose plane wave
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COBE Normalization cont.

•	Extract multipole moment, assume a constant potential

•	Construct angular power spectrum

•	For scale invariant potential (n=1), integral reduces to

•	Log power spectrum = Log potential spectrum / 9
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COBE Normalization cont.

•	Relate to density fluctuations: Poisson equation and Friedmann eqn.

•	Power spectra relation

•	In terms of density fluctuation at horizon and transfer function

•	For scale invariant potential
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COBE Normalization cont.

•	Some numbers

•	Detailed Calculation from Bunn & White (1997) including decay of
	 potential in low density universe and tilt
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Normalization Caveats

•	Why aren't models like cosmological defects, which have large
	 scale power at last scattering, automatically ruled out by COBE?

•	As the photons propagate through the large-scale structure of the
	 universe, gravitational redshifts from time-varying potentials can 
	 generate large angle fluctuations

•	Dark energy domination implies potential decay, linear effect is
	 called the Integrated Sachs Wolfe (ISW) effect
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Integrated Sachs–Wolfe Effect

• Potential redshift: g00=–(1+Ψ)2 δij

 

blueshift redshift

Kofman & Starobinskii (1985) Hu & Sugiyama (1994)



Integrated Sachs–Wolfe Effect

• Potential redshift: g00=–(1+Ψ)2 δij

• Perturbed cosmological redshift
gij=a2(1+Ψ)2 δij 
δT/T = –δa/a = Ψ

 

blueshift redshift

Kofman & Starobinskii (1985) Hu & Sugiyama (1994)



Integrated Sachs–Wolfe Effect

• Potential redshift: g00=–(1+Ψ)2 δij

• Perturbed cosmological redshift
gij=a2(1+Ψ)2 δij 
δT/T = –δa/a = Ψ

• Time–varying potential
Rapid compared with λ/c 

δT/T = –2∆Ψ
Slow compared with λ/c

redshift–blueshift cancel

• Imprint characteristic time
scale of decay in angular 
spectrum
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Calculation of Secondary Anisotropies

•	 Addition of angular momentum gives

•	 Primary anisotropies: source sharply peaked at last scattering
	 Tight Coupling Approximation:

•	 Secondary anisotropies: source slowly–varying in time
	 Weak Coupling Approximation:

•	 Log power spectrum of CMB ~ (cg)*Log power spectrum of source  /  l

•	 Scalar source and scalar field on sky: weak coupling = limber approx.
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ISW Effect in the Power Spectrum

• ISW effect cancelled 
   on small scales

• Barely affects the
   COBE normalization

• Cosmic variance 
   limited in detectability

• But... a unique probe of
   dark energy

• Cross correlation and
   Higher order statistics
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Into the
Non-Linear Regime



COBE Normalized Power Spectrum

•	Non-linear scale at k ~ 0.2 h/Mpc
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COBE Normalized Power Spectrum

•	Fully non-linear power spectrum dilates scale and increases amplitude
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HKLM / PD Scaling Relation

•	Gravitational collapse implies that the density fluctuation at a given
	 non-linear scale comes from a much larger region originally

•	Particle number conserved so density enhancement must come from
	 a change in volume:

•	Ansatz: there is a universal mapping between the linear spectrum
	 and non-linear spectrum

•	Linear limit

•	Stable clustering limit in a flat matter dominated universe

	 if clustering is fixed in physical coordinates power scales with a3	
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Secondary Anisotropies: Power Spectra

• Gravitational Effects

ISW Effect
(redshift from decaying
potentials)

Weak Lensing
(smooths peaks and
generates power <1')

• Scattering Effects

Doppler Effect

Vishniac Effect
(LSS kinetic SZ effect)

Patchy Reionization

SZ effect 
(LSS thermal)
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Baryon Suppression



Small-Scale CDM Perturbations

•	Modes which enter the horizon during radiation domination

•	CDM perturbations get boosted at horizon crossing by the decay of
	 the gravitational potentials associated with radiation

•	Enter into logarithmically growing mode due to the presence of a 
	 dominant smooth radiation background

•	If baryons are dynamically neligible, linear growth begins when the
	 universe becomes matter dominated

•	If baryons are a substantial fraction of total matter, they act as a 
	 smooth matter background and suppress growth to 

	 	 	 	 	 	 	 ap, 	     p=1 – 3Ωb/5Ωm

•	Likewise if there is a component of massive neutrinos



Growth Suppression from Baryons

•	Before the end of the drag epoch, the smooth baryons suppress growth

Hu & Sugiyama (1996)

Ωb/Ωm = 0.1

Ωb/Ωm = 1



Compton Drag

•	Momentum conservation in scattering causes a drag force on
	 the baryons 

•	Relative momentum density R=3ρb/4ργ  defines a drag rate
	 related to the scattering rate by

	 	 	 	 	 	 	 	      τd  = τ/R
•	Compton drag epoch ends when 

	 	 	 	 	 	 	 	 	 τd(zd) = 1
•	"Visibility function" for the baryons

	 	 	 	 	 	 	 	 	 τd  e–τd 

.

.

.



