Astro 448: Problem Set 2
Due Jan. 31

Classical Scalar Fields

Scalar fields are the basis of inflation and dark energy models. In this problem set we derive the classical equations
of motion for a scalar field and its perturbations. Most of the hard work has already been done for you in class by
deriving the equations of motion for an arbitrary stress-energy tensor.

The stress-energy tensor of a minimally coupled scalar field ¢ with a potential V(y) is given by

1
T =V*oV,p— E(Voﬂp Vap +2V)6*, . (1)

We will expand the scalar field fluctuations about its background value ¢g as ¢ = ¢g + ¢1.

1 Homogeneous Case

(1) Using the FRW metric for the background and the general relation for the components of the stress energy
tensor, derive the expressions for the energy density of the field pg(¢o, o) and the pressure py(do, ¢o). You
will need this below so if you are unsure of the result check it in Scott’s book.

(2) If the energy density is dominated by the potential term what is the equation of state wy = py/ps? If the

energy density is dominated by the kinetic term (¢) what is the equation of state?
(3) Show that the continuity equation

(2)

. a
P = —3(ps +p¢)5 ;

implies the homogeneous scalar field equation

<b'0+2%¢'>0+a2V’ =0, (3)

primes are derivatives with respect to the argument ¢g, and overdots are derivatives with respect to conformal
time.

2 Fluctuations

The same procedure as in (1) works for the fluctuations. This is a bunch of tedious algebra so I will just give you
the answer

Spe = a (P — gA) + V',
dpe = a (P — PgA) — V',
(ps +pg)(vs — B) = a *kdos,
pemy = 0, (4)

where A is the time-time metric perturbation and B is the scalar time-space metric perturbation in covariant
perturbation theory. Note that there are no vector and tensor modes associated with the fluctuations. They are
higher order in ¢;. The linearization of the Einstein equations preserves the scalar nature of the scalar field.

(4) Using the gauge transformation properties of the stress energy components derive the gauge transformation
properties of ¢1. Hint: look at the velocity component. Argue that your result had to be true given that a
scalar field is a scalar field!

(5) Show that the adiabatic sound speed
2V’ a\ !
9 _ . .
% = Polbs 3(ps + po) (a) ©)

This looks like a “bad thing” since ci is not guaranteed to be positive. An imaginary sound speed means
accelerated collapse and a scalar field is supposed to be the most gravitationally stable type of matter possible
- hence its utility in the dark energy game.



(6)

Show that pressure fluctuation

vy — Ba
6ps = 8ps + 3(py + o)~ (1= c3). (6)

Argue that in the right coordinate system, in this case the comoving frame the relevant sound speed squared

5ps/3ps = 1. (7)

The sound speed relevant for gravitational collapse in this frame is the speed of light. The density fluctuation
in the comoving frame really is what you want to think of as the non-relativistic density perturbation - e.g.
it obeys the usual Poisson equation when related to the Newtonian gravitational potential. Thus a (slowly
rolling) scalar field is gravitationally stable (smooth) inside the horizon.

Use the continuity equation to derive the equation of motion for the scalar field perturbation
(51 = —22¢1 — (k2 + GQVI/)¢1 + (A - 3HL - kB)(bQ - 2ACL2VI. (8)
a

Give the expression in the Newtonian and synchronous gauges. What happens to ¢; in the comoving frame?
(hint: re-examine the expression for the energy flux).