Acoustic Visibility

•	Effective visibility for CMB and baryons accouting for damping

Hu & Sugiyama (1996)
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Net Suppression from Baryons

•	At the end of the drag epoch, match both onto linearly growing mode

Hu & Sugiyama (1996)

Ωm=1 Ωb/Ωm << 1

Ωb/Ωm = 2/3



Baryons in the Transfer Function

•	Substantial suppression of small scale power

•	Appearance of oscillations at high baryon fractions



Baryon Wiggles



Acoustic Peaks in the Matter
• Baryon density & velocity oscillates with CMB 

• Baryons decouple at τ / R ~ 1, the end of Compton drag epoch

• Decoupling: δb(drag)  ∼ Vb(drag), but not frozen

 

   

End of Drag Epoch

Hu & Sugiyama (1996)



Acoustic Peaks in the Matter
• Baryon density & velocity oscillates with CMB 

• Baryons decouple at τ / R ~ 1, the end of Compton drag epoch

• Decoupling: δb(drag)  ∼ Vb(drag), but not frozen

• Continuity: δb = –kVb 

• Velocity Overshoot Dominates: δb ∼ Vb(drag) kη >>  δb(drag)

• Oscillations π/2 out of phase with CMB

• Infall into potential wells (DC component)
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End of Drag Epoch Velocity Overshoot + Infall

Hu & Sugiyama (1996)



Velocity Overshoot

•	Time evolution for baryon only universe 

radiation
driving

acoustic
oscillations

velocity
overshoot

linear
growth

dark
energy

Hu & Sugiyama (1996)

Ωb=Ωm=0.3



Infall into CDM Wells

•	Infall into CDM potential wells after the drag epoch

Hu & Sugiyama (1996)
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Time Evolution

•	Diffusion length compared with horizon at recombination 

Hu & Sugiyama (1996)
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Oscillations in the Transfer Function

•	Transfer function in a baryon only universe 

Hu & Sugiyama (1996)

Ωb=Ωm=0.3



Wiggles in the Transfer Function

•	Transfer function in a CDM dominated universe (fb=1/3)

Hu & Sugiyama (1996)

Ωb=0.1, Ωm=0.3



Features in the Power Spectrum
• Features in the linear power spectrum

• Break at sound horizon

• Oscillations at small scales; washed out by nonlinearities
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Features in the Power Spectrum
• Features in the linear power spectrum

• Break at sound horizon

• Oscillations at small scales; washed out by nonlinearities

Peacock & Dodds (1994)
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Features in the Power Spectrum
• Features in the linear power spectrum

• Break at sound horizon

• Oscillations at small scales; washed out by nonlinearities

SDSS BRG
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Baryon Wiggles in Non-Linear Regime

•	Mode coupling washes out features in the initial power spectrum

•	(HKLM/PD mapping fails to describe this effect!)

•	Relationship between dark matter and galaxies ("bias") non-linear

•	Better: think of the dark matter as being comprised of discrete
	 virialized halos: the halo model

•	DM power spectrum = correlations within halos +	correlations 
	 between halos 

•	Ingredients: 	halo number density (Press-Schechter) 
	 	 	 	 	 halo profiles (NFW)
	 	 	 	 	 halo bias (Mo & White)
	 	 	 	 	 linear power spectrum (cosmology)

•	Galaxy power spectrum modeled by assigning galaxies to halos



Halo Model of the Power Spectrum
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Complementarity



Combining Features in LSS + CMB
• Consistency check on thermal history and photon–baryon ratio

• Infer physical scale lpeak(CMB) → kpeak(LSS) in Mpc–1

Eisenstein, Hu & Tegmark (1998)
Hu, Eisenstein, Tegmark & White (1998)

k3Pγ(k)

k (Mpc–1)
0.05

2

4

6

8

0.1

Po
w

er
 (

ar
bi

tr
ar

y 
no

rm
.)

ΛCDM 



Combining Features in LSS + CMB
• Consistency check on thermal history and photon–baryon ratio

• Infer physical scale lpeak(CMB) → kpeak(LSS) in Mpc–1

• Measure in redshift survey kpeak(LSS) in h Mpc–1 → h

Eisenstein, Hu & Tegmark (1998)
Hu, Eisenstein, Tegmark & White (1998)
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Combining Features in LSS + CMB
• Consistency check on thermal history and photon–baryon ratio

• Infer physical scale lpeak(CMB) → kpeak(LSS) in Mpc–1

• Measure in redshift survey kpeak(LSS) in h Mpc–1 → h
• Robust to low redshift physics (e.g. quintessence, GDM) 

Eisenstein, Hu & Tegmark (1998)
Hu, Eisenstein, Tegmark & White (1998)
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Eisenstein, Hu, Tegmark (1998)

MAP +P +SDSS
H0 ±130 ±23 ±1.2

Ωm ±1.4 ±0.25 ±0.016

Classical Cosmology
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Eisenstein, Hu, Tegmark (1998)

MAP +P +SDSS
H0 ±130 ±23 ±1.2

Ωm ±1.4 ±0.25 ±0.016

ΩΛ ±1.1 ±0.20 ±0.024

Classical Cosmology

Any 
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Eisenstein, Hu, Tegmark (1998)

MAP +P +SDSS
H0 ±130 ±23 ±1.2

Ωm ±1.4 ±0.25 ±0.016

ΩΛ ±1.1 ±0.20 ±0.024

Classical Cosmology
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Many opportunities
for consistency checks!
(e.g. high-z SNIa)


